
Chapar: A Cross-Layer Overlay Event System for
MANETs

Amir R. Khakpour and Isabelle Demeure

Ecole Nationale Supérieure des Télécommunications (TELECOM ParisTech)
46, rue Barrault, 75634 Paris Cedex 13, France

{amir.khakpour,isabelle.demeure}@telecom-paristech.fr

Abstract. In this paper, we present Chapar, an event system designed for
mobile ad hoc networks that supports the publish-subscribe model as well as
point-to-point and point-to-multipoint message sending. Chapar supports event
persistency to resist transient disconnections and network partitioning. Following
a cross-layer approach, Chapar is designed as an overlay network that uses the
Multipoint Relays (MPRs) defined in OLSR as distributed brokers, and uses the
OLSR routing table to disseminate the events. It therefore benefits from the way
OLSR handles topology changes. The implementation performance is promising
in the sense that no extra signaling is generated by mobility support and the gen-
erated overlay traffic is considerably less than the underlying routing protocol.

1 Introduction

A Mobile Ad hoc NETwork (MANET)[1] is a self-configuring network of mobile
nodes connected by wireless links. The nodes are mobile therefore the network topol-
ogy changes over time. This infrastructureless nature nominate MANETs to be used
for a set of new spontaneous services in domains such as military, fire fighting and
gaming. However, MANETs are prone to frequent network disconnections and to net-
work partitioning. Also, nodes may enter and leave the network and the network should
be able to dynamically adapt to these fluctuating conditions. In these conditions, the
use of the traditional client-server model that relies on the server accessibility should
be avoided; symmetrical (distributed) models using asynchronous communications that
are more robust to transient disconnections should be preferred. Hence, asynchronous
publish/subscribe systems receive a great deal of attention in the realm of MANETs.

Contribution. In this paper, we present “Chapar”1, a novel event system designed for
MANETs that uses OLSR routing protocol [2] for event dissemination. OLSR is often
said to have limited scalability, but it is well adapted to the small size ad hoc networks
with relatively high traffic dissemination that we target in our project. Chapar supports
the publish/subscribe model, where no destination address(es) is assigned to the event
(the system delivers the events to the correponding events subscribers). It further sup-
ports point-to-point and point-to-multipoint message dispatching. In order to address

1 Chapar is the first Mail and Message Delivery Service known in the History. It belonged to
the Persian Empire hundred years B.C. [Reference: Allyn Huntzinger, “Persians in the Bible”,
Global Commission Inc, 2004.]

C. Giannelli (Ed.): Mobilware, LNICST 0007, pp. 325–339, 2009.
c© Institute for Computer Science, Social Informatics and Telecommunications Engineering 2009

326 A.R. Khakpour and I. Demeure

transient disconnections and network partitioning, Chapar supports event persistency
(an event may be kept in replicated data containers until its expiration time elapses or
it is delivered to all its subscribers). Contrary to other event systems [3,4] that rely on a
single broker to handle event publications and subscriptions, Chapar uses a distributed
approach to implement the event broker. This is to avoid having a single point of failure
and a performance bottleneck (the single broker and its links to neighbors)[10]. Follow-
ing a cross-layer approach, Chapar operates as an overlay network that uses the OLSR
Multipoint Relays (MPRs) as brokers, and uses the OLSR routing table to disseminate
the events. Using the underlying routing layer enables us to constitute the virtual mul-
ticast trees (with no additional signaling) to deliver events instead of using expensive
unicast communication and flooding which is not scalable.

In addition, we show that Chapar yields good performance in particular, because it
causes considerably less network overhead than other solutions. We also investigate
the event system traffic in different network density conditions and compare the results
with OLSR routing messages traffic. The proposed system considers node mobility and
changes in network topology is handled by OLSR routing protocol.

Organization. The remainder of this paper is organized as follows. In Section 2, we
review the requirements for the event layer that were specified within the Framework
of the Transhumance project and that we addressed in the design of the Chapar system.
Section 3 provides an overview on related work. We then present the data structures and
algorithms used in Chapar, in Section 4. Section 5 is dedicated to Chapar evaluation and
performance analysis. We conclude in Section 6.

2 Requirements and Definitions

Chapar is an event management system designed and implemented as part of the French
National Research Agency (ANR) funded Transhumance Project [5], [6].

In this scheme, the event system is required to support the point-to-point, point-
to-multipoint (group communication), publish-subscribe system and a combination of
these. Following the record-based event model [7], the events are defined as composite
messages including several attributes describing the event content. The subscription is
done accordingly, by expressing the interest into these attributes or topics [8].

In Chapar, the events are either destroyed after they are dispatched (real-time events),
or stored in the broker network for their lifetime (memorized events). The memorized
events are notified not only to the subscribers who are absent at the event publishing
time and eventually come back, but also to the subscribers who subscribed in the event
lifetime period (time decoupling support).

The underlying routing protocol is OLSR, a proactive and table-driven protocol. The
OLSR routing table held by each node contains the list of nodes available in the net-
work along with their corresponding next hop nodes through which the node is ac-
cessible. OLSR is a link-state routing protocol using a set of nodes called Multipoint
Relays(MPRs) to connect nodes to their 2-hop neighbors. In OLSR, nodes periodically
send HELLO messages to their neighbors to advertise their link status. The HELLO
messages also contain the nodes’ neighbor set. This is used by neighbors to determine
their own MPR set and also to identify if they are MPR or not. Each MPR periodically

Chapar: A Cross-Layer Overlay Event System for MANETs 327

generates and sends Topology Control (TC) messages to all of the nodes. It contains
the list of nodes that the TC sender has chosen as its MPR (MPR Selector Set (MS)).
Finally, each node is able to calculate its routing table based on received TC messages.

3 Related Work

There are many related work regarding event systems and Message-Oriented Middle-
ware (MOM) [23,24,25]; in this section, we focus on publish/subscribe systems for
mobile networks such as JEDI [7] and the systems presented in [9], [10],[11], and [12].

We identify three strategies for event dissemination in distributed publish-subscribe
systems: (1) event forwarding, (2) subscription forwarding and (3) hierarchical for-
warding. In event forwarding (aka message flooding), an event is forwarded through an
acyclic graph, called dispatching tree, to all nodes in the network. Those whose sub-
scription matches the event are notified and others just forward the event to the next
hop in the tree. Although, this strategy supports mobility (if the tree is modified by the
new node location), it is not scalable. With this strategy, it would be impossible to store
events in order to support subscribers that may be unreachable at publishing time. This
makes the event system unreliable when network partitioning occurs.

In subscription forwarding, a subscriber sends a subscription message to all its neigh-
bors and each node holds a table including the subscriptions that it received. Once an
event is published, it is checked against all the subscriptions and then is forwarded to the
neighbor who has forwarded or generated the corresponding subscription. This strategy
is employed by filter-based event routing [13] which is used by many content-based
event systems such as SIENA [14] and the systems described in [8], [15], and [16].
Since the subscription tables are based on the nodes’ neighbors, these protocols cannot
support mobility and frequent network topology changes. To cope with this problem,
some mobility extensions are provided such as the MoveInMaster and MoveOutMaster
operations that allow SIENA to build a new multicast tree and reroute the events to the
displaced nodes.

Finally in the hierarchical forwarding strategy, events are notified based on a rooted
tree topology. In this tree which includes all of the nodes in the network, the subscrip-
tion messages are forwarded upwards the “root” in the dispatching tree and then routed
downwards to the subscribers. This strategy is used by JEDI to forward events from
publisher to subscriber(s). In JEDI, nodes called Dispatching Servers (DSs) are orga-
nized in a tree and forward subscription messages to the root. When a published event
is handed over to the root, each DS verifies if any of their descendants has subscribed
to this event and forwards them a copy if appropriate. Handling mobility, similar to the
SIENA mobility extension, JEDI provides MoveIn and MoveOut operations.

However, to the best of our knowledge, none of the proposed publish-subscribe sys-
tems provide a comprehensive solution addressing network partitioning which is quite
likely to happen especially in sparse networks. In addition, the aforementioned publish-
subscribe systems mainly support push-based [17] publish-subscribe system (except for
JEDI) and they are not able to store events to be pulled later by the subscribers.

328 A.R. Khakpour and I. Demeure

Some other related works concerns applications and services on mobile ad hoc net-
works using overlay network with cross-layer approach (using routing layer informa-
tion). Delmastro et al. [18] proposed CrossROAD, an API on P2P system on mobile
networks using the OLSR routing information as the underlying layer to handle mobil-
ity and achieve better performance in terms of reducing the overhead of the overlay data
structures. Similar work presented in [19] uses the same concept for group communica-
tion within nodes in a mobile ad hoc network. Chapar however is quite different. We are
proposing a publish/subscribe system building upon the underlying routing protocol.

4 Chapar Data Structures and Algorithms

The main idea behind Chapar is to use the OLSR MPRs as the event system Broker
Nodes (BN). OLSR is therefore used to support mobility, to enable self-configuration
of the broker network, to provide one-hop publishing and notification, and to build the
virtual multicast trees from publisher to subscriber(s).

In this section, we first present the main data structures used in Chapar. We then
explain the main algorithms in the event system.

4.1 Tables and Data Structures

Chapar uses three main data structures: the Node Vector (NV) and two tables main-
tained by the broker nodes (BNs) namely Filter Mapping Table (FMT) and Memorized
Event Table (MET). We describe each data structure in turn.

The Nodes Vector (NV) is a bitmap where each bit represents one node in the net-
work. The basic assumption is that the nodes addresses follow an ordering such that
we are able to define a hash function HNV () : {a1, a2, · · · , aN} → [1..N] to map the
address to a specific bit index (figure 1(a)). For instance, if we assign an IPv4 class C
address pool for at most (N = 255) nodes in the network, the HNV () is defined to
return the last byte of the node address.

If identifying HNV () is not feasible due to randomness of the nodes addresses, an
alternative solutions called Bloom Filters [22] could be used. However, this solution
is costly, because to have negligible false positive error, an 8 times longer bit string
bitmap is required. Moreover, using logical operations to calculate the list of nodes for
each step may not be possible any more [20].

N bits FID SNV

0xFFFFFFFFFFFFFF 0 1 1 0 0 1 0 1 0

N bits

…

HNV (a1) HNV (a2) HNV (aN)

Pointer to the event USNV Expiration Time

0xFFFFFF 12:12:120 1 0 0 0 0 0 1 0

(b) FMT Table Sample(a) N bits Nodes Vector

0 1 0 0 0 0 0 1 0

(c) MET Table Sample

Fig. 1. Chapar’s different data structures examples

Chapar: A Cross-Layer Overlay Event System for MANETs 329

Each broker node (BNs) maintains a Filter Mapping Table (FMT) to keep the sub-
scription information. In this table, each filter is mapped to the list of the subscribers
represented by an NV called Subscribers Nodes Vector (SNV). The second table main-
tained by BNs is the Memorized Event Table (MET) that holds the memorized messages
with their corresponding Unavailable Subscribers Nodes Vector (USNV). Figure 1(b)
and 1(c) show examples of FMT and MET tables respectively.

The FMT table is modified upon the arrival of subscriptions and un-subscription
messages, whereas the MET table is updated upon the arrival of a memorized event and
when an absent subscriber returns (USNV purging).

4.2 Chapar Functions and Algorithms

In this section, we present the main functions of the publish/subscribe system and their
underlying algorithms.

Subscription/Un-subscription: Each subscriber dispatches the subscription message
to one BN in its neighborhood. In case it is already the BN, the subscription message is
looped back to itself.

A subscriber defines a filter by expressing its interest in some event attributes. Each
subscription message contains a Filter ID (FID). The FID is a hash string that is calcu-
lated as concatenation of hash result of each attribute. Note that if the subscriber does
not express its interest in a specific attribute, the hash result for that attribute is 0.

Once a BN (or MPR) receives the subscription message, it adds the subscription to
its FMT table, and forwards it to all neighbor broker nodes. This process is repeated
until all the BNs update their FMT table by the new subscription. The un-subscription
messages are treated similarly, yet has inverse effect on the FMT table.

Figure 2 demonstrates an example of an event and subscription/unsubscription mes-
sages in Transhumance middleware. This structure follows the record-based event sys-
tems where different fields of the event describe its characteristics. However, the fields
may differ for each application. In fact the only required fields in the event are the Event
Destination NV (EDNV) field that represents the event destination nodes, and the event
class flags by which different types of the events are distinguished. The required fields

The Event Structure

Sender ID Size

Sender ID

Subject Size
(supports string

Subject

Content Size
(supports content

Content Destination NV (EDNV)

The Subscription/Unsubsctiption

Group ID

Lifetime
(supports string
with length up to 32
characters)

(supports content
with size up to
512MB)

Event Class

Event Type
Subscriber ID Filter ID

p p
Message Structure

Event Type

Event Class Code
(4bits: 0 3)

4:with content flag
5:persistant flag
6:with lifetime flag

0 0 0 0 0 0 0 0

Group ID

The event class for subscription

7:encrypted flag 0 0 0 1 0 0 0 0 The event class for unsubscription

Fig. 2. The examples of the event and subscription/unsubscription message in Transhumance

330 A.R. Khakpour and I. Demeure

Algorithm 1. Lookup Process Algorithm
1: for each filter in FMT do
2: if (corresponding FID) ∧ (EID) �= (corresponding FID) then
3: Filter’s corresponding SNV ∨ = the filter SNV;

{(it is to calculate the union of all of the SNVs of those filters matched against the
incoming event)}

4: end if
5: end for
6: EDNV = ASNV = SNV ∧ ANV {(ASNV= Available Subscribers Nodes Vector and

ANV= Available Nodes Vector)}

for the subscription/unsubscription messages are the event type, the filter ID, and sub-
scriber ID that are used for updating the FMT.

Publishing and Notification: Publishing and notification are one-hop communication.
The publisher sends an event to one of its BNs. The event is then notified by the BN to
its adjacent subscriber. If the publisher or the subscriber is a BN, the publishing and the
notification are done through self-publishing and self-notification, respectively.

The real-time events are disseminated through a multicast tree from the publisher
BN to the subscribers, whereas the memorized events are flooded in the BN network up
to all BNs receive them and keep them in their MET until their lifetime is elapsed.

The broker network functionality description: Once the published event is received
by the first BN, it is looked up in the FMT (Lookup Process) to specify who the event’s
subscribers are. Then the event EDNV field is set by the subscribers who are avail-
able for notification. The event subsequently is ready to be notified (Event Notification
Process) or to be forwarded to other BNs (Event Multicasting Process).

Lookup Process: Upon the arrival of an event coming from the publisher, the Event
ID (EID) is calculated by concatenating the hash result of the event attributes (same as
FID). The hash result of each attribute is compared using Lookup Process Algorithm 1.

In the lookup algorithm, we are investigating whether the event (or event ID) matched
against any filter ID or not. We basically verify if (FID[i] ∧ EID ==FID[i]) is held or
not for each record (filter) i in FMT. Using this algorithm, the false positive errors are
possible, however, the more bits we assign for the hash results, the less the probability
of false positives. False positive is calculated using the following formula2:

Pfalse positive =

n−1∑

i=1

(
n

i

)
· (2i − 1)

22n
(1)

where n denotes the hash result length for each attribute. Formula (1) shows that we
can increase n to minimize the false positive error. For example, the false positive error
is reduced to ≈ 0.01 when n = 16. Note that we assume that the hash function is
uniformly random.

2 The formula detail justification and proof is available in [20].

Chapar: A Cross-Layer Overlay Event System for MANETs 331

Taking advantage of FID and EID definition, Chapar supports dissemination of the
encrypted events. Since the subscription in all types of the publish/subscribe systems
is based on the value of different attributes, publish/subscribe systems usually do not
support security features and encrypted events. However, in Chapar the encrypted event
could be sent along with its EID so the first BN does not need to calculate the EID
from event attributes and proceeds with the Lookup Process by the EID embedded in
the event.

Note that this Lookup Algorithm is designed based on the project specification. How-
ever, other filters and filter matching algorithms can be used to determine the SNV.

Event Notification: The event notification is a one-hop event delivery. Thus, the BN
who has received the event checks whether the event’s subscriber(s) is itself, and/or is
one of its non-BN neighbors. Let NSNV represents the set of nodes that are notified in
current step, HNV represents the broker Host NV, NNV represents the set of neighbors,
and BNV represents the preceding broker who sent the event. Therefore,

NSNV = EDNV ∧ (HNV ∨ (NNV ⊕ BNV)) (2)

When the NSNV nodes are notified, the new EDNV is calculated as follows:

EDNVnew = EDNVold ⊕ NSNV (3)

The next step, Event Multicasting, proceeds with new EDNV.
The event notification for memorized events follows the same procedure for the

nodes that are available at the publishing time. For the absent nodes, the BN MET
table periodically calculates the new NSNV to notify the absent subscribers that are
present in its neighborhood. The NSNV is calculated as follows:

NSNV = USNV ∧ NNV (4)

And subsequently the new USNV is:

NSNVnew = USNVold ⊕ NSNV (5)

To avoid event duplication for a returned absent node that may frequently connect
to different BNs, a periodic MET purging process is also required. Thus, the USNV
should be recalculated as follows based on the available nodes in the network (ANV):

USNVnew = USNVold ⊕ (USNVold ∧ ANV) (6)

Event multicasting and flooding: Memorized events, similar to the subscription mes-
sages, are flooded in the BN network. Every BN stores a copy of the event in its MET
table. However, the real-time events are delivered through a virtual multicast tree to the
subscribers and the events are destroyed as soon as they are delivered.

As it is mentioned, once an event is published and forwarded to the publisher BN, the
event EDNV field is set after the lookup process. The BN then execute the Event Notifi-
cation process to notify the events to its neighbors that are in fact the event subscribers.
It then recalculates the EDNV using (3). In this stage, the BN requires to forward the

332 A.R. Khakpour and I. Demeure

S
P S

FID SNV

0xFB010050
…

00110011
//m=8 nodes

3

2
7

RNV =00100010

RNV7 1=00100000

S

1

3

4
Dest Next Hops

1 7 2
2 2 1
3 7 3

FMT of node 4
RNV4 7=00100010

S
5

6

OLSR Routing Table for node 4

3 7 3
5 6 2
6 6 1
7 7 1RNV4 6=00001000

Publishing
Multicasting
Notification
BN nodes (MPRs)

// node 4 is the root in multicast rooted tree (first MPR connected to publisher)
ANV = 11111110 //node 8 is missing
SNV = 00101011
ASNV = 00101010 //ASNV = ANV & SNV
NNV4 = 01000110 NNV7 = 11010000 NNV6 = 10011000 NNV1 = 00100110
BNV4 = 00000110 BNV7 = 10010000 BNV6 = 10010000 BNV1 = 00000110
NSNV4= 00000000 NSNV7 = 00000010 NSNV6 = 00001000 NSNV1 = 00100000

Fig. 3. Chapar real-time event publishing, multicasting and notification based on the routing table

event to the rest of the BNs for event delivery. Thus, it groups the subscribers based
on their corresponding next-hop node (using the BN routing table). For each group, the
EDNV is changed to the group members represented by an RNV (Residual NV) and
is handed over to the corresponding next-hop. This procedure is repeated on each BN
until the event is notified to all available subscribers. In fact in this paradigm, for each
event a rooted multicast tree is built where each group represents a branch in the tree.
This multicasting scheme supports mobility, as the multicast tree is built for each pub-
lished event virtually using the current routing table. Note that we assume that the event
propagation delay is less than the network mobility rate.

Figure 3 shows how an event (real-time event) published by node 2 is multicasted
to the subscribers. In this example, an event is received by node 4 (node 2 MPR or
BN). Node 4 looks up the event in its FMT table. Once the event ID is matched to a
filter(s) it derives the SNV to know who are the subscribers (nodes 3, 5, 7, and 8). Node
4 then calculates ASNV, using its routing table to identify the hosts who are subscribers
and available at the moment (nodes 3, 5, and 7). The calculated ASNV is set as the
event destination (EDNV). Node 4 then calculates NSNV, the set of subscribers using
formula (2) that it can notify before it forwards the event to next hop (NSNV in this
stage contains no node). Node 4 then calculates the new EDNV (3) (in this example
same as the old EDNV) and groups the subscribers into two groups: one group is the
set of subscribers that can be reached by node 7 (nodes 3 and 7), and one group is the
set of subscribers that can be reached by node 6 (node 5). For each group, the EDNV
is changed to RNV and the event is sent to next corresponding hop. This process is
repeated in node 7 and 6. Finally the event is notified to all subscribers.

For the events with the designated destination (i.e., point-to-point (P2P) and point-to-
multipoint (P2MP)), the root of the multicast tree is the event publisher node. However,
for the multimode (combination of the pub/sub system, P2P and P2MP), the tree root is
the event publisher broker node, but the primitive EDNV is calculated as follows:

Chapar: A Cross-Layer Overlay Event System for MANETs 333

EDNVnew = EDNVoriginal ∨ ASNV (7)

Special cases: As pointed out, the OLSR MPRs are used to form the broker network.
However, in some network topologies, there could be no MPR in the network. For in-
stance, a full-mesh network where all of the nodes are adjacent and can communicate
through one-hop communication does not have any MPR. Also in some cases, the bro-
ker network is reduced to one node; this should be avoided since the availability of at
least two brokers for redundancy purposes is one of the basic requirements. Thus, for
these special cases which are detectable by all nodes thanks to nodes’ routing table [20],
we need an election mechanism to assign some nodes as broker. In the election mech-
anism we proposed for the Transhumance Project, nodes (at least two) with the lowest
index in the ANV are appointed broker nodes. Another special case which is likely to
happen addresses the single nodes send subscription messages or dispatch memorized
events while they are secluded from the network temporarily. Because the middleware
is not concerned with node connection status, these messages and events will be lost.
To avoid this loss, when nodes do not contain any host in their routing table (single-
node status), they are automatically appointed BN and perform self-subscription and
self-publishing and save the information in their local tables. When they reconnect to
the network, the FMT and MET changes are propagated to rest of the nodes through the
Table Consistency Check Process.

Table Consistency Check: Due to network partitioning and node transient disconnec-
tions, divergence of the nodes’ tables is inevitable. To maintain table consistency, a
periodic process is used to synchronize the content of the tables of different BNs.

In this process, each BN calculates the hash of each table and dispatches it to its ad-
jacent BNs. The incoming hash strings including MET hash and FMT hash are checked
by the adjacent BN’s tables hash result, if MET hash is different, the receiver sends the
list of all MET records. On the other hand, if FMT hash is different, the receiver sends
the list of hash of each FMT record. Then, the node compares the received lists with its
own tables, if it has a record which is not included in the lists, for memorized message
the event will be resent, and for FMT, the complete FMT record will be sent.

The repetition of such process helps BNs to complete each other’s tables by infor-
mation they have and their adjacent BNs do not. Note that using hash in this process
provides us with a light signaling for table comparison.

The table consistency check induces some table false positive errors in FMT. These
false positive errors occur when one BN (node A) receives an unsubscription message
while another BN (node B) does not. In this case, the correct table should not include
that specific subscription. However, after table consistency check process, node A’s
FMT will update the node B’s FMT with an obsolete subscription. The probability of
this kind of table false positive errors depends on the size and the density of the network,
the likelihood of message loss, and the rate of dispatching unsubscription messages.
Nonetheless, this error has negligible impact on the performance of the event system in
which some events may be notified to some nodes which are not the actual subscribers.

Inheritance and Dismissal (Check-out Process): Following the self-configuring goals,
we provide an inheritance function by which a non-BN node may retrieves the tables

334 A.R. Khakpour and I. Demeure

from one of its adjacent BNs while it is appointed as BN. On the other hand, when a
BN is dismissed, it drops the tables it has. However, there may be some information in
the tables that other BNs do not have. Hence, a Check-out process is required before
any table elimination. The Check-out process is done similarly to the table consistency
check to notify the network about the contents which is not available in adjacent BN.

Because of node mobility, nodes status is flapping from MPR to non-MPR and vice
versa. This causes frequent and unnecessary inheritance and check-out processes that
should be avoided in networks with random mobility. Coping with this problem, after
the BN dismissal, the node waits for the Dismissal Transient Time (DTT) before it drops
the table. The DTT can be addressed also as the table expiration date. If the dismissed
BN is reassigned to BN during DTT, it will not drop the tables and will not ask for
new tables through inheritance process. The DTT should be determined according to
the node mobility rate, subscription/memorized events generation rate, and the level of
consistency expected from event system [20].

Instant Notification (Pull-based Notification): When a node subscribes to an event,
the subscription filter is matched against all the events in MET, and in case it matches
any of them, the node will be notified at once. Note that the notification is a neighbor-
to-neighbor communication. Thus, the event notification in this model does not cause
event duplication.

5 Chapar Evaluation and Performance Analysis

The main objective of the work presented in this paper is to create a reliable self-
configuring event system resilient enough to network partitioning and node mobility.
The resource awareness of the protocol is also important, since it is implemented in mo-
bile nodes (PDAs) with limited power and bandwidth resources. Chapar is programmed
and implemented as the event module of the Transhumance middleware on Nokia 770
[28]. The middleware including the event system is available on SourceForge 3 under
LGPL licence and it was tested successfully [6,20]. An experiment with a game involv-
ing 8 users has clearly shown the efficiency of the persistent event system [21].

In this section, we discuss the system functionality and present preliminary perfor-
mance evaluation. As the simulation tools, we used NS2 [27] with UM-OLSR [26]
package for supporting the underlaying OLSR routing protocol. The detail of the simu-
lation specifications are shown in Figure 4.

5.1 Functionality Analysis

Since Chapar uses the OLSR routing tables to build a real-time multicast tree in order
to deliver the published event to subscribers, the notification is done regardless of node
location and movement. Network partitioning/merging and node frequent disconnection
are also properly handled using Table Consistency Check, Inheritance, and Check-out
Process (They are explicitly investigated in [20]).

3 http://sourceforge.net/projects/transhumance

Chapar: A Cross-Layer Overlay Event System for MANETs 335

Simulation Parameters

Simulation Specifications
Tool: NS-2.28 + UM-OLSR [27]
Duration: 3600s
Simulation time slot (T): 30s
Size: variable

Network Specifications Number of nodes: 40
Network routing protocol: OLSR (RFC3626)
TC interval=5s, HELLO interval=2s
Radio-propagation model: Two Ray Ground
Antenna: OmniDirectional

Node Specifications MAC type: 802.11
Queue type and length: Drop-tail/Priority queue 50
Effective coverage range (R): 250 m

Mobility Specifications Mobility Model: Random
Speed: 1 m/s
Subscription: Almost constant (65B ≤ size ≤ 70B)
PDF: Uniform

Traffic Specifications Subscription rate: 6 subscription/minute (3 subs/T)
Memorized Messages: minimum: 94B, average: 362B,
PDF: log-normal
Memorized Events Rate: 2 event/minute (1 events/T)

Fig. 4. The simulation specifications

25

30

35

40

r
of

no
de

s

Average Number of MPRs and Broker Nodes VS. the Network
Area Diameter

0

5

10

15

20

0 500 1000 1500 2000 2500 3000

A
ve
ra
ge

nu
m
be

r

Diameter (m)

MPRs

BNs

Fig. 5. Average number of MPRs and BNs

Table 1. Desirable properties check list for different event system functionalities in Chapar

Orderedness Consistency (avoiding event
duplication)

Completeness

Subscription
√

suffers from duplicated copies
in broker network

√

Real-time Event
Publishing

√ √ √
with some exceptions

Memorized Event
Publishing

Event reordering
(partially)

suffers from duplicated copies
in broker network and notifi-
cation (partially)

√

The FMT and MET are replicated in each BN, and this redundancy prevents their
content from being lost. There are three desirable properties for redundant systems [10]
which are investigated in Chapar and shown in Table 1. Orderedness concerns the mes-
sage reordering in event systems. For some applications, it is important that the events
be notified in the same order they are published. Consistency addresses the message
duplication in the distributed system. And in completeness, the system is expected to be
as complete as the system with no replication.

5.2 Resource Awareness

The resource awareness is studied with respect to: memory usage, processes analysis,
and signaling and bandwidth allocation [20].

Memory usage concerns the size of the FMT and the MET tables on broker nodes.
First, using a subset of the nodes (the MPRs) as broker nodes reduces the number of
nodes whose memory is occupied by event system tables. Second, using the NV bitmap
and FID (a fixed bitmap) minimizes the size of the FMT. For instance, if the number
of nodes is 40 and there are 100 available filters, the FMT table size is ≈ 1.5 KB.
The MET size mainly depends on the size of the events. Therefore, it is recommended
that the applications generate memorized messages with efficient sizes and specify the
event lifetime value cautiously. To avoid overflows, tables sizes are bounded. Also, the

336 A.R. Khakpour and I. Demeure

memorized events are generated with some upper-bounds to minimize the impact of the
memorized messages on the event system. For instance, in Transhumance project, the
memorized event sizes could not exceeds 2KB and the MET table size is bounded to 50
entries [20]. The process analysis addresses to the CPU usage and power-awareness of
the system. All computations in Chapar are accomplished by simple logical operations
thanks to NVs and simple hash functions. In [20], we have shown that even the lookup
process which could be assumed as the heaviest procedure running on the system in-
volves a limited number of operations and are adapted to tiny mobile devices (for 40
nodes and 5 filter ID fields is less than 100 AND operations for each FMT entry).

Signaling and bandwidth allocation refer to network traffic. Having minimum num-
ber of BNs is the key contribution in Chapar. It is important, since the number of BNs
identifies not only the number the FMT and MET copies, but also the volume of the
subscription and memorized messages generated and forwarded in the network. Figure
5 shows that the number of MPRs and BNs increase when the network area diameter
grows and the network density declines. In dense networks (D < 450), there is no MPR
in the network (special case), thus two BNs will be elected. In the semi-dense network
(450 < D < 1000) the number of MPRs and BNs is the same and rises up to 45% of
the total nodes. These two areas are recommended working area sizes. In the third area,
the network experiences many network partitions and node seclusion. Thus, the number
of MPRs declines whereas the number of BN rises because of the several occurrences
of the special cases.

0 20 40 60 80 100 120

10
4

T
ra

ffi
c

(B
)

T

200mx200m (Diameter= 282.84m) − Full−Mesh Network

0 20 40 60 80 100 120

10
4

T
ra

ffi
c

(B
)

T

400mx400m (Diameter= 565.68m) − Very Dense Network

0 20 40 60 80 100 120

10
4

T
ra

ffi
c

(B
)

T

500mx500m (Diameter= 707.10m) − Dense Network

0 20 40 60 80 100 120

10
4

T
ra

ffi
c

(B
)

T

750mx750m (Diameter= 1060.66m) − Low Dense Network

0 20 40 60 80 100 120

10
4

T
ra

ffi
c

(B
)

T

1000mx1000m (Diameter= 1414.21m) − Low Sparse Network

0 20 40 60 80 100 120

10
4

T
ra

ffi
c

(B
)

T

1250mx1250m (Diameter= 1767.8 m) − Sparse Network

0 20 40 60 80 100 120

10
4

T
ra

ffi
c

(B
)

T

1500mx1500m (Diameter= 2121.3m) − Very Sparse Network

0 20 40 60 80 100 120

10
4

T
ra

ffi
c

(B
)

T

2000mx2000m Diameter= 2828.4m) − Very Sparse Network

TC
HELLO
Subscription
Memorized

Fig. 6. The OLSR routing and event system total traffic in logarithmic scale in 120 time slots
(3600s) with different densities

Chapar: A Cross-Layer Overlay Event System for MANETs 337

3.00E+05

3.50E+05

4.00E+05

4.50E+05

5.00E+05

By
te
s)

The Mean Value of the Traffic in each Time Slot (T=30s)

Memorized Events
SubscriptionMessages
HELLO Messages
TC Messages

0.00E+00

5.00E+04

1.00E+05

1.50E+05

2.00E+05

2.50E+05

0 500 1000 1500 2000 2500 3000

Tr
af
fic

(B

Diameter (m)

Fig. 7. The comparison between types of net-
work traffic in different network densities

1.20E+04

1.40E+04

1.60E+04

1.80E+04

2.00E+04

s)

The Mean Value of the Traffic in each Time Slot (T=30s)

Memorized Events
Subscription
Dumb Subscription
DumbMemorized Events

0.00E+00

2.00E+03

4.00E+03

6.00E+03

8.00E+03

1.00E+04

0 500 1000 1500 2000 2500 3000

Tr
af
fic

(B
yt
es

Diameter (m)

Fig. 8. Using MPRs as BNs VS using all nodes
as BN

Figure 6 is the result of one hour (120× time slot(T)) simulation, of 40 nodes with
random mobility. As described in Figure 4, the subscription traffic is generated at the
fixed rate of 3 sub/T with uniformly random size (65B < sub size < 70B), whereas
the memorized event is created and dispatched in the fixed rate of 1 (event/T) and ran-
dom size (with lognormal distribution) between minimum of 64B and average of 362B.
The lognormal traffic distribution enable to show the seldom large memorized events
which is sent by some modules and applications. In fact, figure 6 demonstrates how the
number of MPRs and BNs may effect the amount of generated traffic. Figure 7 (and
also 8) shows this difference more clearly. The average number of memorized mes-
sages when the network is sparse is almost twice more than the number of memorized
messages when the network is dense. Therefore, working on recommended area size
could be crucial in network performance. Indeed, Chapar satisfies the Transhumance’s
requirements quite well, since the goal in Transhumance is to support the middle-scales
ubiquitous ad hoc networks working in rural environment where users are not apart
from each other considerably.

Figure 7 also compares the subscription messages traffic and memorized events traf-
fic to OLSR messages. This figure clearly illustrates that the Chapar messages do not
add significant traffic to the network in comparison to the OLSR routing messages. We
have not shown the rest of event system traffic measurements since they are really neg-
ligible in compare to the subscription and memorized events traffic which should be
received by all nodes in the network. Nonetheless, more details can be found in [20].

Finally, we show the effectiveness of Chapar event system in reducing the number of
messages in the network. Figure 8 shows that using MPRs as BNs instead of using all
nodes as BNs can decrease the traffic from 90% to 40% in the working area depending
on the network density and the number of MPRs.

Unfortunately, we are not able to compare Chapar with the mentioned related works,
because event systems are designed as middleware through which higher level appli-
cations may communicate. Thus, based on the system requirements and specifications,
event systems are different in most of the cases. Therefore, a comprehensive compar-
ison may not be feasible. Also, to the best of our knowledge there is no event system
working on the mobile ad hoc networks that fully supports all publish/subscribe system
decouplings. For instance, for time decoupling we use memorized messages with life

338 A.R. Khakpour and I. Demeure

time and replicated event container for Chapar, which is not supported by any of cur-
rent publish/subscribe systems. Moreover, the cross layer protocols are tightly bounded
to the underlying network layers, so the feasibility of proper comparison between the
cross-layer approaches and the independent ones is questionable.

6 Conclusion

In this paper, we have introduced Chapar, a novel event system designed for MANETs.
Chapar supports the publish-subscribe model as well as point-to-point and point-to-
multipoint message sending. Chapar uses a distributed reliable approach to implement
the event brokers. It provides consistent and reliable event dissemination in harsh mo-
bile environments. However, since Chapar is not dependent on any specific node and is
a ubiquitous event system, it could be implemented on stable homogeneous networks.
Chapar uses OLSR as an underlay network to propagate the events efficiently through
the network and support mobility and self-management. It is also robust to the network
partitioning and frequent topology changes thanks to Table Consistency Check, Inher-
itance, and Check-out Processes. We have shown that this protocol is light and well-
designed for mobile devices thanks to NVs and simple logical operations. The network
overhead of this protocol is also negligible compared to the OLSR routing messages.

Acknowledgment

The work presented in this paper was supported by the French National Research
Agency (ANR) funded Transhumance Project. We are thankful to Javier Hernando for
his support in Chapar implementation.

References

1. Chlamtac, I., Conti, M., Liu, J.: Mobile Ad hoc Networking: Imperatives and Challenges. Ad
Hoc Networks 1(1), 13–64 (2003)

2. Clausen, T., Jacquet, P.: Optimized Link State Routing Protocol. RFC 3626, Internet Engi-
neering Task Force (October 2003)

3. Hapner, M., Burridge, R., Sharma, R., Fiall, J., Stout, K.: Java Message Service. Sun Mi-
crosystems Inc., Santa Clara (2002)

4. OMG. CORBA Notification Service Specification. Object Management Group, Needham,
MA (August 2002)

5. Paroux, G., Martin, L., Nowalczyk, J., Demeure, I.: Transhumance: A power sensitive mid-
dleware for data sharing on mobile ad hoc networks. In: ASWN 2007, Santander, Spain (May
2007)

6. Transhumance Project web page,
http://www.infres.enst.fr/˜demeure/TRANSHUMANCE/\/index.html

7. Cugola, G., Di Nitto, E., Fuggetta, A.: The JEDI Event-Based Infrastructure and Its Appli-
cation to the Development of the OPSS WFMS. IEEE Tran. on Software Engineering 27(9),
827–850 (2001)

8. Eugster, P., Felber, P., Guerraoui, R., Kermarrec, A.: The many faces of publish/subscribe.
ACM Computing Surveys (CSUR) 35(2), 114–131 (2003)

http://www.infres.enst.fr/~demeure/TRANSHUMANCE/\/index.html

Chapar: A Cross-Layer Overlay Event System for MANETs 339

9. Cugola, G., Murphy, A., Picco, G.: Content-based Publish-Subscribe in a Mobile Environ-
ment. In: Bellavista, P., Corradi, A. (eds.) Mobile Middleware, pp. 257–285. Auerbach Pub-
lications (2006)

10. Huang, Y., Garcia-Molina, H.: Publish/Subscribe in a mobile enviroment. In: Proc. of the
MobiDE 2001, Santa Barbara, CA, pp. 27–34 (May 2001)

11. Bacon, J., Moody, K., Bates, J., Hayton, R., Ma, C., McNeil, A., Seidel, O., Spiteri, M.:
Generic support for distributed applications. Computer 33(3), 68–76 (2000)

12. Fiege, L., Gartner, F., Kastenm, O., Zeidler, A.: Supporting Mobility in Content-Based Pub-
lish/Subscribe Middleware. In: Proc. of ACM/IFIP/USENIX Int. Middleware Conference
(Middleware 2003), Rio de Janeiro, Brazil, pp. 103–134 (June 2003)

13. Carzaniga, A., Rosenblum, D., Wolf, A.L.: Design and Evaluation of a Wide-Area Event
Notification Service. ACM Tran. on Computer Systems (TOCS) 19(3), 332–383 (2001)

14. Cao, F., Singh, J.P.: Efficient event routing in content-based publish-subscribe service net-
works. In: Proc. of IEEE INFOCOM 2004, Hong Kong, China (2004)

15. Banavar, G., Chandra, T., Mukherjee, B., Nagarajarao, J., Strom, R., Sturman, D.: An effi-
cient multicast protocol for content-based publish-subscribe systems. In: Proc. ICDCS 1999
(1999)

16. Chand, R., Felber, P.: A Scalable Protocol for Content-Based Routing in Overlay Networks.
In: IEEE Int. Symposium on Network Computing and Applications (NCA 2003), Cambridge,
MA (April 2003)

17. Hauswirth, M., Jazayeri, M.: A component and communication model for push systems. In:
Proc. of the 7th European Software Engineering Conference, Toulouse, France, pp. 20–38
(September 1999)

18. Delmastro, F., Conti, M., Gregori, E.: P2P Common API for Structured Overlay Networks:
A Cross-Layer Extension. In: Proc. of MDC 2006, Niagara Falls, NY (June 2006)

19. Conti, M., Crowcroft, J., Delmastro, F., Passarella, A.: P2P Support for Group-
Communication Applications: a Cross-Layer Approach for MANET Environments. In:
Demo Session of INFOCOM 2006, Barcelona, Spain (April 2006)

20. Khakpour, A., Demeure, I.: Designing and Prototyping an Event-based Communication Sys-
tem on Mobile Ad Hoc Networks, Technical Report 2008D009, Ecole Nationale Supéure des
Télécommunication (July 2008)

21. Demeure, I., Gentès, A., Stuyck, J., Guyot-Mbodji, A., Martin, L.: Transhumance: a Plat-
form on a Mobile Ad hoc NETwork Challenging Collaborative Gaming. In: 1st International
Workshop on Collaborative Games (CoGames 2008), Irvine, CA, USA, May 19-23 (2008)

22. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Communications
of the ACM 13(7), 422–426 (1970)

23. Tran, P., Greenfield, P., Gorton, I.: Behavior and Performance of Message-Oriented Middle-
ware Systems. In: Proc. of the ICDCS 2002, pp. 645–654 (2002)

24. Jung, D.: Design of MOBILE MOM: Message Oriented Middleware Service for Mobile
Computing. In: Proc. of the ICPP 1999, pp. 434–439 (1999)

25. Souto, E., Guimaraes, G., Vasconcelos, G.: A message-oriented middleware for sensor net-
works. In: Proc. of the MPAC 2004, vol. 77, pp. 127–134 (2004)

26. Ros, F.J.: Universidad de Murcia OLSR impelmentation for NS2,
http://masimum.dif.um.es/um-olsr/html/

27. NS2, The Network Simulator, http://www.isi.edu/nsnam/ns/
28. Nokia 770 Internet Tablet, Technical Specifications,

http://europe.nokia.com/A4145105

 http://masimum.dif.um.es/um-olsr/html/
http://www.isi.edu/nsnam/ns/
http://europe.nokia.com/A4145105

	Chapar: A Cross-Layer Overlay Event System for MANETs
	Introduction
	Requirements and Definitions
	Related Work
	Chapar Data Structures and Algorithms
	Tables and Data Structures
	Chapar Functions and Algorithms

	Chapar Evaluation and Performance Analysis
	Functionality Analysis
	Resource Awareness

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

