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Abstract. We describe the practical implementation of Wiseman: our proposed 
scheme for running mobile agents in Wireless Sensor Networks. Wiseman’s ar-
chitecture derives from a much earlier agent system originally conceived for 
distributed process coordination in wired networks. Given the memory con-
straints associated with small sensor devices, we revised the architecture of the 
original agent system to make it applicable to this type of networks.  Agents are 
programmed as compact text scripts that are interpreted at the sensor nodes. 
Wiseman is currently implemented in TinyOS ver. 1, its binary image occupies 
19Kbytes of ROM memory, and it occupies 3Kbytes of RAM to operate. We 
describe the rationale behind Wiseman’s interpreter architecture and unique 
programming features that can help reduce packet overhead in sensor networks. 
In addition, we gauge the proposed system’s efficiency in terms of task duration 
with different network topologies through a case study that involves an  
early-fire-detection application in a fictitious forest setting. 
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1   Introduction 

The topic of Wireless Sensor Networks (WSN) continues to draw significant research 
interest at present. These investigations include studies on the feasibility of dynami-
cally re-tasking sensor nodes in the face of continuous changes in the underlying 
environment. To tackle this issue, code mobility can be used as a potentially efficient 
approach [1]. While some of these approaches have been proposed for operation over 
devices with plentiful hardware resources, we are rather interested in the type of 
agent-based re-tasking systems targeted at low-end sensor devices that are character-
ized by severe memory and processing constraints. The main motivation for studying 
WSN agent-based re-tasking is that it enables rapid modifications to the pre-
programmed behaviour of sensor nodes responding to a predefined type of events. 
Clearly, dynamic WSN re-tasking provides flexibility and convenience to its opera-
tors. Still, further studies are needed to determine whether this mechanism is not only 
practicable from an engineering perspective, but also whether the system that imple-
ments it fulfills performance expectations in terms of resources employed and  
response time. 
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Initial accomplishments in the area of WSN re-tasking were achieved by schemes 
such as Deluge [2], Impala [3] and Maté [4]. These approaches introduced basic 
forms of code mobility to reprogram WSN nodes with a certain degree of flexibility 
and were soon followed by enhanced approaches. For instance, Agilla is a popular 
scheme that employs code mobility in the form of programmable agents to perform 
WSN re-tasking too [5]. The Agilla framework introduced significant improvements 
over existing proposals by employing a more robust agent interpreter capable of han-
dling certain tasks in devices severely constrained in hardware resources. Several 
lessons were learned during the implementation and testing of Agilla, including issues 
related to memory management and the agents’ programming language [6]. 

In a previous paper, we contested that middleware design for agent systems in 
WSN is highly dependent on several issues, which includes (1) the targeted system 
application and (2) the network navigation methodology implemented into the mobile 
codes to address the issue in question [7]. In addition, the use of mobile codes in 
WSNs is mostly warranted when collecting and/or aggregating data that is dispersed 
in various nodes. To this regard, we have previously proposed MAWSN and MADD 
as itinerary-planning schemes aimed at reducing the overhead incurred by the corre-
sponding process [8, 9]. One shortcoming with these and other proposed paradigms is 
that once the agent is dispatched by the sink node, its itinerary cannot be revised, 
which becomes an issue should the underlying environment conditions change after 
the agent has been dispatched [10]. By the same token, if on-the-go itinerary changes 
are needed, then this functionality needs to be supported by the agent middleware.  

To address the previous issue, we designed and implemented Wiseman: “WIreless 
Sensors Employing Mobile AgeNts”. Our proposed scheme overcomes the source-
based itinerary issue, enabling changes by any WSN node in the pre-defined path 
assigned to an agent. Our novel agent middleware system incorporates: (1) a high-
level text-based language system that acts as a compact action script, (2) the ability to 
dynamically modify agent itineraries that can employ hop-by-hop planning, and (3) a 
virtual-link navigation capability that mimics multicast routing through labelled paths. 
A combination of the latter 2 schemes is also possible. In addition to this, Wiseman is 
based on a framework that does not necessitate a program counter and execution stack 
to function. Instead, Wiseman incorporates a self-depleting command execution 
model that discards agent instructions once they are no longer needed. This implies 
that the agent size is variable, and may be structured to progressively shrink as it 
completes its task.  

The rest of the paper is organized as follows: In Section 2, we briefly introduce the 
original predecessor of the Wiseman system and describe its adaptation into a mid-
dleware system amenable to WSN use. Section 3 describes Wiseman’s simplified 
architecture and main system modules. In Section 4, we describe Wiseman’s language 
construct design based on the needs of the overall system. Practical implementation 
aspects of the system are discussed in Section 5. In Section 6, we illustrate a sample 
application scenario to evaluate the performance of the system in terms of agent mi-
gration delay. In Section 7, we discuss the results of our experiments. Finally, we 
present our conclusions in Section 8. 
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2.   System Foundations 

Existing mobile agent approaches for WSN attempt to achieve a balance between the 
degrees of functionality incorporated into the actual code interpreter, and the one 
provided to the agents. On the one hand, a coarse-grained agent system for WSN that 
incorporates a high degree of functionality in the interpreter requires simple con-
structs on the agent side in order to accomplish a certain task (e.g., <run task A>, <run 
task B>, <end>). On the other hand, a code interpreter tailored for fine-grained agent 
language construct leads to larger programs that describe in detail the task to perform 
(e.g., <mov 1 x>, <and x 0xFB>, …) Once again, the degree of granularity used in the 
language constructs of the agent system should be a direct function of the intended 
WSN’s application. Given the specific nature of WSNs, it results intuitive to think of 
coarse-grained language constructs as a more suitable approach. In other words, it 
makes little sense here to provide agents with excessive control of the node’s data 
processing functionalities if the tasks to be performed are consistently repetitive. In 
fact, the case for code mobility in the form of agents hardly holds if the WSNs tasks 
they are set to solve are rather deterministic, or if they require minimal changes. The 
use of mobile agents in a WSN is therefore justified by the need of flexibility in the 
evolution of a system process. In such case, whereas the application of a WSN might 
be very well defined, external factors driven by the underlying environment might 
require different strategies to deal with the problem. For this reason, we propose an 
alternative approach to incorporate programmability in distributed tasks based on a 
simplified version of the Wave system for incorporation into WSN. 

The Wave system can be considered one of the earliest precursors of code mobility 
in data networks, with its foundations lying on the idea of efficient task coordination in 
distributed environments [11, 12]. To this effect, Wave’s high-level language construct 
allows creating highly compact programs that encompass a suitable degree of distrib-
uted coordination. This approach results highly appealing to WSNs, since it promotes 
the use of existing functionalities in the node, instead of creating agents that repeatedly 
perform the same task on every node they visit. In fact, overall system efficiency can 
arguably be improved by promoting local data processing through algorithms that run 
on native code. As a result: (1) the process coordination part of the distributed applica-
tion is decoupled from the data processing part and is now left for the agents to per-
form; (2) additional agent compactness can be achieved by defining language  
constructs that are sufficient to describe the desired coordination methodology of the 
mobile process; and (3) a condensed language construct translates into simplified in-
terpreter’s architecture, smaller memory footprint, and reduced forwarding overhead in 
terms of delay and bandwidth. In the next section we describe Wiseman’s architecture 
as a significantly simplified adaptation of the original Wave system. 

3   The Wiseman System Architecture 

The Wiseman interpreter is comprised of an incoming agent queue, a code parser, a 
processor block, and an agent dispatcher, as shown in Fig. 1. The incoming agent 
queue works in a simplistic first-in-first-out fashion, and accepts agents either arriving 
from other nodes, or those injected at the local node. The parser is in charge of proc-
essing agents as they are received from the wireless interface of the node. 
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Fig. 1. Wiseman’s System architecture 

Agents are removed from the incoming queue one at a time and fragmented into 
their respective codes and data fields. Agent codes are further separated into two 
segments, hereto referred as head and tail. The head is the first code fragment defined 
by the language constructs, whereas the rest of the codes that follow are referred to as 
the tail. The head is then unwrapped from any delimiters until a single indivisible 
operation is found by the parser, and is subsequently passed onto the processor block 
for execution. When finished, the process control is returned to the parser, which then 
extracts the next operation from the agent’s tail if the previous operation was success-
fully processed. The new segment becomes the head that is processed in the exact 
same fashion. This way of processing agents implies that the agent’s size is system-
atically depleted as operations are being performed, and can help save forwarding 
time and bandwidth when hoping across the WSN. 

The processor performs the operation indicated by the head, whose outcome is  
determined as Boolean value (i.e., its execution is either successfully completed, or 
not). This outcome is employed to make decisions that affect the subsequent execu-
tion of the distributed process, as noted before. The agent execution process is halted 
if any of the following conditions occur: (1) an operation yields an unsuccessful out-
come, (2) an agent-hop operation is encountered, or (3) explicit process termination is 
indicated. In the first case, the agent’s tail is discarded and the agent simply termi-
nates executing, unless the head is contained within a language construct that instructs 
the parser to proceed otherwise. If the operation is successful, then the parser sends  
the next operation to the execution block and the process continues as defined by the 
agent’s codes. In the second case, the agent instructs the execution block to migrate 
the agent to another node, and so the tail is sent to the dispatcher block for subsequent 
forwarding to another node or set of nodes. In the third case, the agent may simply 
instruct the interpreter to explicitly halt the current process execution as needed. The 
process sequence in Wiseman’s architecture is shown in Fig. 2. 

An agent may hop to a node or set of nodes that are associated by sharing a single-
character label used as a unique identifier. If the agent’s codes specify a hop through 
one of these labelled (virtual) paths, then the dispatcher first ensures that the hop is 
actually possible by looking up the corresponding label entry in a local table that 
contains a list of the neighbouring nodes associated to it. The agent will be dispatched  
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Fig. 2. Agent processing sequence in Wiseman 

out of the interpreter only if the corresponding label exists in the table. Otherwise, the 
agent is discarded. However, the agent may also be unicast to a specific node, or 
broadcast if no particular destination is specified. Finally, the dispatcher signals the 
parser once the agent has been forwarded, so that the next agent in the incoming 
queue can be processed, if one exists.  

Another novel feature of Wiseman is defined by its metamorphic capability. Since 
Wiseman agents are transmitted and processed in their raw text-string from, the archi-
tecture effectively allows the interpreter to substitute portions of the agent’s code with 
other codes. This characteristic introduces a degree of flexibility unmatched by exist-
ing agent approaches in WSNs. For example, a target-tracking agent may initially 
carry and execute the corresponding code of an energy-efficient algorithm that works 
best for slow moving objects. However, if the object’s rate of mobility increases, then 
the agent may instruct a WSN node to replace its target tracking algorithm with one 
that is more energy-demanding, but otherwise necessary to keep up with fast-moving 
objects. 

4   Language Constructs 

Wiseman’s constructs are simplified versions of Wave’s original operators, variables, 
rules, and delimiters, so that they can be employed in WSN nodes: 

4.1   Variables 

The Wiseman interpreter supports three kinds of fixed-type variables, all of which 
employ pre-assigned memory segments in the local node. The first type is coined as 
Numeric, represented by the letter N, and is predefined as being of floating point type. 
The second kind is the Character variable, intended for use with single characters 
through the letter C. Both of these variable types are semantically similar to public 
variables defined in object-oriented programming, meaning that all agents that arrive 
to the interpreter have access to them. In addition, agents carry with them Mobile 
variables, which are accessed through the letter M. Mobile variables’ role resembles 



 Design, Implementation and Case Study of WISEMAN 371 

that of private variables in object-oriented programming. Thus, manipulation of an 
agent’s own Mobile variables has no effect on other agents’ Mobile variables. Simi-
larly, the manipulation of Numeric and Character variables at the local node has no 
effect on the variables of remote nodes. However, all variables are expected to main-
tain their semantic meaning across the network according to how they are individually 
manipulated by programmers through the agents. Agents always carry with them 
associated Mobile variables, which are temporarily stored in predefined memory loca-
tions when visiting a node. The interpreter also implements the Clipboard variable B 
to temporarily store data. The execution environment also defines three extra Envi-
ronmental variables. Identity I is a read-only variable, whose content is defined by the 
local node’s identification number (i.e., 1, 2 …) The Predecessor P contains the iden-
tification number of the node where the agent being processed hopped from. Finally, 
the Link variable L holds the label of the virtual link through which the agent arrived 
from. The interpreter’s dispatcher appends these variables to the agent’s control field 
as soon as it arrives from the wireless channel. 

4.2   Operators 

Wiseman defines a mix of general purpose and system-specific operators. For  
instance, standard arithmetic operators are provided to allow simple calculations at 
the nodes (i.e., +, -, *, / and =). Ordinary comparison operators that return Boolean 
values that agents evaluate are also supported (i.e., <, <=, ==, =>, > and !=). The hop 
operator is employed to indicate that the agent needs to be forwarded either to the 
node specified in the right-hand side of the # character, or through the virtual link 
specified in its left-hand side that is associated with a certain subset of adjacent nodes. 
For the later case, this operator provides the functionality of automatically cloning the 
agent with as many copies as outgoing virtual links exist to the corresponding nodes. 
That is, if there are 3 such virtual links labelled with the letter s, then an identical 
number of agent copies will be forwarded by the dispatcher. Moreover, if a hop op-
eration is met by the interpreter when processing the codes, then the agent is  
forwarded and execution resumes at the next operation where the process had been 
previously suspended. This functionality provides Wiseman with a basic form of 
strong mobility that does not require any form of program counter or execution state 
that needs to be forwarded with the agent. Alternatively, a copy of the agent may be 
locally broadcast to all immediate neighbours by employing the @ operator. The 
execution operator $ indicates to the interpreter that a local function is to be called as 
specified by its left- and right-hand side parameters. The code injection operator ^ 
indicates the insertion of a locally stored code(s) segment into the agents structure. 
Finally, the halt operator ! indicates the explicit termination of the current agent with 
success if the right-side operand is 1 or failure if the operand is 0.  

4.3   Rules 

In Wiseman, the Repeat rule R indicates that codes embraced by the corresponding 
delimiters will be continuously executed. However, Wiseman processes cycling codes 
by extracting them from the delimiters and re-inserting them before the original Repeat 
construct. Therefore, an agent segment that possesses the corresponding structure for 
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repeating code R{…} yields the modified structure …;R{…}. This process can be re-
peated consecutively until a certain condition is met. In addition, Or O and And A rules 
are defined as a way to manipulate execution of the agent by testing whether the code 
embraced within square brackets yields a true or false value for every code segment it 
includes. Therefore, an O[…;…;…] construct indicates that the code segments delim-
ited by semicolons are to be sequentially executed, stopping as soon as one of these 
segments results in a true value. Otherwise, the Or rule returns a false value and the 
whole agent’s process stops. A similar logic applies for the And rule, except that all of 
the segments must return a true value in order for the whole construct to succeed.  

4.4   Delimiters 

The main delimiter employed to separate code segments is the semicolon. In addition, 
round, square and curly brackets are designated to delimit code segments whose exe-
cution depends on a rule construct, as explained before. Distinct types of brackets are 
employed since they facilitate the parser’s task when tokenizing nested code segments 
prior to being processed (i.e., R{…O[…(…)…]…}). The use of a single type of 
bracket would have implied significantly more parsing functionalities, and therefore, 
added processing overhead. 

5   Practical Implementation Aspects 

Wiseman was initially evaluated employing the OMNeT++ Discrete Event Simulator 
[13] to verify the correctness of the design after undergoing significant changes from 
an earlier system proposal [14]. This preliminary evaluation step was crucial in 
streamlining its implementation over actual hardware devices given the difficulty of 
debugging firmware programs. After verification, Wiseman was ported to the NesC 
language and subsequently improved for more efficient operation over Crossbow 
Micaz [15]. The NesC programming language employed to code TinyOS ver. 1.1 
programs is in fact a modified version of the C language [16]. We decided to employ 
this wireless sensor platform since it provides an ideal example of a severely-
constrained hardware device type whereby our proposed system could be put to the 
test. In particular, these motes have 128Kbytes of instruction memory and 4Kbytes of 
data memory. Therefore, developing an agent system for this hardware platform is 
challenging due primarily to the limited amount of memory space. A mote attached to 
a Crossbow MIB510 interface board is used as a data sink node, whereas the MIB510 
itself interfaces data between the WSN and a regular laptop computer. Wiseman spans 
approximately 2400 lines of NesC code divided into modules that reflect the system 
architecture shown in Fig. 1. An additional module that includes a few uncommon 
string manipulation functions was also incorporated as required by the parser to proc-
ess agent codes. Wiseman can be currently obtained from [17]. 

As mentioned before, Wiseman’s binary image occupies 19Kbytes and just over 
3Kbytes of RAM space to operate in its current form. A good portion of the RAM 
space usage reflects the space reserved to manipulate agents that occupy a maximum 
of 170 bytes. Depending on the type of agent program created, this amount of re-
served memory suffices for our experiments. However, for agents that incorporate the 
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Repeat rule R, we needed to ensure that there was enough memory space since this 
construct may effectively duplicate the size of the agent. For example, an agent with 
codes “R{…;#1}” yields the string “…;#1;R{#1;…}”, or simply “#1;R{…}” just be-
fore the agent is set to hop to node 1. However “R{#1;…}” leads to “#1;…;R{#1;…}”, 
nearly doubling the agent code’s size before being forwarded to node 1. It is also 
evident that agents can be larger than the data payload of the Zigbee packets used by 
the Micaz to communicate with other nodes. Consequently, we implemented a simple 
data forwarding mechanism that follows the signalling sequence illustrated in Fig. 3. 

 

Fig. 3. Forwarding sequence of Wiseman agent segments 

As seen here, every node wishing to forward an agent first must request permission 
to initiate the agent migration process by sending a Request-To-Send (RTS) packet to 
the intended destination node to ensure that it is currently available, since it might 
possibly be involved in another agent forwarding process with a different node. Sub-
sequent permission to send packets is granted upon receiving a Clear-To-Send (CTS) 
acknowledgement from the destination. These session initiation and control packets 
are comprised by three fields, which include: a source node ID number, a randomly 
generated session number, and the current segment number. CTS packets always 
indicate the segment number the target node is expecting next. Any discrepancy be-
tween the expected segment number, the session number, or the source node identifier 
resets the process and all of the previous segments are discarded. This procedure is 
done to ensure agent forwarding correctness and to avoid possible confusions with 
packets that may arrive from other nodes. A timeout process that expires after 300mS 
is always initiated at the sender’s side, and a maximum of 3 transmission attempts 
may take place. If unsuccessful, the interpreter first discards the current agent and 
then attempts to transmit the next agent in the outgoing agent queue, which may be 
destined to a different node. To this regard, two different agent queues are kept: one 
that holds a maximum of 3 incoming agents, and one for a maximum of 5 outgoing 
agents. This signifies that the interpreter may receive and queue up to 3 agents for 
future processing if it is currently busy with another agent. If the incoming queue is 
full, then additional RTS signals received are left unanswered. In addition to this, 
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since the receiving end implements no timeout procedure during an agent forwarding 
process, if the current forwarding process fails, then the receiver will keep its last 
session values. Later, when another node attempts to begin transmissions, the old 
values at the receiver will trigger an immediate failure, and the current session will be 
reset. In this case, the sender will initiate the forwarding packets until the second 
attempt 300mS later. Agents are always forwarded according to the values received as 
parameters in a hop operation (#). Currently, no routing functionalities are incorpo-
rated into the system. Instead, the WSN operator may create virtual multicast trees by 
explicitly labelling links between nodes. The benefits of this approach will become 
apparent in the next section, which explains a sample deployment scenario where 
Wiseman can be conceivably employed. 

6   An Example Application: Early Detection of Forest Fires 

6.1   Rationale 

As an illustrative example to exhibit the capability of Wiseman system, we consider 
an application in the prevention of forest fires. Forest fires, also known as wild fires, 
are often uncontrolled events that occur in natural settings and cause significant dam-
age to both the environment, and to man-made infrastructure. Glitho et al. [18] have 
already addressed the weather monitoring issue, and Fok et al. [5] have addressed the 
issue of tracking fire while it is spreading. By comparison, this application study  
considers early detection/prevention of an unwanted event, since this can reduce dam-
age, and perhaps even human and wild-life casualties. Forest fires usually happen 
when two main conditions meet simultaneously: high temperature and low humidity. 
As exemplified in Fig. 4, a fictitious forest area is separated into three sections: A, B 
and C. We propose realizing early detection of forest fires by dividing the task into 
two stages. In the first stage, we collect temperatures for each forest section, in which 
the corresponding temperature sensor node (e.g., 1, 2 or 3 in Fig. 4) is regarded as the 
cluster-head. If the temperature is higher than a certain critical threshold, then  
 

 

Fig. 4. Wiseman for early detection of forest fires: (a) routine temperature checking; (b)  
primary temperature monitoring task; (c) secondary humidity monitoring task 
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the second stage of the task is triggered. In this second stage, the humidity readings of 
the corresponding forest section are collected. If one of these readings is smaller than 
a certain threshold, then an alert signals is raised to inform personnel of the current 
hazardous situation. 

During normal circumstances, a mobile agent will collect temperature for each moni-
tored area in the path, as shown in Fig. 4 (a). The agent’s migration itinerary for the first 
stage is planned according to the priority of different forest areas. In the case shown in 
Fig. 4, forest area A has the highest priority, which means the trees in this area are the 
easiest to catch fire, and/or that such tree species might be the most precious. 

Occasionally, an abnormal reading may be detected by the mobile agent, which 
means that the temperature in a certain forest area exceeds a certain critical threshold. 
The forest section with abnormal temperature/humidity readings is circled, as shown 
in Fig. 4 (b) and (c). At this moment, there are three schemes that can be employed to 
initiate the task of stage 2: 

Scheme A: The current agent does not know how to handle the special event since 
there is no corresponding action script carried with it. Thus, the agent returns to the 
sink node immediately, which in turn dispatches the second agent whose task is to 
obtain the minimum humidity reading.  

Scheme B: The current agent already carries the action script to handle the emergent 
case. Thus, the agent will perform the task for stage 2 starting from node 2, as shown 
in Fig. 4(c). 

Scheme C: The current agent does not carry the processing code to handle the special 
case. Instead, it retrieves an action script already stored in node 2, and it replaces the 
old action script with the new one. This strategy enables the agent to obtain the mo-
bile codes that handle the emergent case locally. The agent itinerary is the same as 
that of Scheme B. However, the energy consumption incurred while otherwise trans-
mitting the action script portion that is only useful when handling the emergent event 
is avoided, and the corresponding agent migration delay is decreased as well.  

Note that in our previous agent-based approaches [8, 9] only Scheme A and Scheme 
B were supported. This is because the itinerary must be planned by the sink node in 
advance. Thus, two agents are dispatched in Scheme A that individually carry the 
possible itineraries for the temperature checking path, and for the emergent humidity 
data collecting task. By comparison, Wiseman enables changes on demand (e.g., at 
node 2 in Fig. 4) in the pre-defined path assigned to an agent, as seen in Scheme C. 

6.2   Experimental Setup 

Fig. 5 shows the four topologies used in our experiments. Compared to the scenario 
shown in Fig. 4, we incorporate humidity sensor nodes in the hot spot assigned to 
forest section 2 of Fig. 5(a), and omit them in the other forest sections (1 and 3). In 
this sample scenario, node 2 is the cluster-head of the area comprised by sensor nodes 
6, 7, 8 and 9. In Fig. 5(b), we add two more humidity sensor nodes to the hot spot in 
order to depict a larger forest area, whereas topology 3 in Fig. 5(c) adds two extra 
temperature sensor nodes compared to topology 1. Finally, we add two more humidity 
sensor nodes in Fig. 5(d) (compared with topology 3). 
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Fig. 5. Topologies employed for our experiments 

Table 1 shows the agents are that were employed to set up the environment that the 
agents in Table 2 will encounter in accordance to our experiment setting for Schemes 
B and C. In these cases, the task of the agents in Table 1 is to set up labelled paths for 
subsequent agent navigation, creating the type of virtual links previously described. 
Links in the main temperature-reading circuit are labelled with the character a by 
employing the corresponding link assignment operation L=a before migrating to 
another node, whereas links in the humidity-reading circuit are labelled with the char-
acter b. Once these virtual paths are set, other agents can use them as they traverse the 
network. In addition, agents toggle-on the green LEDs as a visual aid to verify their 
itinerary through the WSN by means of the l$n operation. In this operation, character 
l on the left-hand side signifies an LED operation, and character n on the right-hand 
side signifies that the green LED is toggled-on. It can also be seen that the inter-
preter’s Clipboard B is set to a fictitious value of 45 at either node 2 or 3 depending to 
the current topology being employed, which signifies that the temperature at that 
particular node has reached the specified value. Finally, the numbers on the right-
hand side of the hop operator indicate the identity of the node to which the agent is set 
to migrate next (e.g., #1 migrates the agent to node 1). In accordance to the way 
agents are processed, all operations that have been already executed are removed from 
the agent’s code, and only the trailing operations are migrated (i.e., the tail of the 
agent, as described in Section 3). 

Table 1. Environment-setting agents 

Topology Agent Script for Itinerary Labelling 
1 l$n;L=a;#1;l$n;#2;l$n;B=45;L=b;#6;l$n;#7;l$n;#8;l$n;#9;l$n;#2;L=a;#3;l$n;#0;l$n 

2 
l$n;L=a;#1;l$n;#2;l$n;B=45;L=b;#6;l$n;#7;l$n;#8;l$n;#9;l$n;#10;l$n;#11;l$n;#2;L=a;#3;l
$n;#0;l$n 

3 
l$n;L=a;#1;l$n;#2;l$n;#3;l$n;B=45;L=b;#6;l$n;#7;l$n;#8;l$n;#9;l$n;#3;L=a;#4;l$n;#5;l$n;
#0;l$n 

4 
l$n;L=a;#1;l$n;#2;l$n;#3;l$n;B=45;L=b;#6;l$n;#7;l$n;#8;l$n;#9;l$n;#10;l$n;#11;l$n;#3;L
=a;#4;l$n;#5;l$n;#0;l$n 
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Table 2. Agents that implement distinct migration strategies 

Scheme Agent Script 

1 l$n;M0=1;R{#M0;I!=0;M0+1;l$n;r$t;O[B<40;M1=I];O[M0<6;M0=0]} 
A 

2 
l$d;#1;#2;#3;M0=6;R{#M0;M0+1;l$d;I!=0;O[(I==9;M0=3);(I==5;M0=0);!1]; 
r$h;O[B>20;M1=I]} 

B 1 
a#;R{l$w;I!=0;O[(I<4;r$t;B>40;M2<1;M2=1;M0=I;b#);(I>3;r$h;B<20;M1=I;!0)
;a#;b#]} 

1 R{a#;l$w;I!=0;O[(B>40;M0=I;2^0);!1]} 
C 

2 b#;R{l$d;I!=0;O[(I>5;r$h;B<20;M0=I;!0);a#;b#]} 

 
According to our experiment setup, Agent 1 (59 bytes long) in Scheme A explores 

the cluster-head circuit comprised by nodes 1-3 (topologies 1 and 2 in Fig. 5) or 1-5 
(for topologies 3 and 4 in Fig. 5). Since this scheme does not rely on virtual links, the 
value of mobile variable M0 is sequentially incremented (M0+1), and is then em-
ployed to determine the next agent hop destination once the current repeat rule cycles 
(#M0). Upon reaching the corresponding node, the agent toggles the green LED and 
reads the locally sensed temperature (l$n;r$t). If the temperature is less than the 
specified threshold (B<40), then the execution thread continues at the second Or rule. 
Otherwise, the ID of the local node is stored in mobile variable M1 (M1=I) to be 
returned to the sink node. Finally, the value of variable M0 will be set to 0 at the end 
of the itinerary, and the I!=0 operation will ensure that Agent 1 terminates when it 
gets back to the sink (ID 0). On the other hand, Agent 2 is dispatched in response to 
the value in M1 brought by Agent 1. It can be seen that the initial itinerary of Agent 2 
(85 bytes long) is set deterministically for topology 2. Here, the agent enters the hu-
midity-sensing circuit at node 3, traversing nodes 6 through 9, and exiting back to 
node 3 as indicated by the value in M0, which is in turn modified by the preceding 
operations (O[(I==9;M0=3);(I==5; M0=0);!1)]. The sequence of events is similar as 
before, and M1 will be set to the value of the current node’s ID if the humidity read-
ing exceeds a predefined threshold (r$h;O[B>20;M1=I]). 

In contrast to Scheme A, Scheme B relies on a virtual path previously set by a  
preceding agent (according to the current topology, as shown in Table 1). In this par-
ticular experiment, the path-setting agent needs to be executed only once for all sub-
sequent agents to use. We can see that the chain of operations is fairly similar to those 
agents in Scheme A, with the main difference that hoping is made through virtual links 
labeled with letter a for the main temperature-reading circuit, and with letter b for the 
humidity-sensing circuit. To this regard, the label identifier is set on the left-hand side 
of the hop operator (i.e., a#, or b#), and the hoping sequence within these circuits is 
controlled by the Or rules. Consequently, a single agent (79 bytes long) is needed for 
this scheme. Finally, Scheme C, employs the local injection operator (^) that is used 
by Agent 1 (36 bytes long) when the temperature reading exceeds the predefined 
threshold. Therefore, Agent 1 does not need to carry the associated code that specifies 
when to switch its navigation path to labeled circuits a or b when needed. Instead, a 
second agent (id = 0) will be injected with a 2-second delay (2^0) to the humidity-
sensing circuit from the node whose temperature value exceeded the corresponding 
threshold. Thus, Agent B (46 bytes long) needs to be already available at predefined 
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WSN nodes. Each of these approaches addresses the event-prevention objective pro-
posed before, and they have their own advantages and disadvantages as evidenced by 
the results obtained through the experiments that we discuss next. 

7   Experiment Results 

We have conducted experiments for the four topologies described in Section 6.2. For 
each topology, this section will evaluate the performance of Schemes A, B and C in 
terms of task duration and incurred packet overhead. The task duration (or itinerary 
completion delay) indicates the time at which the sink node dispatched the first agent 
to the time when the task of the last stage is finished.  

0

1

2

3

4

5

6

7

Topology 1 Topology 2 Topology 3 Topology 4

Ta
sk

 D
ur

at
io

n 
(s

ec
on

ds
)

Scenario

Scheme A

Scheme B

Scheme C

 

Fig. 6. Itinerary completion delay 

As shown in Fig. 6, for each scheme, the task duration is the lowest in Topology 1, 
and it reaches the maximum value in Topology 4. This is because Topology 1 and 4 
yield the shortest and the longest agent itineraries respectively, and the task duration 
is proportional to the length of the itinerary. We can also observe in Fig. 6 that Scheme 
A always causes the largest task duration among the three schemes in each topology. 
This is because two agents are dispatched to perform the task in Scheme A, as illus-
trated in Section 6.1. Compared to Scheme B, Scheme C sees a decreased task dura-
tion since this smaller action script is stored locally. 

Table 3 illustrates the total number of Zigbee packets incurred by each scheme, and 
the results for individual agents 1 and 2 (denoted by A1 and A2) are shown in brackets 
below each corresponding sum for schemes A and C. The overhead incurred by the 
environment-setting agents is not accounted for. While it is evident that Scheme C per-
forms better than A and B, there needs to be a mechanism that allows locally existing 
agents to be modified at will to fully exploit the capabilities of the system. It is also 
evident that the label-based approach is the key to achieving performance improvements 
in terms of both itinerary completion delay and bandwidth used (number of packets). 
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Table 3. Number of Zigbee packets incurred by the agents in each scheme 

Scheme Topology 1 Topology 2 Topology 3 Topology 4 

A 161 
[44(A1)+117(A2)] 

187 
[44(A1)+143(A2)] 

209 
[66(A1)+143(A2)] 

235 
[66(A1)+169(A2)] 

B 135 165 165 195 

C 99 
[36(A1)+63(A2)] 

117 
[36(A1)+81(A2)] 

126 
[54(A1)+72(A2)] 

144 
[54(A1)+90(A2)] 

8   Conclusions 

We have presented Wiseman, a mobile code approach for WSN. We described 
Wiseman’s architecture, its language constructs, and its features as a suitable system 
for use in WSNs. We also described important implementation and programming 
details of our scheme. The design of our system is based on an earlier implementation 
of the Wave system for mobile processing in wired networks. However, a number of 
changes were introduced as required by the scarcity of hardware and energy resources 
that characterize WSN devices. Among these changes are: elimination of dynamic 
memory allocation, redefinition of the language constructs, simplification of the in-
terpreter’s architecture, and simplification of the agents’ program structure. Wiseman 
has been implemented and tested in the Crossbow Micaz running TinyOS ver. 1.1, 
which yielded a binary image of only 19Kbytes and RAM usage of around 3Kbytes. 
The benefits of employing Wiseman’s agents were readily evident as shown by their 
ultra-compact size, leading to very low bandwidth usage. In addition, Wiseman facili-
tates the creation of overlay networks, which also helps shorten the overall size of the 
agents and reduces operation overhead. 
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