
C. Giannelli (Ed.): Mobilware, LNICST 0007, pp. 366–380, 2009.
© Institute for Computer Science, Social Informatics and Telecommunications Engineering 2009

Design, Implementation and Case Study of WISEMAN:
WIreless Sensors Employing Mobile AgeNts

Sergio González-Valenzuela, Min Chen, and Victor C.M. Leung

Department of Electrical and Computer Engineering
The University of British Columbia

2332 Main Mall, Vancouver BC, V6Z1T4, Canada
{sergiog,minchen,vleung}@ece.ubc.ca

Abstract. We describe the practical implementation of Wiseman: our proposed
scheme for running mobile agents in Wireless Sensor Networks. Wiseman’s ar-
chitecture derives from a much earlier agent system originally conceived for
distributed process coordination in wired networks. Given the memory con-
straints associated with small sensor devices, we revised the architecture of the
original agent system to make it applicable to this type of networks. Agents are
programmed as compact text scripts that are interpreted at the sensor nodes.
Wiseman is currently implemented in TinyOS ver. 1, its binary image occupies
19Kbytes of ROM memory, and it occupies 3Kbytes of RAM to operate. We
describe the rationale behind Wiseman’s interpreter architecture and unique
programming features that can help reduce packet overhead in sensor networks.
In addition, we gauge the proposed system’s efficiency in terms of task duration
with different network topologies through a case study that involves an
early-fire-detection application in a fictitious forest setting.

Keywords: Mobile agents, wireless sensor networks, performance evaluation.

1 Introduction

The topic of Wireless Sensor Networks (WSN) continues to draw significant research
interest at present. These investigations include studies on the feasibility of dynami-
cally re-tasking sensor nodes in the face of continuous changes in the underlying
environment. To tackle this issue, code mobility can be used as a potentially efficient
approach [1]. While some of these approaches have been proposed for operation over
devices with plentiful hardware resources, we are rather interested in the type of
agent-based re-tasking systems targeted at low-end sensor devices that are character-
ized by severe memory and processing constraints. The main motivation for studying
WSN agent-based re-tasking is that it enables rapid modifications to the pre-
programmed behaviour of sensor nodes responding to a predefined type of events.
Clearly, dynamic WSN re-tasking provides flexibility and convenience to its opera-
tors. Still, further studies are needed to determine whether this mechanism is not only
practicable from an engineering perspective, but also whether the system that imple-
ments it fulfills performance expectations in terms of resources employed and
response time.

 Design, Implementation and Case Study of WISEMAN 367

Initial accomplishments in the area of WSN re-tasking were achieved by schemes
such as Deluge [2], Impala [3] and Maté [4]. These approaches introduced basic
forms of code mobility to reprogram WSN nodes with a certain degree of flexibility
and were soon followed by enhanced approaches. For instance, Agilla is a popular
scheme that employs code mobility in the form of programmable agents to perform
WSN re-tasking too [5]. The Agilla framework introduced significant improvements
over existing proposals by employing a more robust agent interpreter capable of han-
dling certain tasks in devices severely constrained in hardware resources. Several
lessons were learned during the implementation and testing of Agilla, including issues
related to memory management and the agents’ programming language [6].

In a previous paper, we contested that middleware design for agent systems in
WSN is highly dependent on several issues, which includes (1) the targeted system
application and (2) the network navigation methodology implemented into the mobile
codes to address the issue in question [7]. In addition, the use of mobile codes in
WSNs is mostly warranted when collecting and/or aggregating data that is dispersed
in various nodes. To this regard, we have previously proposed MAWSN and MADD
as itinerary-planning schemes aimed at reducing the overhead incurred by the corre-
sponding process [8, 9]. One shortcoming with these and other proposed paradigms is
that once the agent is dispatched by the sink node, its itinerary cannot be revised,
which becomes an issue should the underlying environment conditions change after
the agent has been dispatched [10]. By the same token, if on-the-go itinerary changes
are needed, then this functionality needs to be supported by the agent middleware.

To address the previous issue, we designed and implemented Wiseman: “WIreless
Sensors Employing Mobile AgeNts”. Our proposed scheme overcomes the source-
based itinerary issue, enabling changes by any WSN node in the pre-defined path
assigned to an agent. Our novel agent middleware system incorporates: (1) a high-
level text-based language system that acts as a compact action script, (2) the ability to
dynamically modify agent itineraries that can employ hop-by-hop planning, and (3) a
virtual-link navigation capability that mimics multicast routing through labelled paths.
A combination of the latter 2 schemes is also possible. In addition to this, Wiseman is
based on a framework that does not necessitate a program counter and execution stack
to function. Instead, Wiseman incorporates a self-depleting command execution
model that discards agent instructions once they are no longer needed. This implies
that the agent size is variable, and may be structured to progressively shrink as it
completes its task.

The rest of the paper is organized as follows: In Section 2, we briefly introduce the
original predecessor of the Wiseman system and describe its adaptation into a mid-
dleware system amenable to WSN use. Section 3 describes Wiseman’s simplified
architecture and main system modules. In Section 4, we describe Wiseman’s language
construct design based on the needs of the overall system. Practical implementation
aspects of the system are discussed in Section 5. In Section 6, we illustrate a sample
application scenario to evaluate the performance of the system in terms of agent mi-
gration delay. In Section 7, we discuss the results of our experiments. Finally, we
present our conclusions in Section 8.

368 S. González-Valenzuela, M. Chen, and V.C.M. Leung

2. System Foundations

Existing mobile agent approaches for WSN attempt to achieve a balance between the
degrees of functionality incorporated into the actual code interpreter, and the one
provided to the agents. On the one hand, a coarse-grained agent system for WSN that
incorporates a high degree of functionality in the interpreter requires simple con-
structs on the agent side in order to accomplish a certain task (e.g., <run task A>, <run
task B>, <end>). On the other hand, a code interpreter tailored for fine-grained agent
language construct leads to larger programs that describe in detail the task to perform
(e.g., <mov 1 x>, <and x 0xFB>, …) Once again, the degree of granularity used in the
language constructs of the agent system should be a direct function of the intended
WSN’s application. Given the specific nature of WSNs, it results intuitive to think of
coarse-grained language constructs as a more suitable approach. In other words, it
makes little sense here to provide agents with excessive control of the node’s data
processing functionalities if the tasks to be performed are consistently repetitive. In
fact, the case for code mobility in the form of agents hardly holds if the WSNs tasks
they are set to solve are rather deterministic, or if they require minimal changes. The
use of mobile agents in a WSN is therefore justified by the need of flexibility in the
evolution of a system process. In such case, whereas the application of a WSN might
be very well defined, external factors driven by the underlying environment might
require different strategies to deal with the problem. For this reason, we propose an
alternative approach to incorporate programmability in distributed tasks based on a
simplified version of the Wave system for incorporation into WSN.

The Wave system can be considered one of the earliest precursors of code mobility
in data networks, with its foundations lying on the idea of efficient task coordination in
distributed environments [11, 12]. To this effect, Wave’s high-level language construct
allows creating highly compact programs that encompass a suitable degree of distrib-
uted coordination. This approach results highly appealing to WSNs, since it promotes
the use of existing functionalities in the node, instead of creating agents that repeatedly
perform the same task on every node they visit. In fact, overall system efficiency can
arguably be improved by promoting local data processing through algorithms that run
on native code. As a result: (1) the process coordination part of the distributed applica-
tion is decoupled from the data processing part and is now left for the agents to per-
form; (2) additional agent compactness can be achieved by defining language
constructs that are sufficient to describe the desired coordination methodology of the
mobile process; and (3) a condensed language construct translates into simplified in-
terpreter’s architecture, smaller memory footprint, and reduced forwarding overhead in
terms of delay and bandwidth. In the next section we describe Wiseman’s architecture
as a significantly simplified adaptation of the original Wave system.

3 The Wiseman System Architecture

The Wiseman interpreter is comprised of an incoming agent queue, a code parser, a
processor block, and an agent dispatcher, as shown in Fig. 1. The incoming agent
queue works in a simplistic first-in-first-out fashion, and accepts agents either arriving
from other nodes, or those injected at the local node. The parser is in charge of proc-
essing agents as they are received from the wireless interface of the node.

 Design, Implementation and Case Study of WISEMAN 369

Fig. 1. Wiseman’s System architecture

Agents are removed from the incoming queue one at a time and fragmented into
their respective codes and data fields. Agent codes are further separated into two
segments, hereto referred as head and tail. The head is the first code fragment defined
by the language constructs, whereas the rest of the codes that follow are referred to as
the tail. The head is then unwrapped from any delimiters until a single indivisible
operation is found by the parser, and is subsequently passed onto the processor block
for execution. When finished, the process control is returned to the parser, which then
extracts the next operation from the agent’s tail if the previous operation was success-
fully processed. The new segment becomes the head that is processed in the exact
same fashion. This way of processing agents implies that the agent’s size is system-
atically depleted as operations are being performed, and can help save forwarding
time and bandwidth when hoping across the WSN.

The processor performs the operation indicated by the head, whose outcome is
determined as Boolean value (i.e., its execution is either successfully completed, or
not). This outcome is employed to make decisions that affect the subsequent execu-
tion of the distributed process, as noted before. The agent execution process is halted
if any of the following conditions occur: (1) an operation yields an unsuccessful out-
come, (2) an agent-hop operation is encountered, or (3) explicit process termination is
indicated. In the first case, the agent’s tail is discarded and the agent simply termi-
nates executing, unless the head is contained within a language construct that instructs
the parser to proceed otherwise. If the operation is successful, then the parser sends
the next operation to the execution block and the process continues as defined by the
agent’s codes. In the second case, the agent instructs the execution block to migrate
the agent to another node, and so the tail is sent to the dispatcher block for subsequent
forwarding to another node or set of nodes. In the third case, the agent may simply
instruct the interpreter to explicitly halt the current process execution as needed. The
process sequence in Wiseman’s architecture is shown in Fig. 2.

An agent may hop to a node or set of nodes that are associated by sharing a single-
character label used as a unique identifier. If the agent’s codes specify a hop through
one of these labelled (virtual) paths, then the dispatcher first ensures that the hop is
actually possible by looking up the corresponding label entry in a local table that
contains a list of the neighbouring nodes associated to it. The agent will be dispatched

370 S. González-Valenzuela, M. Chen, and V.C.M. Leung

Fig. 2. Agent processing sequence in Wiseman

out of the interpreter only if the corresponding label exists in the table. Otherwise, the
agent is discarded. However, the agent may also be unicast to a specific node, or
broadcast if no particular destination is specified. Finally, the dispatcher signals the
parser once the agent has been forwarded, so that the next agent in the incoming
queue can be processed, if one exists.

Another novel feature of Wiseman is defined by its metamorphic capability. Since
Wiseman agents are transmitted and processed in their raw text-string from, the archi-
tecture effectively allows the interpreter to substitute portions of the agent’s code with
other codes. This characteristic introduces a degree of flexibility unmatched by exist-
ing agent approaches in WSNs. For example, a target-tracking agent may initially
carry and execute the corresponding code of an energy-efficient algorithm that works
best for slow moving objects. However, if the object’s rate of mobility increases, then
the agent may instruct a WSN node to replace its target tracking algorithm with one
that is more energy-demanding, but otherwise necessary to keep up with fast-moving
objects.

4 Language Constructs

Wiseman’s constructs are simplified versions of Wave’s original operators, variables,
rules, and delimiters, so that they can be employed in WSN nodes:

4.1 Variables

The Wiseman interpreter supports three kinds of fixed-type variables, all of which
employ pre-assigned memory segments in the local node. The first type is coined as
Numeric, represented by the letter N, and is predefined as being of floating point type.
The second kind is the Character variable, intended for use with single characters
through the letter C. Both of these variable types are semantically similar to public
variables defined in object-oriented programming, meaning that all agents that arrive
to the interpreter have access to them. In addition, agents carry with them Mobile
variables, which are accessed through the letter M. Mobile variables’ role resembles

 Design, Implementation and Case Study of WISEMAN 371

that of private variables in object-oriented programming. Thus, manipulation of an
agent’s own Mobile variables has no effect on other agents’ Mobile variables. Simi-
larly, the manipulation of Numeric and Character variables at the local node has no
effect on the variables of remote nodes. However, all variables are expected to main-
tain their semantic meaning across the network according to how they are individually
manipulated by programmers through the agents. Agents always carry with them
associated Mobile variables, which are temporarily stored in predefined memory loca-
tions when visiting a node. The interpreter also implements the Clipboard variable B
to temporarily store data. The execution environment also defines three extra Envi-
ronmental variables. Identity I is a read-only variable, whose content is defined by the
local node’s identification number (i.e., 1, 2 …) The Predecessor P contains the iden-
tification number of the node where the agent being processed hopped from. Finally,
the Link variable L holds the label of the virtual link through which the agent arrived
from. The interpreter’s dispatcher appends these variables to the agent’s control field
as soon as it arrives from the wireless channel.

4.2 Operators

Wiseman defines a mix of general purpose and system-specific operators. For
instance, standard arithmetic operators are provided to allow simple calculations at
the nodes (i.e., +, -, *, / and =). Ordinary comparison operators that return Boolean
values that agents evaluate are also supported (i.e., <, <=, ==, =>, > and !=). The hop
operator is employed to indicate that the agent needs to be forwarded either to the
node specified in the right-hand side of the # character, or through the virtual link
specified in its left-hand side that is associated with a certain subset of adjacent nodes.
For the later case, this operator provides the functionality of automatically cloning the
agent with as many copies as outgoing virtual links exist to the corresponding nodes.
That is, if there are 3 such virtual links labelled with the letter s, then an identical
number of agent copies will be forwarded by the dispatcher. Moreover, if a hop op-
eration is met by the interpreter when processing the codes, then the agent is
forwarded and execution resumes at the next operation where the process had been
previously suspended. This functionality provides Wiseman with a basic form of
strong mobility that does not require any form of program counter or execution state
that needs to be forwarded with the agent. Alternatively, a copy of the agent may be
locally broadcast to all immediate neighbours by employing the @ operator. The
execution operator $ indicates to the interpreter that a local function is to be called as
specified by its left- and right-hand side parameters. The code injection operator ^
indicates the insertion of a locally stored code(s) segment into the agents structure.
Finally, the halt operator ! indicates the explicit termination of the current agent with
success if the right-side operand is 1 or failure if the operand is 0.

4.3 Rules

In Wiseman, the Repeat rule R indicates that codes embraced by the corresponding
delimiters will be continuously executed. However, Wiseman processes cycling codes
by extracting them from the delimiters and re-inserting them before the original Repeat
construct. Therefore, an agent segment that possesses the corresponding structure for

372 S. González-Valenzuela, M. Chen, and V.C.M. Leung

repeating code R{…} yields the modified structure …;R{…}. This process can be re-
peated consecutively until a certain condition is met. In addition, Or O and And A rules
are defined as a way to manipulate execution of the agent by testing whether the code
embraced within square brackets yields a true or false value for every code segment it
includes. Therefore, an O[…;…;…] construct indicates that the code segments delim-
ited by semicolons are to be sequentially executed, stopping as soon as one of these
segments results in a true value. Otherwise, the Or rule returns a false value and the
whole agent’s process stops. A similar logic applies for the And rule, except that all of
the segments must return a true value in order for the whole construct to succeed.

4.4 Delimiters

The main delimiter employed to separate code segments is the semicolon. In addition,
round, square and curly brackets are designated to delimit code segments whose exe-
cution depends on a rule construct, as explained before. Distinct types of brackets are
employed since they facilitate the parser’s task when tokenizing nested code segments
prior to being processed (i.e., R{…O[…(…)…]…}). The use of a single type of
bracket would have implied significantly more parsing functionalities, and therefore,
added processing overhead.

5 Practical Implementation Aspects

Wiseman was initially evaluated employing the OMNeT++ Discrete Event Simulator
[13] to verify the correctness of the design after undergoing significant changes from
an earlier system proposal [14]. This preliminary evaluation step was crucial in
streamlining its implementation over actual hardware devices given the difficulty of
debugging firmware programs. After verification, Wiseman was ported to the NesC
language and subsequently improved for more efficient operation over Crossbow
Micaz [15]. The NesC programming language employed to code TinyOS ver. 1.1
programs is in fact a modified version of the C language [16]. We decided to employ
this wireless sensor platform since it provides an ideal example of a severely-
constrained hardware device type whereby our proposed system could be put to the
test. In particular, these motes have 128Kbytes of instruction memory and 4Kbytes of
data memory. Therefore, developing an agent system for this hardware platform is
challenging due primarily to the limited amount of memory space. A mote attached to
a Crossbow MIB510 interface board is used as a data sink node, whereas the MIB510
itself interfaces data between the WSN and a regular laptop computer. Wiseman spans
approximately 2400 lines of NesC code divided into modules that reflect the system
architecture shown in Fig. 1. An additional module that includes a few uncommon
string manipulation functions was also incorporated as required by the parser to proc-
ess agent codes. Wiseman can be currently obtained from [17].

As mentioned before, Wiseman’s binary image occupies 19Kbytes and just over
3Kbytes of RAM space to operate in its current form. A good portion of the RAM
space usage reflects the space reserved to manipulate agents that occupy a maximum
of 170 bytes. Depending on the type of agent program created, this amount of re-
served memory suffices for our experiments. However, for agents that incorporate the

 Design, Implementation and Case Study of WISEMAN 373

Repeat rule R, we needed to ensure that there was enough memory space since this
construct may effectively duplicate the size of the agent. For example, an agent with
codes “R{…;#1}” yields the string “…;#1;R{#1;…}”, or simply “#1;R{…}” just be-
fore the agent is set to hop to node 1. However “R{#1;…}” leads to “#1;…;R{#1;…}”,
nearly doubling the agent code’s size before being forwarded to node 1. It is also
evident that agents can be larger than the data payload of the Zigbee packets used by
the Micaz to communicate with other nodes. Consequently, we implemented a simple
data forwarding mechanism that follows the signalling sequence illustrated in Fig. 3.

Fig. 3. Forwarding sequence of Wiseman agent segments

As seen here, every node wishing to forward an agent first must request permission
to initiate the agent migration process by sending a Request-To-Send (RTS) packet to
the intended destination node to ensure that it is currently available, since it might
possibly be involved in another agent forwarding process with a different node. Sub-
sequent permission to send packets is granted upon receiving a Clear-To-Send (CTS)
acknowledgement from the destination. These session initiation and control packets
are comprised by three fields, which include: a source node ID number, a randomly
generated session number, and the current segment number. CTS packets always
indicate the segment number the target node is expecting next. Any discrepancy be-
tween the expected segment number, the session number, or the source node identifier
resets the process and all of the previous segments are discarded. This procedure is
done to ensure agent forwarding correctness and to avoid possible confusions with
packets that may arrive from other nodes. A timeout process that expires after 300mS
is always initiated at the sender’s side, and a maximum of 3 transmission attempts
may take place. If unsuccessful, the interpreter first discards the current agent and
then attempts to transmit the next agent in the outgoing agent queue, which may be
destined to a different node. To this regard, two different agent queues are kept: one
that holds a maximum of 3 incoming agents, and one for a maximum of 5 outgoing
agents. This signifies that the interpreter may receive and queue up to 3 agents for
future processing if it is currently busy with another agent. If the incoming queue is
full, then additional RTS signals received are left unanswered. In addition to this,

374 S. González-Valenzuela, M. Chen, and V.C.M. Leung

since the receiving end implements no timeout procedure during an agent forwarding
process, if the current forwarding process fails, then the receiver will keep its last
session values. Later, when another node attempts to begin transmissions, the old
values at the receiver will trigger an immediate failure, and the current session will be
reset. In this case, the sender will initiate the forwarding packets until the second
attempt 300mS later. Agents are always forwarded according to the values received as
parameters in a hop operation (#). Currently, no routing functionalities are incorpo-
rated into the system. Instead, the WSN operator may create virtual multicast trees by
explicitly labelling links between nodes. The benefits of this approach will become
apparent in the next section, which explains a sample deployment scenario where
Wiseman can be conceivably employed.

6 An Example Application: Early Detection of Forest Fires

6.1 Rationale

As an illustrative example to exhibit the capability of Wiseman system, we consider
an application in the prevention of forest fires. Forest fires, also known as wild fires,
are often uncontrolled events that occur in natural settings and cause significant dam-
age to both the environment, and to man-made infrastructure. Glitho et al. [18] have
already addressed the weather monitoring issue, and Fok et al. [5] have addressed the
issue of tracking fire while it is spreading. By comparison, this application study
considers early detection/prevention of an unwanted event, since this can reduce dam-
age, and perhaps even human and wild-life casualties. Forest fires usually happen
when two main conditions meet simultaneously: high temperature and low humidity.
As exemplified in Fig. 4, a fictitious forest area is separated into three sections: A, B
and C. We propose realizing early detection of forest fires by dividing the task into
two stages. In the first stage, we collect temperatures for each forest section, in which
the corresponding temperature sensor node (e.g., 1, 2 or 3 in Fig. 4) is regarded as the
cluster-head. If the temperature is higher than a certain critical threshold, then

Fig. 4. Wiseman for early detection of forest fires: (a) routine temperature checking; (b)
primary temperature monitoring task; (c) secondary humidity monitoring task

 Design, Implementation and Case Study of WISEMAN 375

the second stage of the task is triggered. In this second stage, the humidity readings of
the corresponding forest section are collected. If one of these readings is smaller than
a certain threshold, then an alert signals is raised to inform personnel of the current
hazardous situation.

During normal circumstances, a mobile agent will collect temperature for each moni-
tored area in the path, as shown in Fig. 4 (a). The agent’s migration itinerary for the first
stage is planned according to the priority of different forest areas. In the case shown in
Fig. 4, forest area A has the highest priority, which means the trees in this area are the
easiest to catch fire, and/or that such tree species might be the most precious.

Occasionally, an abnormal reading may be detected by the mobile agent, which
means that the temperature in a certain forest area exceeds a certain critical threshold.
The forest section with abnormal temperature/humidity readings is circled, as shown
in Fig. 4 (b) and (c). At this moment, there are three schemes that can be employed to
initiate the task of stage 2:

Scheme A: The current agent does not know how to handle the special event since
there is no corresponding action script carried with it. Thus, the agent returns to the
sink node immediately, which in turn dispatches the second agent whose task is to
obtain the minimum humidity reading.

Scheme B: The current agent already carries the action script to handle the emergent
case. Thus, the agent will perform the task for stage 2 starting from node 2, as shown
in Fig. 4(c).

Scheme C: The current agent does not carry the processing code to handle the special
case. Instead, it retrieves an action script already stored in node 2, and it replaces the
old action script with the new one. This strategy enables the agent to obtain the mo-
bile codes that handle the emergent case locally. The agent itinerary is the same as
that of Scheme B. However, the energy consumption incurred while otherwise trans-
mitting the action script portion that is only useful when handling the emergent event
is avoided, and the corresponding agent migration delay is decreased as well.

Note that in our previous agent-based approaches [8, 9] only Scheme A and Scheme
B were supported. This is because the itinerary must be planned by the sink node in
advance. Thus, two agents are dispatched in Scheme A that individually carry the
possible itineraries for the temperature checking path, and for the emergent humidity
data collecting task. By comparison, Wiseman enables changes on demand (e.g., at
node 2 in Fig. 4) in the pre-defined path assigned to an agent, as seen in Scheme C.

6.2 Experimental Setup

Fig. 5 shows the four topologies used in our experiments. Compared to the scenario
shown in Fig. 4, we incorporate humidity sensor nodes in the hot spot assigned to
forest section 2 of Fig. 5(a), and omit them in the other forest sections (1 and 3). In
this sample scenario, node 2 is the cluster-head of the area comprised by sensor nodes
6, 7, 8 and 9. In Fig. 5(b), we add two more humidity sensor nodes to the hot spot in
order to depict a larger forest area, whereas topology 3 in Fig. 5(c) adds two extra
temperature sensor nodes compared to topology 1. Finally, we add two more humidity
sensor nodes in Fig. 5(d) (compared with topology 3).

376 S. González-Valenzuela, M. Chen, and V.C.M. Leung

Fig. 5. Topologies employed for our experiments

Table 1 shows the agents are that were employed to set up the environment that the
agents in Table 2 will encounter in accordance to our experiment setting for Schemes
B and C. In these cases, the task of the agents in Table 1 is to set up labelled paths for
subsequent agent navigation, creating the type of virtual links previously described.
Links in the main temperature-reading circuit are labelled with the character a by
employing the corresponding link assignment operation L=a before migrating to
another node, whereas links in the humidity-reading circuit are labelled with the char-
acter b. Once these virtual paths are set, other agents can use them as they traverse the
network. In addition, agents toggle-on the green LEDs as a visual aid to verify their
itinerary through the WSN by means of the l$n operation. In this operation, character
l on the left-hand side signifies an LED operation, and character n on the right-hand
side signifies that the green LED is toggled-on. It can also be seen that the inter-
preter’s Clipboard B is set to a fictitious value of 45 at either node 2 or 3 depending to
the current topology being employed, which signifies that the temperature at that
particular node has reached the specified value. Finally, the numbers on the right-
hand side of the hop operator indicate the identity of the node to which the agent is set
to migrate next (e.g., #1 migrates the agent to node 1). In accordance to the way
agents are processed, all operations that have been already executed are removed from
the agent’s code, and only the trailing operations are migrated (i.e., the tail of the
agent, as described in Section 3).

Table 1. Environment-setting agents

Topology Agent Script for Itinerary Labelling
1 l$n;L=a;#1;l$n;#2;l$n;B=45;L=b;#6;l$n;#7;l$n;#8;l$n;#9;l$n;#2;L=a;#3;l$n;#0;l$n

2
l$n;L=a;#1;l$n;#2;l$n;B=45;L=b;#6;l$n;#7;l$n;#8;l$n;#9;l$n;#10;l$n;#11;l$n;#2;L=a;#3;l
$n;#0;l$n

3
l$n;L=a;#1;l$n;#2;l$n;#3;l$n;B=45;L=b;#6;l$n;#7;l$n;#8;l$n;#9;l$n;#3;L=a;#4;l$n;#5;l$n;
#0;l$n

4
l$n;L=a;#1;l$n;#2;l$n;#3;l$n;B=45;L=b;#6;l$n;#7;l$n;#8;l$n;#9;l$n;#10;l$n;#11;l$n;#3;L
=a;#4;l$n;#5;l$n;#0;l$n

 Design, Implementation and Case Study of WISEMAN 377

Table 2. Agents that implement distinct migration strategies

Scheme Agent Script

1 l$n;M0=1;R{#M0;I!=0;M0+1;l$n;r$t;O[B<40;M1=I];O[M0<6;M0=0]}
A

2
l$d;#1;#2;#3;M0=6;R{#M0;M0+1;l$d;I!=0;O[(I==9;M0=3);(I==5;M0=0);!1];
r$h;O[B>20;M1=I]}

B 1
a#;R{l$w;I!=0;O[(I<4;r$t;B>40;M2<1;M2=1;M0=I;b#);(I>3;r$h;B<20;M1=I;!0)
;a#;b#]}

1 R{a#;l$w;I!=0;O[(B>40;M0=I;2^0);!1]}
C

2 b#;R{l$d;I!=0;O[(I>5;r$h;B<20;M0=I;!0);a#;b#]}

According to our experiment setup, Agent 1 (59 bytes long) in Scheme A explores

the cluster-head circuit comprised by nodes 1-3 (topologies 1 and 2 in Fig. 5) or 1-5
(for topologies 3 and 4 in Fig. 5). Since this scheme does not rely on virtual links, the
value of mobile variable M0 is sequentially incremented (M0+1), and is then em-
ployed to determine the next agent hop destination once the current repeat rule cycles
(#M0). Upon reaching the corresponding node, the agent toggles the green LED and
reads the locally sensed temperature (l$n;r$t). If the temperature is less than the
specified threshold (B<40), then the execution thread continues at the second Or rule.
Otherwise, the ID of the local node is stored in mobile variable M1 (M1=I) to be
returned to the sink node. Finally, the value of variable M0 will be set to 0 at the end
of the itinerary, and the I!=0 operation will ensure that Agent 1 terminates when it
gets back to the sink (ID 0). On the other hand, Agent 2 is dispatched in response to
the value in M1 brought by Agent 1. It can be seen that the initial itinerary of Agent 2
(85 bytes long) is set deterministically for topology 2. Here, the agent enters the hu-
midity-sensing circuit at node 3, traversing nodes 6 through 9, and exiting back to
node 3 as indicated by the value in M0, which is in turn modified by the preceding
operations (O[(I==9;M0=3);(I==5; M0=0);!1)]. The sequence of events is similar as
before, and M1 will be set to the value of the current node’s ID if the humidity read-
ing exceeds a predefined threshold (r$h;O[B>20;M1=I]).

In contrast to Scheme A, Scheme B relies on a virtual path previously set by a
preceding agent (according to the current topology, as shown in Table 1). In this par-
ticular experiment, the path-setting agent needs to be executed only once for all sub-
sequent agents to use. We can see that the chain of operations is fairly similar to those
agents in Scheme A, with the main difference that hoping is made through virtual links
labeled with letter a for the main temperature-reading circuit, and with letter b for the
humidity-sensing circuit. To this regard, the label identifier is set on the left-hand side
of the hop operator (i.e., a#, or b#), and the hoping sequence within these circuits is
controlled by the Or rules. Consequently, a single agent (79 bytes long) is needed for
this scheme. Finally, Scheme C, employs the local injection operator (^) that is used
by Agent 1 (36 bytes long) when the temperature reading exceeds the predefined
threshold. Therefore, Agent 1 does not need to carry the associated code that specifies
when to switch its navigation path to labeled circuits a or b when needed. Instead, a
second agent (id = 0) will be injected with a 2-second delay (2^0) to the humidity-
sensing circuit from the node whose temperature value exceeded the corresponding
threshold. Thus, Agent B (46 bytes long) needs to be already available at predefined

378 S. González-Valenzuela, M. Chen, and V.C.M. Leung

WSN nodes. Each of these approaches addresses the event-prevention objective pro-
posed before, and they have their own advantages and disadvantages as evidenced by
the results obtained through the experiments that we discuss next.

7 Experiment Results

We have conducted experiments for the four topologies described in Section 6.2. For
each topology, this section will evaluate the performance of Schemes A, B and C in
terms of task duration and incurred packet overhead. The task duration (or itinerary
completion delay) indicates the time at which the sink node dispatched the first agent
to the time when the task of the last stage is finished.

0

1

2

3

4

5

6

7

Topology 1 Topology 2 Topology 3 Topology 4

Ta
sk

 D
ur

at
io

n
(s

ec
on

ds
)

Scenario

Scheme A

Scheme B

Scheme C

Fig. 6. Itinerary completion delay

As shown in Fig. 6, for each scheme, the task duration is the lowest in Topology 1,
and it reaches the maximum value in Topology 4. This is because Topology 1 and 4
yield the shortest and the longest agent itineraries respectively, and the task duration
is proportional to the length of the itinerary. We can also observe in Fig. 6 that Scheme
A always causes the largest task duration among the three schemes in each topology.
This is because two agents are dispatched to perform the task in Scheme A, as illus-
trated in Section 6.1. Compared to Scheme B, Scheme C sees a decreased task dura-
tion since this smaller action script is stored locally.

Table 3 illustrates the total number of Zigbee packets incurred by each scheme, and
the results for individual agents 1 and 2 (denoted by A1 and A2) are shown in brackets
below each corresponding sum for schemes A and C. The overhead incurred by the
environment-setting agents is not accounted for. While it is evident that Scheme C per-
forms better than A and B, there needs to be a mechanism that allows locally existing
agents to be modified at will to fully exploit the capabilities of the system. It is also
evident that the label-based approach is the key to achieving performance improvements
in terms of both itinerary completion delay and bandwidth used (number of packets).

 Design, Implementation and Case Study of WISEMAN 379

Table 3. Number of Zigbee packets incurred by the agents in each scheme

Scheme Topology 1 Topology 2 Topology 3 Topology 4

A 161
[44(A1)+117(A2)]

187
[44(A1)+143(A2)]

209
[66(A1)+143(A2)]

235
[66(A1)+169(A2)]

B 135 165 165 195

C 99
[36(A1)+63(A2)]

117
[36(A1)+81(A2)]

126
[54(A1)+72(A2)]

144
[54(A1)+90(A2)]

8 Conclusions

We have presented Wiseman, a mobile code approach for WSN. We described
Wiseman’s architecture, its language constructs, and its features as a suitable system
for use in WSNs. We also described important implementation and programming
details of our scheme. The design of our system is based on an earlier implementation
of the Wave system for mobile processing in wired networks. However, a number of
changes were introduced as required by the scarcity of hardware and energy resources
that characterize WSN devices. Among these changes are: elimination of dynamic
memory allocation, redefinition of the language constructs, simplification of the in-
terpreter’s architecture, and simplification of the agents’ program structure. Wiseman
has been implemented and tested in the Crossbow Micaz running TinyOS ver. 1.1,
which yielded a binary image of only 19Kbytes and RAM usage of around 3Kbytes.
The benefits of employing Wiseman’s agents were readily evident as shown by their
ultra-compact size, leading to very low bandwidth usage. In addition, Wiseman facili-
tates the creation of overlay networks, which also helps shorten the overall size of the
agents and reduces operation overhead.

Acknowledgments. This project was supported by the National Sciences and Engineer-
ing Research Council of the Canadian Government under grant STPGP 322208-05.

References

1. Bellavista, P., Corradi, A., Stefanelli, C.: Mobile Agent Middleware for Mobile Comput-
ing. IEEE Computer 34(3) (2001)

2. Hui, J., Culler, D.: The Dynamic Behavior of a Data Dissemination Protocol for Network
Programming at Scale. In: Proceedings of the 2nd International Conference on Embedded
Networked Sensor Systems, Baltimore, USA (2004)

3. Liu, T., Martonosi, M.: Impala: A Middleware System for Managing Autonomic, Parallel
Sensor Systems. In: Proceedings of ACM SIGPLAN, San Diego, USA (June 2003)

4. Levis, P., Culler, D.: Maté: A Tiny Virtual Machine for Sensor Networks. In: Proceedings
of the 10th International Conference on Architectural Support for Programming Languages
and Operating Systems, San Jose, USA (October 2002)

5. Fok, C.-L., Roman, G.-C., Lu, C.: Rapid Development and Flexible Deployment of Adap-
tive Wireless Sensor Network Applications. In: Proceedings of the 24th International Con-
ference on Distributed Computing Systems (ICDCS), Columbus, USA (June 2005)

380 S. González-Valenzuela, M. Chen, and V.C.M. Leung

6. Fok, C.-L., Roman, G.-C., Lu, C.: Mobile Agent Middleware for Sensor Networks: An
Application Case Study. In: Proc. Of the 4th Int’l Conf. Information Processing in Sensor
Networks. IEEE Press, Los Alamitos (2005)

7. Chen, M., Gonzalez-Valenzuela, S., Leung, V.C.M.: Applications and Design Issues of
Mobile Agents in Wireless Sensor Networks. IEEE Wireless Communications 14(6), 20–
26 (2007)

8. Chen, M., Kwon, T.K., Yuan, Y., Choi, Y.H., Leung, V.C.M.: Mobile Agent Based Wire-
less Sensor Networks. Journal of Computers 1(1) (2006)

9. Chen, M., Kwon, T.K., Yuan, Y., Choi, Y.H., Leung, V.C.M.: Mobile-agent-based Di-
rected Diffusion (MADD) in Wireless Sensor Networks. In: EURASIP Journal on Applied
Signal Processing, vol. 2007(1) (January 2007)

10. Qi, H., Iyengar, S.S., Chakrabarty, K.: Multiresolution Data Integration Using Mobile
Agents in Distributed Sensor Networks. IEEE Transactions on Systems, Man and Cyber-
netics – Part C: Applications and Reviews 31(3), 383–391 (2001)

11. Sapaty, P.: A Wave Language for Parallel Processing of Semantic Networks. Computers
and Artificial Intelligence 5(4) (1986)

12. Sapaty, P.: Mobile Processing in Distributed and Open Environments. John Wiley & Sons,
Chichester (2000)

13. The OMNeT++ Discrete Event Simulator, http://www.omnetpp.org
14. González-Valenzuela, S., Vuong, S.T., Leung, V.C.M.: A Mobile Code Platform for Dis-

tributed Task Control in Wireless Sensor Networks. In: Proceedings of 6th ACM MobiDE,
Chicago, USA (2006)

15. Crossbow Technology, http://www.xbow.com
16. TinyOS for wireless embedded sensor networks, http://www.tinyos.net
17. The Wiseman Agent System for Sensor Networks,

 http://www.ece.ubc.ca/~sergio/wiseman
18. Glitho, R., Olougouna, E., Pierre, S.: Mobile Agents and Their Use for Information Re-

trieval: A Brief Overview and an Elaborate Case Study. IEEE Network Magazine 16(1)
(2002)

	Design, Implementation and Case Study of WISEMAN: WIreless Sensors Employing Mobile AgeNts
	Introduction
	System Foundations
	The Wiseman System Architecture
	Language Constructs
	Variables
	Operators
	Rules
	Delimiters

	Practical Implementation Aspects
	An Example Application: Early Detection of Forest Fires
	Rationale
	Experimental Setup

	Experiment Results
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

