
A Service-Oriented Framework

Supporting Ubiquitous Disaster Response

Michele Amoretti, Maria Chiara Laghi, and Gianni Conte

Information Engineering Department, University of Parma, 43100 Parma, Italy
michele.amoretti@unipr.it, laghi@ce.unipr.it, gianni.conte@unipr.it

http://dsg.ce.unipr.it

Abstract. The synergy of ubiquitous computing and service-oriented
technologies may lead to efficient, pervasive and dependable solutions
in the challenging context of emergency management. Recently, novel
paradigms have been proposed, most of them envisioning arbitrary pairs
of peer application entities communicating and providing services di-
rectly with each other and to users. In order to enforce these paradigms
even to systems which include devices with limited processing and stor-
age resources, lightweight middleware components are required. We il-
lustrate how this is provided by JXTA-SOAP, a portable software com-
ponent supporting peer-to-peer sharing of Web Services, and we show
how it can be used to implement disaster response software applications.

Keywords: Mobility, disaster response, middleware, services, peer-to-
peer.

1 Introduction

Emergency management (or disaster management) is the discipline of dealing
with and avoiding risks [13]. It involves preparing for disaster before it happens,
disaster response (e.g. emergency evacuation, quarantine, mass decontamination,
etc.), as well as supporting and rebuilding society after natural or human-made
disasters have occurred. The disaster management cycle involves four key phases:

1. Mitigation: includes any activities that prevent a disaster, reduce the chance
of a disaster happening, or reduce the damaging effects of unavoidable dis-
asters.

2. Preparedness: includes plans or preparations made to save lives or property,
and to help the response and rescue service operations.

3. Response: includes actions taken to save lives and prevent property dam-
age, and to preserve the environment during emergencies or disasters. The
response phase is the implementation of action plans.

4. Recovery: includes actions that assist a community to return to a sense of
normalcy after a disaster.

These four phases usually overlap. Information and Communication Technology
(ICT) is being used in all the phases, but the usage is more apparent in some

C. Giannelli (Ed.): Mobilware, LNICST 0007, pp. 252–265, 2009.
c© Institute for Computer Science, Social Informatics and Telecommunications Engineering 2009



A Service-Oriented Framework Supporting Ubiquitous Disaster Response 253

phases than in the others. For example, ICT support is very important dur-
ing the disaster response (DR) phase of an emergency, which may commence
with search and rescue, but in all cases the focus will quickly turn to fulfilling
the basic humanitarian needs of the affected population. This assistance may
be provided by national or international agencies and organisations. Effective
coordination of disaster assistance is often crucial, particularly when many or-
ganisations respond and local emergency management agency capacity has been
exceeded by the demand or diminished by the disaster itself. Tracing missing
people, coordinating donor groups, recording the locations of temporary camps
and shelters are examples of problems in the immediate post-disaster period that
can be effectively addressed by using ICT.

In this paper we focus on disaster response exploitation based on the concept
of ubiquitous computing, whose main objective is to provide globally available
services and resources in a network by giving users the ability to access them
anytime and anywhere. In particular, we consider novel paradigms and propose
advanced technical solutions for DR-supporting distributed systems. Recently,
Gaber [8] has proposed two alternatives to the traditional client/server paradigm
(CSP) to design and implement ubiquitous and pervasive applications: the Adap-
tive Services/Client Paradigm (SCP) and the Spontaneous Service Emergence
Paradigm (SEP). In other words, the peer-to-peer paradigm is completed re-
spectively by the self-organization and the self-adaptation principles. In SCP a
decentralized and self-organizing middleware that implements an intelligent net-
work should be able to provide services to users according to their availability
and the network status. In SEP, spontaneous services can be created on the fly
and be provided by mobile devices that interact through ad hoc connections
without any prior planning.

In order to enforce these paradigms to systems which include devices with
limited processing and storage resources, lightweight middleware components
are strongly required. In [5], Bodhuin et al. compare some traditional solutions
for net-centric computing middleware, such as Jini, OSGi and CORBA, listing
their pros and cons. Not surprisingly, the survey does not include Sun MicroSys-
tem’s JXTA [28], probably due to the fact that in year 2005 an implementation
for mobile devices was not completed. JXTA is mainly the specification of a
set of open protocols for building overlay networks, independent from platforms
and languages. Currently there are three official implementation of JXTA proto-
cols: J2SE-based, J2ME-based and C/C++/C�-based. In particular, an almost
complete version of the JXTA Java Micro Edition (JXTA-J2ME, a.k.a. JXME)
has been recently released. It provides a JXTA compatible platform on resource
constrained devices using the Connected Limited Device Configuration (CLDC)
with Mobile Information Device Profile 2.0 (MIDP), or Connected Device Con-
figuration (CDC). Supported devices range from smartphones to PDAs.

How does JXTA cope with the service concepts characterizing the previously
summarized paradigms for ubiquitous computing? The Web Service community
considers services as the only mean for accessing resources (this concept has been
explicitly formalized in the WSRF specification [34]), yet centralized registries,



254 M. Amoretti, M.C. Laghi, and G. Conte

themselves exposed as services (like UDDI), are still deemed the primary tool to
support the publication and the discovery phases. Unfortunately, a peer-to-peer
network of Web Service providers with a publication/discovery infrastructure
implemented as a set of interacting Web Services would be absolutely unefficient
due to the heavyness of the SOAP messaging protocol. On the other side, in
JXTA each peer’s service is just an example of resource which can be exploited
by the user which owns the peer, or shared in the network, i.e. advertised by the
user and exploited by other users. Resource descriptions have the shape of XML
documents, namely advertisements. A JXTA advertisement can be filled with
any document, e.g. a WSDL interface if the shared resource is a Web Service. In
summary, JXTA provides a lot of flexibility by separating basic infrastructural
services, mandatory for all peers, from specialized services, with different levels
of description and efficiency.

Within the context of JXTA and Web Service integration, we are responsi-
ble for the development and maintenance of the JXTA-SOAP component [16],
enabling Web Service deployment in JXTA peers, as well as distributed WSDL
publication and discovery, and SOAP message transport over JXTA pipes (i.e.
virtual communication channels which may connect peers that do not have a
direct physical link, resulting in a logical connection bound to peer endpoints
corresponding to available peer network interfaces with an example being a TCP
port and associated IP address). JXTA-SOAP is currently implemented in two
versions: J2SE-based (fully featured, extending JXTA-J2SE) and J2ME-based
(partially featured, extending JXME).

The remainder of the paper is organized as follows. Section 2 illustrates the
technological franework we propose to support disaster response activities. Sec-
tion 3 describes related work on disaster response ICT systems, middleware
for peer-to-peer service-oriented ubiquitous computing, and Web Services on
resource-constrained devices. An overview of the internal design of the JXTA-
SOAP component, and many details about its J2SE and J2ME implementations,
are given in section 4. Section 5 describes a disaster response application we de-
veloped on top of JXTA-SOAP. Finally, section 6 provides a conclusive discussion
and describes future work.

2 Proposed Technological Framework

Disasters can happen anywhere at any time. Some disasters can be prevented,
while some others cannot. Preparedness however greatly increases our chances
to reduce their impact. Developing effective early warning and alert systems
often can save thousands of human lives. From the 2004 tsunami in the Indian
Ocean to the forest fires that ravaged southern Europe in the summer of 2007,
recent natural and man-made disasters (including also conflict-related complex
emergencies) have highlighted the need for a more effective response.

In the area of civil protection the European Commission has recently pro-
posed to improve the EU’s capacity through a number of important measures
[6]. Among others, building up the Monitoring and Information Centre (MIC),



A Service-Oriented Framework Supporting Ubiquitous Disaster Response 255

playing the role of operational centre for European civil protection interven-
tion. This requires a qualitative shift from information sharing/reacting to emer-
gencies towards proactive anticipation/real time monitoring of emergencies and
operational engagement/coordination. This includes early warning systems,
performing needs assessments, identifying matching resources, and providing
technical advice on response resources to the Member States; developing sce-
narios, standard operating procedures and lessons learned assessments; imple-
menting the Commission competencies to pool available transport and provide
co-financing for transport; increasing training and exercise activities for Mem-
ber States and other experts; and helping the Member States to set up common
resources. This implies also the use of monitoring capabilities such as those
developed under the Global Monitoring for Environment and Security (GMES)
initiative [11] or enabling tools like GALILEO (the European satellite navigation
system) [9].

Our framework focuses on the problem of identifying matching resources in
response to disasters. The most important are human resources, i.e. Civil Protec-
tion volunteers, Red Cross doctors and medical attendants, firemen, policemen,
army officers, etc. In a typical scenario, it is necessary to coordinate the ac-
tion of rescuers that are already in the disaster location, and those that are
on vehicles and may be requested to reach the disaster place. The purpose of
our work is also to support the work of the back-end operators, improving the
ICT infrastructure that must allow not only communications among actors, but
also automated gathering, elaboration and delivery of the huge amount of data
collected by each actor.

For example, in case of flooding, first volunteers arriving at the disaster loca-
tion may notice that some roads are interrupted. If they are equipped with a mo-
bile device including a camera, they may (1) send short alert messages, including
their coordinates obtained by means of GPS/GIS, and (2) take and send photos
to provide a more detailed description of the environment. The back-end system
collects and filter these data, and sends useful advices (such as the best route to
be followed) to rescue vehicles which are directed to the disaster place (fig. 1).

Fig. 1. The back-end system, the rescue operators and vehicles are connected in a peer-
to-peer overlay network, offering services to each others (left image). Connectivity is
guaranteed by different technological solutions (right image).



256 M. Amoretti, M.C. Laghi, and G. Conte

The infrastructure of the service-oriented applications we envision is a peer-
to-peer overlay network, which is placed at level 5 in the TCP/IP stack and is
almost independent from the possible connectivity solutions, that we summarize
in the following.

For long distance communications, in Europe the most used infrastructure is
General Packet Radio Service (GPRS), which is a packet-oriented Mobile Data
Service available to users of Global System for Mobile Communications (GSM)
and IS-136 mobile phones (the so-called second generation - 2G). It provides
data rates from 56 up to 114 kbit/s. A more powerful technology which is as-
suming higher importance is the Universal Mobile Telecommunications System
(UMTS), one of the third-generation (3G) cell phone technologies, which is also
being developed into a 4G technology. Both 2G and 3G technologies require the
presence of base stations on the territory. In case of heavy disasters such as hur-
ricanes, base stations may be damaged, for which satellite and/or TETRA-based
communications are the other options. TETRA is a telecommunications stan-
dard for Private Mobile Radio (PMR) systems developed by ETSI as an answer,
at European level, to the evolving needs of PMR Operators, which have to cope
with traffic congestion and a growing demand for speech and data services.

For local communications among actors equipped with mobile devices, infras-
tructured commmunications are usually based on WiFi. If some devices are out
of the range of the WiFi access point, they can try to set up a mobile ad-hoc
network (MANET), which is a self-configuring network of mobile routers (and
associated hosts) connected by wireless links, the union of which form an arbi-
trary topology. The routers are free to move randomly and organize themselves
arbitrarily; thus, the network’s wireless topology may change rapidly and un-
predictably. Such a network may operate in a standalone fashion, or may be
connected to the larger Internet.

3 Related Work

This section illustrates the state of the art of software architectures supporting
rescue operators during emergencies, technologies for ubiquitous peer-to-peer
service sharing, and middleware solutions for deploying and consuming Web
Services on resource-constrained devices.

3.1 State-of-Art DR Projects

In emergency scenarios, several teams belonging to different organizations need
to collaborate in disaster management activities. The WORKPAD project [35],
funded by the EU Commission, focuses on response and short-term recovery
phases in which Public Safety Systems (PSS) use computer programs to give
instructions to the rescue teams. Each team member is equipped with hand-held
devices (PDAs) and communication technologies, and should carry on specific
tasks. The developed framework has two different levels: an integrated back-
end community, mainly constituted by traditional computers, that interact in a



A Service-Oriented Framework Supporting Ubiquitous Disaster Response 257

peer-to-peer fashion, providing advanced services requiring high computational
power, knowledge and content integration, and a set of front end peer-to-peer
communities that provide services, mainly by adaptively enacting processes on
mobile ad-hoc networks, to human workers.

A service-oriented architecture may be developed to achieve integration and
data exchange among the different organizations systems in a disaster scenario,
as proposed in AID-N project [37]. Individual tools interact with the shared
data models through a set of publicly available and descriptive Web Services.
The AID-N architecture addresses critical interoperability challenges through the
design of data models to support a diverse variety of data from disparate systems,
the design of data exchange standards to access the data model, and the design
of web services that support the information needs for each system. This archi-
tecture enables real-time data communication between three deployed systems:
a pre-hospital patient care reporting software system, a syndromic surveillance
system and a hazardous material reference software system.

In [38] an Artificial Emergency-Logistics-Planning System (AELPS) is en-
visioned, which is based on artificial-society theory and uses agent modeling
to describe the behaviour of basic elements in an emergency-logistics system.
AELPS can form the basis of a complex computational platform that generates
logistics activities during disaster relief and gives intuitive results that can be
used in emergency-logistics planning. The emergency-logistics planning for nat-
ural disaster must simultaneously consider different types of request and manage
the formation of coalitions of different working units in order to employ different
subsystems to manage all the tasks in an emergency situation.

An agent-based simulation approach is described in [39,40] for the evaluation
of scenarios concerning different possible rescue processes. A six step methodol-
ogy is proposed for developing a computer based simulator, that needs to know
all the cognitive activities of emergency personnel. Rescue operators have prede-
fined roles but may also organize themselves dinamically in groups and teams.
As in real life, there are predefined rules and procedures, but rescue personnel
often react to their environment in an unpredictable way. By modeling rescue
personnel as agents, these characteristics made an agent-based apppproach a
suitable tecnique to use. The multi-agent model also includes the notion of cen-
tralized rescue strategy used in real life; the simulator is used to test the effects
of a distributed strategy, that is where independent sub-teams cooperate and
share resources.

3.2 Ubiquitous Peer-to-Peer Sharing of Services

OSGi [21] is a Java-based technology which provides a service-oriented plug-in-
based platform for application development. The core component of the OSGi
Specifications is the OSGi Framework, which provides a standardized environ-
ment to applications (called bundles). On top of the Framework, services are
specified by a Java interface. Bundles can implement this interface and regis-
ter the service with the Service Registry. Clients of the service can find it in
the registry, or react to it when it appears or disappears. Advanced networking



258 M. Amoretti, M.C. Laghi, and G. Conte

features, such as e.g. peer-to-peer connectivity, are not provided by OSGi and
must be implemented on top of it.

To the best of our knowledge JXTA-SOAP is the sole open source project for
P2P sharing of Web services being actively maintained and updated. WSPeer
[14] is a J2SE toolkit for deploying and invoking Web Services in peer-to-peer
Grid environments, which wraps Globus Toolkit core libraries to support the
WS Resource Framework (WSRF) [34]. More interesting for ubiquitous comput-
ing environments is the Mobile Web Services Mediation Framework (MWSMF)
[26,27], an adaptation of Apache ServiceMix, which is an open source ESB (En-
terprise Service Bus). It provides an hybrid solution, since it must be configured
as JXTA-J2SE peer and established as an intermediary between Web Service
clients and mobile hosts, the latter being configured as JXME peers. Web Ser-
vice clients can invoke the services deployed on mobile hosts via the MWSMF,
which compresses SOAP messages (to BinXML format) and sends them through
JXTA pipes. The MWSMF also manages message persistence, guaranteed deliv-
ery, failure handling and transaction support. Unfortunately, the source code is
not publicly availble and few details are given about the realization of lightweight
Web Service providers running on mobile hosts.

3.3 Web Services on Resource-Constrained Devices

Besides hardware constraints, mobile devices introduce many other specific chal-
lenges which make difficult the deployment of Web Services on top of them [4].
Unlike dedicated servers, mobile devices will typically have intermittent connec-
tivity to the network. As a result, the services offered on a mobile device may
not be accessible all the time. An application that uses or composes such Web
Services needs to operate in an opportunistic manner, leveraging such services
when they become available. On the server side, Web Services on mobile de-
vices should also attempt to keep messages as short as possible. Another issue
is addressing: when a mobile device moves between different locations, it may
move from one administrative domain to another, causing a change in the IP
address and even the Internet domain name. However, with the P2P in place,
the need for the Public IP can be eliminated and the mobiles can be addressed
with unique peer ID. Each device in the P2P network is associated with the
same peer ID, even though the peers can communicate with each other using
the best of the many network interfaces supported by the devices like Ethernet,
WiFi, etc. [26].

Since the WS message protocol, namely SOAP, introduces some significant
overhead, few toolkits support the deployment of Web Services on limited de-
vices, such as PDAs, smart phones, etc. One is gSoap [30], which provides a WS
engine with run-time call de-serialization. Unfortunately, gSoap is written in
C/C++, thus requiring a priori stub/skeleton generation by means of a specific
compiler, which also means lack of portability.

Looking at the Java Micro Edition (J2ME) platform, most libraries are only
for client side functionality. The Java Wireless Toolkit (WTK) provides J2ME
Web Services API (WSA) [32], based on JSR 172 [17], which specifies runtime



A Service-Oriented Framework Supporting Ubiquitous Disaster Response 259

ServiceProvider interface to allow the generation of portable stubs from WSDL
files. The specification contains some notable limitations, most of them due to
the requirement for WS-I Basic Profile compliance. Conforming to the profile
ensures interoperability, but also prevents using alternative methods. Another
widely used solution is the kSoap2 [19] open source component, which is a parser
for SOAP messages (with RPC/literal or document/literal style encoding), not
supporting the generation of client side stubs. kSoap2 is compliant with devices
lacking JSR 172 support, and allows to access non WS-I conformant services.

To the best of our knowledge, the unique solution enabling J2ME applications
(CLDC, CDC) as service endpoints is the Micro Application Server (mAS) [20].
It can be considered a lightweight version of Axis, by which it is inspired. For
this reason we have chosen it to implement the J2ME version of JXTA-SOAP.

4 The JXTA-SOAP Component

JXTA is a Sun MicroSystems’ open framework which defines peer-to-peer pro-
tocols that should allow a vast class of networked devices (smartphones, PDAs,
PCs and servers) to communicate and collaborate seamlessly in a highly decen-
tralized fashion. The JXTA framework defines a naming scheme, advertisements,
peergroups, pipes, and a number of core policies, while the JXTA middleware
implements the specifications in Java and C++.

The JXTA-SOAP component is an official extension for the Java version
of JXTA middleware, enabling Web Service sharing in peer-to-peer networks.
JXTA-SOAP has been designed having in mind ubiquitous computing needs,
to reduce the complexity otherwise required to build and deploy peer-to-peer
service-oriented applications. In a previous work we described the internal archi-
tecture of JXTA-SOAP, with the purpose of conceptualizing its main features
at a high abstraction level [2]. In particular we focused on service deployment,
publication, lookup and invocation, considering also security aspects.

Fig. 2. Architectural layers of service-oriented peers based on JXTA-SOAP. The J2SE
version (on the left) is based on Axis and JXSE, while the J2ME version (on the right)
is based on kSoap2 and mAS.



260 M. Amoretti, M.C. Laghi, and G. Conte

The internal architecture of JXTA-SOAP based peers is illustrated in figure 2.
We implemented two (interoperable) versions of JXTA-SOAP: J2SE-based, ex-
tending JXTA-J2SE, and J2ME-based, extending JXTA-J2ME. In the following
we describe their features and the different technological solutions they rely on.

4.1 JXTA-SOAP for Java Standard Edition (J2SE)

The J2SE version of the JXTA-SOAP component supports service deployment,
discovery, and invocation, with optional use of standard mechanisms to secure
communications among peers. The core of the component is the Apache Axis
engine (v1.4), which is a producer/consumer of SOAP messages. Usually Axis
is deployed in a Web application server, such as Apache Tomcat, together with
the implementions of the Web Services to be deployed, while client applications
use the Axis Java API to create request instances. The Axis engine provides
the processing logic, either client or server. When running, it invokes a series
of Handlers according to a specific order which is determined by two factors -
deployment configuration, and whether the engine is a client or a server. The
object which is passed to each Handler invocation is a MessageContext, i.e. is a
structure which contains several important parts: 1) a ”request” message, 2) a
”response” message, and 3) a bag of properties.

At runtime, for a service provider its service objects are deployed in the Axis
engine, which implements the JAX-RPC API, one of the standard ways to pro-
gram Java services, also supporting the lifecycle of service endpoint instances.
After being loaded and instantiated, the JAX-RPC runtime system is required
to initialize the service instance before any requests can be serviced. A context
parameter is pssed to the initialization function, enabling the service instance
to access the context provided by the underlying JXTA-SOAP based runtime
system. The context parameter is typecasted to an appropriate Java type. For
services deployed in a JXTA-SOAP based runtime system, the Java type of the
context parameter is defined by the developer that is using the JXTA-SOAP
API, and passed to the service object. The latter instantiates the Service De-
scriptor, creates and publishes the public pipe and the service advertisement,
and notifies itself to the Axis engine. Services can be deployed anytime, without
the need to restart the peer.

Once a service instance has been initialized, the Axis engine may dispatch
multiple remote invocations to it. After that, when the Axis engine determines
that the service instance needs to be removed from service of handling remote
invocations, it destroys it. In the implementation of the destruction functionality,
the service object releases its resources.

For remote service invocation, a consumer peer needs to intantiate a Call ob-
ject. JXTA-SOAP’s Call class extends Axis’ default one, overloading the use of
service URLs with the use of the Service Descriptor and the public pipe advertise-
ment of the service. To create Call instances, the peer uses the implementation
of the Call Factory class provided by Axis.

We previously described the tasks which are performed when a Web Ser-
vice is deployed by a peer, and we mentioned that some parameters are put in



A Service-Oriented Framework Supporting Ubiquitous Disaster Response 261

the Service Descriptor for further use by the Axis engine. In particular, one of
these parameters is the Web Service Deployment Descriptor (WSDD). When
the WSDD is sent to the Axis engine running in the peer, an Invoker [31] is in-
formed that it supports the new Web Service. Thus, when an invocation reaches
the peer, the Invoker looks up the class which implements the service, and lets
the instance handle the request message. In details, the Invoker reads incom-
ing messages and demarshals the parameters inserted by the consumer peer’s
Requestor (absolute reference of the service, operation name, arguments, return
value) and dispatches the message to the targeted service.

4.2 JXTA-SOAP for Java Micro Edition (J2ME)

The J2ME version of JXTA-SOAP supports Connected Device Configuration
(CDC) and Personal Profile. We implemented the API which enables the de-
velopment of peers that are able to deploy, provide, discover and consume Web
Services in a JXTA-SOAP network. Since Axis is not available for the CDC
platform, we adopted kSoap2 [19] as SOAP parser (for consumer functionalities)
and, for service provision, we integrated the mAS [20] lightweight engine.

Service invocation is allowed by a kSoap2 based implementation of the Call
Factory class. The latter instantiates a kSoap2’s Soap Object, and sets all the
properties for message exchanging through JXTA pipes. Soap Object is a highly
generic class which allows to build SOAP calls, by setting up a SOAP envelope.
We have maintained the same structure of J2SE-based version for Call Factory, to
allow portability of service consumer applications from desktop PCs or laptops to
PDAs. Internally, the Call Factory class creates a Soap Object passing references
to the Service Descriptor, the public pipe advertisement of the service and the
peergroup as parameters for the creation of the Call object.

The Call Factory class also allows to create an instance of kSoap Pipe Trans-
port, the class we implemented to manage the transmission of SOAP messages
using service pipes. The kSoap2 API provides a Transport class that encap-
sulates the serialization and deserialization of SOAP messages, but does not
manage communication with the service; the HTTP Transport subclass, both in
CDC and CLDC version, allows service invocation over HTTP, setting up the re-
quired properties, but it uses URLs as absolute references of remote services, and
it is not suitable for usage in JXTA-SOAP, where services (as every resource)
are identified by JXTA-IDs and must be invoked through JXTA pipes. Thus,
we extended the Transport class with the implementation of a call functionality
that configures a JXTA pipe and creates the messages to be sent over it.

After instantiating the transport using the Call Factory class, the consumer
peer creates the request object, indicating the name of the remote method to
invoke and setting the input parameters as additional properties. This object is
assigned to a Soap Serialization Envelope, as the outbound message for the soap
call; Soap Serialization Envelope is a kSoap2 class that extends the basic Soap
Envelope, providing support for the SOAP Serialization format specification and
simple object serialization. The same class provides a getResponse method that
extracts the parsed response from the wrapper object and returns it.



262 M. Amoretti, M.C. Laghi, and G. Conte

Referring to service provision, we integrated the Server class of the Micro
Application Server (mAS) into the basic service class of the JXTA-SOAP API.

mAS implements the Chain of Responsibility pattern [12], the same used in
Axis. It avoids coupling the sender of a request to its receiver by giving more
than one object a chance to handle the request; receiving objects are chained
and and the request passed along the chain until an object handles it. Moreover,
mAS allows service invocation by users and service deployment by administrator;
it also supplies browser management of requests, distinguishing if the HTTP
message contains a Web page request or a SOAP envelope.

5 Example DR Application

Using JXTA-SOAP mobile, we developed a GUI-based application that allows
to join a JXTA-based P2P network to share services for supporting disaster
response activities. The application has several overlapping panels (or tabs),
each one being related to a specific function. In the following we describe them,
with the help of the screenshots that have been grouped in figure 3.

The Local panel (top left screenshot in figure 3) shows locally deployed ser-
vices. A table lists all services and a Share Service button allows to publish their
advertisements. The back-end system can invoke these services without inter-
rupting the activity of the rescue operator. For example, there could be a service
which provides the location of the rescue operator. Another (less obvious) service

Fig. 3. Local services panel (top left). Remote service selection panel (top right). Oper-
ation management panel (bottom left). A photo of the disaster location is taken, and a
short description written, both ready to be sent to the beck-end upon request, or proac-
tively by the rescue operator. Task panel (bottom right), where the rescue operator can
see its tasks (decided by the back-end) and flag them as executed, when they are.



A Service-Oriented Framework Supporting Ubiquitous Disaster Response 263

provides the photos of the disaster location that have been taken from the op-
erator, without interrupting his activity. Other services could require the rescue
operator to provide information to the service requestor (the back-end system,
but also other operators).

The Remote panel shows discovered remote services. It is possible to search
for services in the P2P network (offered by other rescue operators), and to select
one of them from the resulting list, in order to see all the operations it offers,
which are shown in the Operation tab. The user puts a description of the desired
service in the search field, and all the matching services are listed in the table.
Some services from the back-end are assumed to be always available, such as
getPhotoFromSatellite.

The Operation management panel shows all the functionalities provided by
the selected service; the operator can choose a particular operation and fill the
input parameters table in the invocation panel.

The Invocation panel is where the user introduces the required parameters for
service invocation. If the service returns a result, the user can select where to save
it, for example in a file stored locally. Finally, the Task tab is the one in which
the rescue operator can see its task list, provided by the back-end depending on
the equipment of the operator.

6 Conclusions and Future Work

In this paper we proposed JXTA-SOAP as a powerful solution for building
service-oriented, peer-to-peer ubiquitous applications to support disaster re-
sponse activities. The JXTA-SOAP component enables Web Service deployment,
distributed publication and discovery, and SOAP message transport over the
JXTA peer-to-peer overlay network. All kinds of devices, also constrained ones,
can be used, because JXTA-SOAP comes in two interoperable versions: J2SE-
based and J2ME-based.

Future work on JXTA-SOAP will mainly focus on implementing the Web
Service Resource Framework [34], in order to provide peers the ability to access
and manipulate state, i.e. data values that persist across, and evolve as a re-
sult of, Web Service interactions. This is particularly important for services like
Disaster Location Monitoring, which requires to collect contextual data but also
historical information from services dispersed over the network.

References

1. MIT Computer Science and Artificial Intelligence Laboratory, AIRE Group,
http://aire.csail.mit.edu/index.shtml

2. Amoretti, M., Bisi, M., Zanichelli, F., Conte, G.: Enabling Peer-to-Peer Web
Service Architectures with JXTA-SOAP. In: IADIS International Conference
e-Society 2008, Algarve, Portugal (April 2008)

http://aire.csail.mit.edu/index.shtml


264 M. Amoretti, M.C. Laghi, and G. Conte

3. Avatangelou, E., Dommarco, R.F., Klein, M., Muller, S., Nielsen, C.F., Soriano,
M.P.S., Schmidt, A., Tazari, M.-R., Vichert, R.: Conjoint PERSONA-SOPRANO
Workshop. In: Proc. of the first European Conference on Ambient Intelligence
(AmI 2007), Darmstadt, Germany (November 2007)

4. Berger, S., McFaddin, S., Narayaswami, C., Raghunath, M.: Web Services on
Mobile Devices - Implementation and Experience. In: Proc. of the Fifth IEEE
Workshop on Mobile Computing Systems & Applications, Monterey, CA, USA
(October 2003)

5. Bodhuin, T., Canfora, G., Preziosi, R., Tortorella, M.: Open Challenges in Ubiqui-
tous and Net-Centric Computing Middleware. In: 13th IEEE International Work-
shop on Software Technology and Engineering Practice (September 2005)

6. Commission of the European Communities. Communication on Reinforcing the
Union’s Disaster Response Capacity. Brussels (March 2008)

7. Edwards, S.: User Driven and Seamless Mobility Services for Disabled and Older
People: the ASK-IT Project. In: Proc. of the 5th Annual Moving On Conference,
Glasgow (March 2006)

8. Gaber, J.: Spontaneous Emergence Model for Pervasive Environments. In: IEEE
Globecom Workshop 2007, Washington DC (November 2007)

9. Gallup Organization. General public survey on the European Galileo Programme
(June 2007)

10. Granville, L.Z., Panisson, A.: GigaMAN P2P project,
http://gigamanp2p.inf.ufrgs.br

11. Commission of the European Communities. Communication on Global Monitoring
for Environment and Security (GMES): Establishing a GMES capacity by 2008,
Brussels (2004)

12. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns. Addison-
Wesley, Reading (1995)

13. Haddow, G.D., Bullock, J.A.: Introduction to Emergency Management.
Butterworth-Heinemann, Amsterdam (2004)

14. Harrison, A., Taylor, I.: WSPeer - An Interface to Web Service Hosting and In-
vocation. In: Proc. of the 19th IEEE International Parallel and Distributed Pro-
cessing Symposium (IPDPS 2005), Denver, Colorado, USA (May 2005)

15. IST Advisory Group, Scenarios for Ambient Intelligence in 2010, European Com-
mission (2001)

16. Distributed Systems Group and Sun MicroSystems, JXTA-SOAP project,
https://soap.dev.java.net

17. Sun MicroSystems, JSR 172: J2ME Web Services Specification,
http://jcp.org/en/jsr/detail?id=172

18. Krishna, A., Schmidt, D.C., Stal, M.: Context Object: A Design Pattern for Effi-
cient Middleware Request Processing. In: Proc. of the 12th Pattern Language of
Programming Conference, Allerton Park, Illinois (September 2005)

19. Haustein, S., Seigel, J.: kSoap2 project, http://ksoap2.sourceforge.net
20. Plebani, P.: mAS project, https://sourceforge.net/projects/masproject
21. OSGiAlliance, OSGi: the Dynamic Module System for Java, http://www.osgi.org
22. Peters, S., Shrobe, H.: Using Semantic Networks for Knowledge Representation in

an Intelligent Environment. In: Proc. of 1st Annual IEEE International Confer-
ence on Pervasive Computing and Communications (PerCom 2003), Ft. Worth,
TX, USA (March 2003)

http://gigamanp2p.inf.ufrgs.br
https://soap.dev.java.net
http://jcp.org/en/jsr/detail?id=172
http://ksoap2.sourceforge.net
https://sourceforge.net/projects/masproject
http://www.osgi.org


A Service-Oriented Framework Supporting Ubiquitous Disaster Response 265

23. Pyarali, I., Spivak, M., Cytron, R., Schmidt, D.C.: Evaluating and Optimizing
Thread Pool Strategies for Real-Time CORBA. In: Proc. of the ACM SIGPLAN
Workshop on Optimization of Middleware and Distributed Systems (OM 2001),
Snowbird, Utah, USA (June 2001)

24. Ramos, C., Augusto, J.C., Shapiro, D.: Ambient Intelligence - the Next Step for
Artificial Intelligence. IEEE Intelligent Systems 23(2) (March/April 2008)

25. Costa, P., Coulson, G., Mascolo, C., Motolla, L., Picco, G.P., Zachariadis, S.: A
Reconfigurable Component-Based Middleware for Networked Embedded Systems.
International Journal of Wireless Information Networks (2006)

26. Srirama, S.N., Jarke, M., Prinz, W.: A Mediation Framework for Mobile Web Ser-
vice Provisioning. In: Proc. of the 10th IEEE International Enterprise Distributed
Object Computing Conference Workshops (EDOCW 2006), Hong Kong, China
(October 2006)

27. Srirama, S.N., Jarke, M., Prinz, W.: MWSMF: a Mediation Framework Realizing
Scalable Mobile Web Service. In: Proc. of Mobilware 2008, Innsbruck, Austria
(February 2008)

28. Traversat, B., Arora, A., Abdelaziz, M., Duigou, M., Haywood, C., Hugly, J.-C.,
Poyoul, E., Yeager, B.: Project JXTA 2.0 Super-Peer Virtual Network, Technical
Report, Sun Microsystems (2003)

29. Vallee, M., Ramparany, F., Vercouter, L.: A multi-agent system for dynamic
service composition in ambient intelligence environments. In: Gellersen, H.-W.,
Want, R., Schmidt, A. (eds.) PERVASIVE 2005. LNCS, vol. 3468. Springer, Hei-
delberg (2005)

30. van Engelen, R.A., Gallivan, K.: The gSOAP Toolkit for Web Services and Peer-
To-Peer Computing Networks. In: Proc. of the 2nd IEEE International Sympo-
sium on Cluster Computing and the Grid (CCGrid 2002), Berlin, Germany, pp.
128–135 (May 2002)

31. Volter, M., Kircher, M., Zdun, U.: Remoting Patterns. Wiley, Chichester (2005)
32. Sun MicroSystems, J2ME Web Services APIs (WSA),

http://java.sun.com/products/wsa/
33. Banaei-Kashani, F., Chen, C., Shahabi, C.: WSPDS Web Services Peer-to-peer

Discovery Service. In: The 2004 International Symposium on Web Services and
Applications, Las Vegas, Nevada, USA (June 2004)

34. OASIS, Web Services Resource Framework (WSRF) v1.2 (April 2006)
35. Catarci, T., de Leoni, M., Marrella, A., Mecella, M., Salvatore, B., Vetere, G., Dust-

dar, S., Juszczyk, L., Manzoor, A., Truong, H.L.: Pervasive Software Environments
for Supporting Disaster Response. In: IEEE Internet Computing 2008 (2008)

36. Mecella, M., Catarci, T., Angelaccio, M., Buttarazzi, B., Krek, A., Dustdar, S.,
Vetere, G.: WORKPAD:an Adaptative Peer-to-Peer Software Infrastructure for
Supporting Collaborative work of Human Operators in Emergency/Disaster Sce-
narios (2006)

37. Hauenstein, L., Gao, T., Sze, T.W., Crawford, D., Alm, A., White, D.: A Cross-
Functional Service-Oriented Architecture to Support Real-Time Information Ex-
change in Emergency Medical Response (2006)

38. Li, L., Tang, S.: An artificial Emergency-Logistics-Planning System for Severe
Disasters. IEEE Intelligent Systems (July/August 2008)

39. Dugdale, J., Bellamine-Ben Saoud, N., Pavard, B., Pallamin, N.: Simulation and
Emergency Management (2008)

40. Bellamine-Ben Saoud, N., Ben Mena, T., Dugdale, J., Pavard, B., Ben Ahmed,
M.: Assessing large scaleemergency rescue plans: an agent-based approach. Special
Issue on Emergency Management Systems. International Journal of Intelligent
Control and Systems 11(4) (December 2006)

http://java.sun.com/products/wsa/

	A Service-Oriented Framework Supporting Ubiquitous Disaster Response
	Introduction
	Proposed Technological Framework
	Related Work
	State-of-Art DR Projects
	Ubiquitous Peer-to-Peer Sharing of Services
	Web Services on Resource-Constrained Devices

	The JXTA-SOAP Component
	JXTA-SOAP for Java Standard Edition (J2SE)
	JXTA-SOAP for Java Micro Edition (J2ME)

	Example DR Application
	Conclusions and Future Work



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (Photoshop 4 Default CMYK)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




