Announcement /Subscription/Publication:
Message Based Communication for
Heterogeneous Mobile Environments

Henry Ristau*

Chair for Information and Communication Services
University of Rostock
Albert-Einstein-Str. 21

18059 Rostock
Germany
henry.ristau@uni-rostock.de

Summary. Many tasks in smart environments can be implemented us-
ing message based communication paradigms that decouple applications
in time, space, synchronization and semantics. Current solutions for de-
coupled message based communication either do not support message
processing and thus semantic decoupling or rely on clearly defined net-
work structures. In this paper we present ASP, a novel concept for such
communication that can directly operate on neighbor relations between
brokers and does not rely on a homogeneous addressing scheme or any-
more than simple link layer communication. We show by simulation that
ASP performs well in a heterogeneous scenario with mobile nodes and
decreases network or processor load significantly compared to message
flooding.

Keywords: Heterogeneous Mobile Environments, Publish/Subscribe,
Distributed Event-Based Systems, Content-Based Routing, Flooding.

1 Introduction

A growing application area for heterogeneous wireless networks are smart envi-
ronments. They emerge from the cooperation of many different devices from tiny
sensors to powerful computers. This cooperation targets at a specific objective
which in smart environments usually is user assistance. While communication be-
tween applications on all of these devices is a basis for cooperation, heterogeneity
and mobility induce major problems here. Many devices can communicate using
multiple communication technologies, the technologies themselves however are
often incompatible. Homogeneous addressing schemes are not guaranteed to exist
throughout a smart environment. The network topology is constantly changing

* This research was supported by a grant of the German National Research Foundation
(DFG), Graduate School 1424, Multimodal Smart Appliance Ensembles for Mobile
Applications (MuSAMA).

C. Giannelli (Ed.): Mobilware, LNICST 0007, pp. 295308} 2009.
© Institute for Computer Science, Social Informatics and Telecommunications Engineering 2009

296 H. Ristau

through entering, leaving and mobile devices. Thus, to keep applications simple
it is essential that communication in a smart environment is as transparent from
the applications as possible.

Another problem in smart environments is the heterogeneity of devices and
applications themselves. Applications are supposed to communicate even if they
use different document or data formats. Data from multiple devices might have
to be aggregated while it is communicated towards its sink. Again from the per-
spective of an application developer this data processing should be as transparent
as possible.

An example is the communication between a number of sensors and a PDA in a
heterogeneous environment. The applications on the sensors should only measure
and provide the temperature. Where, when and in which unit of measurement
this temperature is needed by other devices in the network should be of no
interest to these applications. On the other hand, the application on the PDA
should only display the room temperature. It should not be concerned about
where the temperature is measured, which units are used, and how many sensors
are available. The data communication and processing between the sensors and
the PDA should be efficient and reliable. However it is not important how many
communication technologies are involved or how many systems are able to do
the processing, where these systems are located and if they are available.

In this paper we present Announcement/Subscription/Publication (ASP), a
concept to achieve message based communication between applications decou-
pled of time, space, synchronization and semantics in heterogeneous mobile en-
vironments. ASP allows an application to publish or receive and subscribe to
messages transparently with respect to the network infrastructure, the availabil-
ity and location of communication partners, asynchronously of any broker or
communication partner and transparently with respect to the semantic capabili-
ties of any communication partner. To achieve the transformation and processing
of messages, an application can register as processor. Such a processor applica-
tion only has to process messages according to its capabilities with the same
transparency as described before. It does not need to be able to describe its pro-
cessing abilities - of course it helps if it can somehow subscribe to its preferred
input messages.

The remainder of this paper is structured as follows: In the next section we
explain which kind of scenarios for message based communication we tackle in
this paper. In section [3] we present related work and give an elaborate problem
statement followed by a detailed description of the concept of ASP in section [4l
In section Bl we present the results of an evaluation of our concept and conclude
the paper in section

2 Application Scenarios

Scenarios for message based communication in smart environments can be char-
acterized by message size and publication frequency. Small messages can be
transmitted from one device to another one completely before they are forwarded

Announcement/Subscription/Publication 297

3 A 4

° @) large/individual @) large/stream

<y
-% = document from device to printer images from a surveilance camera,
o image from one deviceto another images from a device to a projector
jo2l -
@
gl_|| ™ smallfindividual @ smallistream
£l

5 temperature setting for air condition, temperature data from sensors,

brightness setting for lights brightness measurement from sensors
T — T 1
individual - 5 stream

publication frequency

Fig. 1. Scenarios for message based communication divided into four groups according
to message size and publication frequency

to a third device without a significant loss of performance. Preferably they fit
into one network packet. Large messages need to be fragmented and should only
be received completely if necessary, e.g. for processing to avoid high transmission
latencies. Individual messages are transmitted only once or so infrequent that it
is not efficient to keep a routing path for the next message. Streams of messages
however are transmitted frequently on the same paths. This division results in
four groups labeled with some examples for each group in figure [l

In the first group flooding algorithms are the method of choice sending the
individual message to all possible target locations. This results in the message
being delivered to every available sink. However in any other group more than
just one data packet is delivered and flooding algorithms can easily overload parts
of the communication infrastructure or data processors with less performance.
In this paper we concentrate on scenarios of the second group and conclude
some means to extend our ideas for scenarios of groups three and four which we
however do not yet evaluate.

3 Related Work and Problem Description

Publish/subscribe is the communication paradigm of choice for decoupling of
message source (publisher) and sink (subscriber) in time, space and synchro-
nization [6] using a central broker to register the interest of subscribers and
subsequently forward publications to them. By content-based routing (CBR) [4]
it is possible to replace the broker as former central element by a network of dis-
tributed brokers and decouple the publish/subscribe system from the underlying
communication technologies at the same time.

Apart from subscribing to a message subject or channels, CBR allows sub-
scriptions to the content of a message, which can be for example values of a
tuple. The routing tables for CBR are initialized based on interest of subscribers
that is disseminated through the network using flooding techniques. Depending
on the resulting routing tables, publications can be routed from publisher to
subscriber directly in a multipath fashion [3]. The distribution of interest was
optimized through the usage of beacons. This increases the fault-tolerance of the

298 H. Ristau

routing protocol to work in mobile environments like mobile ad hoc networks
(MANETS) [2][14].

Publish /subscribe especially for smart environments is provided by Mundo-
Core [I], a modular middleware for the requirements of pervasive computing
based on a microkernel design. It supports structured, hierarchical and single-
hop strategies for routing resulting in high scalability and adaptability. It allows
for channel and content-based subscriptions.

The processing of messages however is not integrated into or observed by the
publish/subscribe middleware. In [I5] we analyzed two approaches of integrating
processors into a publish/subscribe middleware. The first one, mapping the pro-
cessor to a sink for its input and a source for its output messages, induces much
unnecessary processing and communication if multiple processors for the same
operation are available. The second approach, the extension of CBR to allow
dissemination of interest through processors, leads to very complex processors
because apart from processing message type m to message type m’ they need to
be capable of processing a subscription for message type m’ into a subscription
for message type m which could even be impossible depending on the type of
processing.

Two very specialised approaches for message processing in communication are
composite event detection and event stream processing (ESP). The former one
denotes the composition of primitive events to monitor the state of a distributed
system and notify sinks of the detection of composite events. One such system
is GEM [12]. ESP systems like Borealis [7] or Cayuga [5] are able to execute a
continuous query over a stream of events delivering the queries result to sinks.
Both systems have in common that the sink has to provide the processing in-
structions in the form of a script or a query and thus is not decoupled from the
distributed system in terms of semantics.

A system for semantically decoupled communication in sensor networks is
presented in [I7]. Data from different sensor networks is collected in an IP-based
overlay network where the semantic decoupling is done using ontologies. The
resulting information is provided to connected sinks. The system is based on a
very strictly defined topology and thus not applicable for heterogeneous mobile
networks as targeted by this paper.

4 Contribution

The ASP concept consists of a message routing algorithm based on a given sys-
tem architecture. We start by introducing the system architecture. Afterwards
we describe the three phases of the routing algorithm, Announcement, Subscrip-
tion and Publication. At the end of this section we identify the requirements to
implement a scenario using the ASP concept.

4.1 The System Architecture

To decouple the applications transparently from the network and all other ap-
plications we base our approach on a system architecture with one broker on

Announcement/Subscription/Publication 299

each participating node. All client applications are connected locally and other
brokers are connected through the network layer. We do not consider remote
applications on nodes without broker because it is no problem to implement
very slim brokers for nodes with less performance. Each broker keeps a cache
of virtual neighbors, which can be applications - source, sink and processor - or
neighboring brokers that can be reached with one hop through any communica-
tion technology as shown in figure 2l

Applications Interfaces. Source applications register at the broker and have

two main methods available. They can register a special descriptive announce-

ment message (see section L2)) if they wish to and they can publish messages.
A sink application can register

using an optional filter. If a filter Y ~N
is provided the sink receives only [sourceH ['proc u [snnku
announcements matching the given YNeighb e — et

filter, otherwise they receive every @@ A\ i) g
announcement received by their bro- AN roc-0 _..application layer 2
ker. After receiving an announce- /__ broker E
ment, a sink application can decide vNeighbors i;-— """" network layer §
to subscribe to that announcement _ !)

and will receive further publications
from that source.

Processor applications register
just like sinks with an optional fil-
ter and receive announcements. If
they are able to process any of these
announcements, the result is to be
submitted back to their broker along with identifications of the processed source
announcements and a metric information denoting the complexity of the pro-
cessing. If the processor application is part of an active path later, further pub-
lications are sent to it for processing.

Fig. 2. The system architecture for ASP fea-
tures one broker per node to transparently
decouple applications from each other and the
network topology

Network Abstraction Layer (NAL). The NAL decouples the routing al-
gorithm from any underlying communication technology. Its tasks are neighbor
discovery, neighbor cache updates and reliable message delivery. Brokers in com-
munication range have to be detected and inserted into the neighbor cache. Their
information in the cache, especially their connection metric, has to be updated
if it changes. Each message from the broker has to be delivered to the neighbor
or if it can not be delivered, the neighbor has to be removed from the neighbor
cache because it is not reachable anymore. For any of these actions, the broker
has to be notified.

Since the algorithm relies on communication links to its direct neighbors only
and the NAL provides neighbor discovery and reliable message delivery, ASP
can work directly on the link layer if necessary and can easily be implemented
for any communication technology by adding the appropriate NAL.

300 H. Ristau

id metric validity seq. message

I I | I I I ! 1 ! 1 | 1
0 64 128 192 bits 256 flags

Fig. 3. An example announcement with all necessary data fields

Terminology. Subsequently we denote a source application’s broker as “source”,
a sink application’s broker as “sink” and a processor application’s broker as “pro-
cessor”. A virtual neighbor of a broker, which can either be an application or a
neighboring broker, is meant by the term “neighbor” if not specified.

4.2 The Announcement Phase

When a source application publishes a message, the source disseminates the
availability of this message among all brokers by sending an announcement.

Contents. Figure [J shows a minimal example for an announcement. The id is
generated together with the announcement by the source or processor using a
defined hash algorithm on the message’s content right after the announcement
is created. It is used as content-based reference for the announcement and for
duplication and loop detection in the announcement’s distribution.

The metric is updated by every broker before the announcement is sent to
a neighbor and represents the path metric between the source and the receiv-
ing broker. The validity value is initiated by the source and represents the time
the announcement is valid. If an announcement is not prolonged before, all ref-
erences to it can be removed from a broker’s cache. To recognize an identical
announcement with the task to prolong an older one, the sequence number has
to be incremented. The flags are needed in an extension of the algorithm to
distinguish individual mode from stream mode.

The message is the descriptive announcement message registered or the next
message published by a source application, or results from processing by a pro-
cessor application. The requirement for a message in an announcement is that it
has to be small enough for the announcement to fit into one packet the NAL can
send out. The distribution algorithm itself is not meant to support announce-
ment fragmentation while packet fragmentation can be implemented in the NAL
if needed.

Distribution. The target of announcement distribution is for every broker to
receive the announcement and store the neighbor it was received from with the
lowest path metric as best announcer. Hence, if a sink application is interested in
this announcement, its broker can subscribe to this optimal path of distribution.
Therefore, an extended flooding algorithm is utilized.

The full announcement is sent to every neighboring broker, except for the
sender if that was a neighboring broker. Furthermore it is distributed to every

Announcement/Subscription/Publication 301

id subscriberld metric sequence|type

T T T T T T T T T T T T
0 64 128 192 256 bits

Fig. 4. An example subscription with all necessary data fields

processor and sink application except if they have registered using a filter and
the filter does not fit the announcement. If an announcement is re-received with a
better path metric, the message is stripped off and the resulting short announce-
ment is forwarded according to the same rules as above to signal the better path
to the following brokers. Of course a short announcement is not forwarded to
sink applications because they can gain no new information from it and its pro-
cessing should only be simulated by the broker knowing the outcome and metric
from the preceding full announcement because the processor application could
not do any processing without the message.

4.3 The Subscription Phase

The subscription represents the control data in the ASP concept. It is used for
brokers to signal a subscription for a given path turning that path into an active
path. Other purposes are the removal of an active path or the indication of a
broken path towards the source for re-announcement.

Contents. Figure[lshows the necessary fields for a subscription. The id is used
as reference for the associated announcement. The subscriberld is generated
randomly by the sink to represent that broker as the subscriber. It is needed to
distinguish between different subscriptions for the same announcement to allow
multiple sinks. Two identical subscriberlds would eventually result in one sink
not receiving its publications for this announcement period but the probability
of this event is sufficiently low. The metric is also set by the sink to the metric
of the best announcement received so far to allow path optimization if a better
announcement is received after a subscription has been generated.

The type signals the purpose of a subscription. So far, possible types are
subscribe, unsubscribe, and broken path. The sequence value is used to allow
for publication caching which is not yet necessary for small/stream scenarios as
described in section [2

Distribution. If a new subscription or one with a better metric value is received
from a neighbor, that neighbor is marked as active path for the provided id and
subscriberld. Afterwards the subscription is forwarded to the best announcer if
it is a neighboring broker. If the best announcer is a processor application, one
subscription for every stored source announcement id is generated and forwarded
as described before. The neighbor a subscription is sent to is stored by the broker.

302 H. Ristau

id sequence| counter message

T T T T T T
0 64 128 192 bits

Fig. 5. An example publication with all necessary data fields

If the best announcer changes after any subscription has been sent out, a
new subscription is sent out according to the above rules and an unsubscribe
subscription is sent to the target of the previous subscription to remove the
obsolete active path. If an unsubscribe subscription is received that matches an
active path with its subscriberId and metric, the active path is removed and the
unsubscribe subscription is forwarded to the former subscriptions target.

If an active path is detected to be not available anymore for any reason, a path
broken subscription is generated and forwarded according to the same rules as
above. If a source receives such a path broken subscription, it prepares to extend
the next publication to an announcement so a new path can be found if available.

4.4 The Publication Phase

Following an announcement, the source will send out all published messages
as publications until the next announcement is necessary due to announce-
ment expiration or path disintegration. A minimal publication is depicted by
figure Bl The id is used as reference for the associated announcement and sub-
scriptions. The sequence number is for fragmentation which is not necessary for
small/stream scenarios. The counter is used to recognize and remove unwanted
retransmissions.

A publication is forwarded on all known active paths just once. Hence, every
subscribed broker receives the publication and forwards it towards the subscribed
sink applications.

4.5 Requirements for a Scenario

ASP is a communication concept which can be implemented for a given scenario
or a full middleware if desired. A number of requirements have to be met by the
scenario which we present in the following.

Announcements. If published messages are too large to fit into an announce-
ment (cf. E2)) or descriptive announcements are needed for other reasons, a
means of describing messages is needed. Examples are meta-data as in document
headers or advertisements as in many publish/subscribe systems. Processor ap-
plications receiving a descriptive announcement must be able to decide whether
they can process the following publications.

Furthermore a hash algorithm is necessary to generate a sufficient unique id
from a published message or descriptive announcement. Eventually the accuracy
of floating point representation has to be limited before hashing to avoid multiple
instances of the same messages if processing by different processing applications
can lead to different rounding.

Announcement/Subscription/Publication 303

T switch X

Ethernet ;'j

200 m

station A node 3 station B

—
% WLAN transmission

range of station B

-
- 7/ node 4

500 m

Fig. 6. Simulation scenario: station A and B are connected by Ethernet while all nodes
and stations are connected by wireless LAN with the given estimated transmission
range. The nodes move inside the 200m x 500m playground area.

Metrics. A metric is needed that can describe communication and processing
to result in optimal paths for message publication. We prefer time based metrics
because time can equally be measured for processing and communication and
it can be totalled to result in a path metric even if processing leads to data
aggregation.

System Size. Since flooding does not scale for very large topologies a system
boundary is necessary. This can either be a limited environment like a smart
environment we are targeting, a limited number of systems that implement a
broker or an additional measure like for example a hop count or a maximum
metric for the flooding of announcements.

5 Evaluation

Based on the ASP concept we implemented a scenario with source, processor
and sink applications, a broker implementation and a NAL for 802.2 logical link
control (LLC) [9] for simulation. Since 802.2 LLC is the link control layer for
802.3 Ethernet [10] and 802.11 wireless LAN [§] our scenario includes station-
ary devices as well as mobile nodes. We evaluated the completeness of message
delivery and the load induced by communication.

5.1 Simulation Scenario and Methodology

Figure [0l shows the simulation scenario. It consists of two stationary nodes, sta-
tion A and B, connected by Ethernet and five mobile nodes. All nodes are con-
nected by wireless LAN in ad-hoc mode according to 802.11b [8] with 11MB/s,
a maximum transmission power of 1 mW, and a limit of 3 retransmission. The
mobile nodes are moving according to the Random Waypoint Mobility model
[11] on the full playground with a random velocity of 1 to 5 m/s and random
pause lengths of 1 to 5 seconds (both uniform distribution).

304 H. Ristau

100 — . ' - - - .
. B8, B8, B9 .
95 i N atoe ¢ *
o o 8 o
90 — ° 8 8
o

85 ° S

8 o o | ¢ mean
80 | 8 :

T T T T T T T T T T

Flooding 10s 20s 50s 100s Flooding 10s 20s 50s 100s

Fig. 7. Box-plots showing the number of messages received by sink 0 (left) and sink 1
(right) using Flooding compared to ASP with different validity settings (10s, 20s, 50s,
and 100s) from 100 messages sent by the source

The scenario is a small/stream scenario with one temperature source appli-
cation on node 1 that generates 100 temperature values in degrees Celsius, one
every second. One processing application is on station A (Celsius to Fahrenheit)
and one on station B (Celsius to Kelvin). Two temperature sinks are on node 2
(Fahrenheit) and node 3 (Kelvin).

The scenario was implemented for the OMNeT++ discrete event simulator
[16] version 3.3 and the INET Framework version 20061020 [I3]. The experiment
was run 1000 times with different seeds, leading to different starting positions
for the mobile nodes and different movement patterns.

5.2 Completeness

We define completeness as the number of messages that are delivered to a given
sink application relative to the number of messages that could have been de-
livered if all messages published by any source application would have been
processed by all possible processor applications and delivered to that sink appli-
cation in the time of observation. Thereby the sink and any processor application
only count as available until the time they stop the registration at their local
broker for the last time in the observation interval.

In a mobile scenario a completeness of 1 as the theoretical maximum is not
always achievable because the availability of a path through the network topology
is not taken into account in the definition of completeness. Therefore we compare
the completeness of the ASP concept with the flooding of every message to all
brokers. A higher completeness than flooding is possible if caching is used which
however is not implemented in our small/stream scenario because the loss of
single messages is often not a problem in such scenarios.

Results. Figure [shows the number of messages received by sink 0, the sink
application on node 2, and sink 1 on node 3 for flooding and ASP with differing
announcement validity. For flooding while most runs result in all 100 messages

Announcement/Subscription/Publication 305

Flooding ASP 10s ASP 20s ASP 50s
%
2
1
0
100 40 100 40 100 40

Fig. 8. Histograms showing the number of messages received by sink 1 on the x-axis
and the percentage of experiment with this result on the y-axis. The small arrow in
the bottom of each histogram shows the mean value.

100 o 0,%%0e02,%,, «.0‘“0%‘00 (O0004 %000 00004900 (P00 9040000004 0 W04 “n““ AtaRoatata DA %%
80 + messages 14
60 - ¢ announcements - 12
= |ost - 10
40 — - 8
* - 6
20 -4
-2
0 | [0

T T T T T T
700 720 740 760 780 800

Fig. 9. The number of announcements initiated by the source, the number of announce-
ments not delivered to the sink and the number of messages received by sink 1 for the
given runs of the experiment using ASP with a validity of 100s

being delivered, a number of topology states lead to messages being lost. The
mean value with 99.8 for both sinks is very high. For ASP we recognized that for
most runs less than 6 messages are lost. However there are some outliers leading
to a drop of the mean value down to about 95 messages for a validity of 100
seconds.

The histograms for sink 1 in figure8show that in most runs, only few messages
are not transmitted. There is also a significant fraction of runs where = or a few
more messages are missed with z = ¢/1s, with ¢ being the announcement validity
and 1s being the time between every 2 messages.

Discussion. When an active path breaks in publication phase the publication is
not retransmitted and lost. This leads to a single message being lost and can be
recognized in figure[@ by more than one announcements being initiated. Without
path failures in that experiment one announcement should suffice which can be
seen in run 726 and 770 because the validity for ASP equals the duration of the
experiment.

306 H. Ristau

40000 —7—

—
20000 — e

bytes

10000 = e _ﬁ_ _i_
o- o o —

T T T T 1
Flooding ASP 10s ASP 20s ASP 50s ASP 100s

Fig. 10. Box-plots showing the average number of network transmissions sent by each
node using Flooding and ASP with different validity settings

The histogram of the flooding algorithm in figure B shows that there are
phases when no path is available at all. If this happens in announcement phase,
all publications are lost up to the next announcement. These are mostly z = t/1s
messages as observed before, or eventually less messages if the experiment stops
or a path to another sink is lost earlier. This behaviour can be observed in more
detail in figure [@ for runs 698, 711, 778, and 783.

5.3 Network Load

To represent network load we measure the number of bytes sent out by the
NAL of every node for the purpose of message transmission. We do not count
data sent for management purposes like neighbor discovery or heartbeats be-
cause we want to compare the broker’s dissemination algorithms and not the
NAL implementations. Again we compare to simple flooding as the more flexible
algorithm.

Results. Using the flooding algorithm, every node sends an average of 30 kbyte
of algorithm messages throughout the experiment as shown in figure Using
ASP with a validity of 10 seconds this is reduced to 10 kbyte and is further
reduced with a longer validity down to about 5 kbyte for 100 seconds.

Discussion. For announcement delivery we use an extended flooding algorithm
that eventually generates more load than flooding of a single message depending
on the metric and the topology of the scenario. Extending the announcement
validity does not lead to a linear decrease of initiated announcements because
of path failures. Furthermore subscriptions also need to be delivered. Therefore,
a network load inversely proportional to the announcement validity cannot be
expected. However in our scenario ASP reduces the network load significantly
compared to simple flooding.

Announcement/Subscription/Publication 307

6 Conclusion

In this paper we presented ASP, a concept for message based communication
in heterogeneous mobile networks decoupling source, sink and processor appli-
cations as well as brokers in time, space and synchronization. By transparent
processing message delivery from source to sink applications is decoupled in
semantics as well.

6.1 Benefits

The algorithm significantly decreases network traffic and processor load by using
optimal paths in subscription and publication phase. Since control messages are
only delivered in subscription phase on optimal paths, their ratio in overall traffic
is very low.

The ASP concept relies on neighbor relations between brokers only and thus, it
does not need a consistent addressing scheme throughout the network topology.
Through separation of the NAL which can directly operate on link layer, it can
easily be implemented for any available communication technology.

In our simulation we could show that even though the nodes were mobile in the
ad hoc network and the neighbor relations between nodes changed frequently,
ASP was able to adapt. Only few messages where lost compared to message
flooding in most runs while network load was reduced significantly.

6.2 Shortcomings

If an active path breaks in publication phase, a new announcement is initiated.
This leads to more load on the network and processors. Since the number of
damaged communication paths very probably rises with a large scenario or more
mobility, this is still an issue.

If there is no connection possible between a source and a sink, the sink applica-
tion will not receive any message throughout the entire publication phase. This is
also the case if a new sink applications enters the system after the announcement
phase. This leads to a trade-off between flexibility and resource usage. A shorter an-
nouncement validity leads to a faster integration of “new” sink applications while
a longer announcement validity leads to less network and processor load.

6.3 Future Work

For future work more scenarios need to be implemented and analyzed by simulation
or observation. Especially large /individual or large /stream scenarios pose different
requirements on the ASP concept because the loss of a single message will become
important when it leads to the loss of one or even the only larger message to be
delivered. Publication caching is one important step to fulfill these requirements.

Another task is the elimination or at least optimization of the aforementioned
shortcomings. Communication and processing load can be reduced if a broken
path can be repaired without the initiation of a new announcement by exploiting
multipath propagation characteristics of the utilized flooding algorithm. Further-
more announcements can be cached to allow for faster integration of new sink

308 H. Ristau

applications even with high announcement validity. These enhancements will
also help ASP in dealing with large/individual and large/stream scenarios.

References

1. Aitenbichler, E., Kangasharju, J., Muhlhauser, M.: Mundocore: A light-weight in-
frastructure for pervasive computing. Pervasive and Mobile Computing 3(4), 332—
361 (2007)

2. Baldoni, R., Beraldi, R., Cugola, G., Migliavacca, M., Querzoni, L.: Structure-less
content-based routing in mobile ad hoc networks. In: International Conference on
Pervasive Services, 2005. ICPS 2005. Proceedings, July 11-14, pp. 3746 (2005)

3. Carzaniga, A., Rutherford, M.J., Wolf, A.L.: A routing scheme for content-based
networking. In: INFOCOM 2004. Twenty-third AnnualJoint Conference of the IEEE
Computer and Communications Societies, March 7-11, vol. 2, pp. 918-928 (2004)

4. Carzaniga, A., Wolf, A.L.: Content-based networking: A new communication in-
frastructure. In: Konig-Ries, B., Makki, K., Makki, S.A.M., Pissinou, N., Scheuer-
mann, P. (eds.) IMWS 2001. LNCS, vol. 2538, pp. 59-68. Springer, Heidelberg
(2002)

5. Demers, A., Gehrke, J., Hong, M., Riedewald, M., White, W.: Towards expressive
publish/subscribe systems. In: Ioannidis, Y., Scholl, M.H., Schmidt, J.W., Matthes,
F., Hatzopoulos, M., Béhm, K., Kemper, A., Grust, T., Bohm, C. (eds.) EDBT
2006. LNCS, vol. 3896, pp. 627—644. Springer, Heidelberg (2006)

6. Eugster, P.T., Felber, P.A., Guerraoui, R., Kermarrec, A.-M.: The many faces of
publish/subscribe. ACM Comput. Surv. 35(2), 114-131 (2003)

7. Hwang, J.-H., Cetintemel, U., Zdonik, S.: Fast and reliable stream processing over
wide area networks. In: Cetintemel, U. (ed.) Proc. IEEE 23rd International Con-
ference on Data Engineering Workshop, pp. 604-613 (2007)

8. IEEE Std 802.11-2007 (Revision of IEEE Std 802.11-1999) (December 2007)

9. ISO Std 8802-2: 1998; IEEE Std 802.2-1998 (December 1989)

10. IEEE Std 802.3-2005 (Revision of IEEE Std 802.3-2002 including all approved
amendments). Section 1 - 5 (2005)

11. Johnson, D.B., Maltz, D.A.: Dynamic source routing in ad hoc wireless networks.
In: Mobile Computing, pp. 153-181 (1996)

12. Mansouri-Samani, M., Sloman, M.: GEM: A Generalised Event Monitoring Lan-
guage for Distributed Systems. Distributed Systems Engineering 4(2), 96-108
(1997), http://www.iop.org/EJ/article/0967-1846/4/2/004/ds7204 . pdf

13. OMNeT++ Community Site (November 17, 2008), [www . omnetpp.org

14. Petrovic, M., Muthusamy, V., Jacobsen, H.-A.: Content-based routing in mobile
ad hoc networks. In: The Second Annual International Conference on Mobile and
Ubiquitous Systems: Networking and Services, 2005. MobiQuitous 2005, July 17-
21, pp. 45-55 (2005)

15. Ristau, H.: Publish/process/subscribe: Message based communication for smart
environments. In: 2008 IET 4th International Conference on Intelligent Environ-
ments (July 2008)

16. Varga, A.: The OMNET++ discrete event simulation system. In: Proceedings of
the European Simulation Multiconference, pp. 319-324 (June 2001)

17. Wun, A., Petrovi, M., Jacobsen, H.-A.: A system for semantic data fusion in sen-
sor networks. In: Proceedings of the 2007 inaugural international conference on
Distributed event-based systems, pp. 75-79. ACM Press, New York (2007)

http://www.iop.org/EJ/article/0967-1846/4/2/004/ds7204.pdf
www.omnetpp.org

	Announcement/Subscription/Publication: Message Based Communication for Heterogeneous Mobile Environments
	Introduction
	Application Scenarios
	Related Work and Problem Description
	Contribution
	The System Architecture
	The Announcement Phase
	The Subscription Phase
	The Publication Phase
	Requirements for a Scenario

	Evaluation
	Simulation Scenario and Methodology
	Completeness
	Network Load

	Conclusion
	Benefits
	Shortcomings
	Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

