
A Quality of Context-Aware Approach to
Access Control in Pervasive Environments

Alessandra Toninelli, Antonio Corradi, and Rebecca Montanari

DEIS – Università di Bologna, Viale Risorgimento 2, 40136 Bologna, Italy
{alessandra.toninelli,antonio.corradi,rebecca.montanari}@unibo.it

Abstract. The widespread diffusion of wireless-enabled portable de-
vices creates novel opportunities for users to share resources anywhere
and anytime, but makes access control a crucial issue. User/device mo-
bility and heterogeneity, together with network topology and conditions
variability, complicate access control and call for novel solutions to dy-
namically adapt access decisions to the different operating conditions.
Several research efforts have emerged in recent years that propose to ex-
ploit context-awareness to control access to resources based on context
visibility and changes. Context-based access control requires, however,
to take into account the quality of context information used to drive
access decisions (QoC). Quality of context has in fact a profound im-
pact on the correct behavior of any context-aware access control frame-
work. Using context information with insufficient quality might increase
the risk of incorrect access control decisions, thus leading to danger-
ous security breaches in resource sharing. In this paper we propose a
QoC-aware approach to access control for anywhere, anytime resource
sharing. The paper describes the design, implementation and evaluation
of the Proteus policy framework, which combines two design guidelines
to enable dynamic adaptation of policies depending on context changes:
context-awareness with QoC guarantees and semantic technologies to al-
low high-level description of context/policy specification and reasoning
about context/policies.

1 Introduction

Technological advances in telecommunications and mobile device capabilities
are paving the way towards an integrated pervasive scenario where users access
services anywhere and anytime, even when they are on the move, and engage
in opportunistic and temporary resource sharing with other users in absence
of a fixed network infrastructure. In the new pervasive scenarios, characterized
by high heterogeneity and dynamicity in terms of available services, computing
devices/mobile users properties and executing environments, controlling access
to shared resources becomes a crucial problem.

Traditional systems rely on a relatively static characterization of the operating
conditions where changes in the set of users, devices and accessible resources are
relatively small, rare, or predictable. By contrast, user/device mobility causes

C. Giannelli (Ed.): Mobilware, LNICST 0007, pp. 236–251, 2009.
c© Institute for Computer Science, Social Informatics and Telecommunications Engineering 2009

A Quality of Context-Aware Approach to Access Control 237

frequent changes in physical user location, in accessible resources, and in the
visibility and availability of collaborating partners. Access conditions defined at
design time to control resource management and sharing can be unpredictably
different from those holding at execution time, when entities actually attempt
access to resources. To address this issue, some research efforts have emerged in
recent years that propose context-aware access control policy models to control
access to resources based on context visibility and changes [1]. The term context
can be broadly defined as any information that is useful to characterize the state
or activity of an entity or the world in which this entity operates [2]. Differently
from traditional solutions where context is an optional attribute used to restrict
the applicability scope of security policies, context-aware solutions adopt context
as the main design principle for policy specification and enforcement. Context-
aware access control policies exploit not only identity/role information, but also
other contextual information, such as location, time and ongoing activities, to
allow access to resources, thus adapting to dynamically changing conditions. The
exploitation of context as a first-class principle to regulate access control brings
several advantages. First, it is an example of active security model, i.e. it is
aware of the context associated with an ongoing activity and thus distinguishes
the passive concept of permission assignment from the active concept of context-
based permission activation. Moreover, similarly to the concept of role in role-
based access control (RBAC) models, which serves as a mechanism for grouping
subjects based on their properties [3], the concept of context provides a grouping
mechanism for policies that simplifies policy management by increasing policy
reuse and making policy update and revocation easier.

Existing context-aware access control models, however, typically rely on the
implicit assumption that context information used to take security decisions
is correct and trustworthy. This hypothesis is clearly not compatible with real
operating conditions in pervasive scenarios, where context data are acquired
by heterogeneous (and possibly not trustworthy) sensors via variable network
connections, represented according to different models, and aggregated through
various procedures that might introduce additional biases. Controlling access
based on context thus requires a careful analysis about the quality of context
information (QoC) used to take access decisions.

We claim that QoC has a tremendous impact on the behavior of a context-
aware access control system. Depending on the quality of used context data,
granting access to a resource might be associated to a variable risk level: the
less reliable context information is (i.e. the lower its quality), the higher risk is
associated to any access action allowed based on that context information. Using
context information with insufficient quality might therefore increase the risk of
incorrect access control decisions, thus leading to dangerous security breaches in
resource sharing.

The importance of considering QoC in designing and managing context-aware
systems has recently started to be recognized [4, 5]. We believe, however, that
QoC impact on context-aware access control models has been underestimated so
far, mainly considered a low level issue dealing with raw data, sensor equipment,

238 A. Toninelli, A. Corradi, and R. Montanari

and system performance. As such, QoC management is typically delegated to
context provisioning platforms, while higher level applications are context-aware,
but largely QoC-unaware. In particular, to the best of our knowledge, none of
existing access control solutions addresses the issue of considering QoC when
assigning permissions based on context.

In this paper we present a novel QoC-aware access control framework for shar-
ing resources in pervasive environments. In our framework QoC is exploited as a
filtering principle to both (i) discard context data whose quality does not com-
ply with minimum QoC requirements and (ii) select applicable policies based
not only on current context, but also on the extent to which that context can be
considered true. This helps minimizing the risk of granting access to resources
based on incorrect or ambiguous context information, while reducing policy eval-
uation/enforcement overhead by filtering out contexts and policies that are un-
applicable due to their inadequate QoC. We have implemented this approach
in the Proteus middleware architecture, which exploits QoC-awareness and se-
mantic technologies for the specification and the evaluation of access control
policies.

The paper is organized as follows. The Proteus QoC-aware policy model is
presented in Section 2, while Section 3 details policy management with QoC-
based filtering. Section 4 describes the Proteus middleware architecture and its
prototype implementation, which is evaluated in Section 5 by providing some
experimental results. Conclusions and future work follow.

2 Proteus QoC-Aware Policy Model

Proteus is a semantic context-aware access control model that is centered around
the concept of context. Similarly to roles in traditional role-based access con-
trol models, contexts can act as intermediaries between entities and the set of
operations that they can perform on resources. For each context, policies define
allowed operations on resources. In particular, policies can be viewed as one-to-
one associations between contexts and allowed actions. Entities requesting access
to resources operate in one or more active context, i.e. contexts whose defining
conditions match the operating conditions of the requesting entity and of the
environment as measured by specific sensors embedded in the system. We define
policy protection contexts those active contexts that have specified permissions
associated with. Entities can perform on resources only those actions associated
with the protection contexts currently in effect [1].

When activating a set of permissions, Proteus takes into account the qual-
ity of information making the policy protection context active. In particular,
we exploit quality of context information to filter the set of potentially active
contexts: if data describing the current state (as measured by sensors) do not
satisfy certain quality requirements, such as freshness or accuracy, they are not
considered eligible for activating protection contexts (and associated policies).
This approach brings two advantages. First, it minimizes the risk of granting
access to resources based on incorrect or ambiguous context information. In

A Quality of Context-Aware Approach to Access Control 239

addition, it helps reducing policy evaluation/enforcement overhead by a-priori
filtering out policies whose protection contexts cannot be activated because of
their insufficient QoC level.

2.1 Context and Policy Model

A protection context in Proteus consists of all characterizing information that
is considered relevant for access control, logically organized in parts describing
the state of the resource associated with the protection context, such as avail-
ability or load (the resource part), the entities operating on the resource (the
policy/resource owner and the requestor), such as their roles, identities or secu-
rity credentials (the actor part), and the surrounding environment conditions,
such as time, or other available resources (the environment part). A protection
context is a set of attributes and predetermined values (called hereinafter con-
text elements), labeled in some meaningful way and associated with desirable
semantics [6]. Instead of a single value, an attribute could also define constraints
for a range of allowed values. Let us note that an attribute value can be assigned
to a fixed constant or can be a variable over a value domain.

The current state of the surrounding world is also represented in terms of
attribute/value pairs (called context assertions), where the attribute values rep-
resent the output of sensors- with the term sensor used loosely. For a protection
context to be in effect (active), the attribute values that define the current state
of the world have to match the definition of the context. More details on Proteus
context model can be found at [1].

A policy is represented as the association of a protection context and an ac-
cess action. Table 1 shows an example of protection context and policy related
to a pervasive healthcare scenario. The policy states that, in case of health emer-
gency, Alice’s health protected information (HPI) is accessible by any physician,
provided that (s)he is located in the healthcare center and owns a valid credential
(e.g., an official certificate).

Table 1. (a) Proteus protection context definition example and (b) Proteus QoC-aware
policy example

(a)
PersonalEmergencyContext ≡
ProtectionContext � ∃ owner.Alice � ∃ requestor.InHospitalQualifiedPhysician �
∃ resource.AliceHPI � ∃ environment.PersonalEmergency

InHospitalQualifiedPhysician ≡
Physician � ∃ has credential.ValidQualification � ∃ located.HealthcareCenter
(b)
HPI Access Policy ≡ AccessControlPolicy � ∃ controls.ReadAction �
∃ context.PersonalEmergencyContext � ∃ policy qoc.Policy QoC

Policy QoC ≡ QualityOfContext � ∃ has value.QoC over0.85

240 A. Toninelli, A. Corradi, and R. Montanari

2.2 Quality of Context Model

Proteus model handles QoC at two distinct levels: (i) context elements and (ii)
policies.

Proteus associates each context element with a quality attribute. In general,
it is possible to define several attributes to evaluate the quality of context infor-
mation, depending on both context sources and context collection/aggregation
mechanisms [4]. In our model we define a base quality attribute, called Quality
of Context (QoC), which is specialized in several different attributes including
freshness, precision, correctness, trustworthiness, relevance and resolution, as
shown in Figure 1. Each quality attribute is also associated to a numeric value.

Similarly to context, the required quality of a context element is represented
as a set of attributes and constrained (range of) values. For instance, a QoC
constraint might require that any assertion about location must be up to date
to be considered as part of the current state (e.g., its normalized threshold value
for freshness is 0.8, as shown in Table 2). It is also possible to express QoC
constraints on specific context element values (e.g., the assertion “Dr. Green
is located in the Emergency Room” must have a QoC value higher than 0.6”)
or to any context element that is asserted in the current state knowledge base
(e.g., any context assertion must have the freshness value: very high”). Any
context assertion composing the current state is provided with a certain QoC
level, represented in terms of attribute/value pairs. For instance, the context
assertion “Dr Green is located in the Emergency Room” might be provided with
a QoC value of 0.7.

In addition, each access control policy is associated with a QoC threshold
value (see Table 1). This value represents the minimum quality level that any

Fig. 1. Quality of Context Ontology

A Quality of Context-Aware Approach to Access Control 241

state of the world activating the policy protection context must exhibit. In other
words, only if the current state has an overall QoC value exceeding the threshold,
the protection context and the associated policy will be considered active. Let us
note that this differs from QoC constraints expressed on single context elements,
which are not bound to any specific policy.

2.3 Context and QoC Representation

We adopt description logics (DL) and associated inferencing to model and
process protection context data. A protection context is defined as a subclass of
a generic context and consists of the resource, the actor and the environment
context elements. Each context element is characterized by an identity property,
and a location property defining the physical or logical position of an entity. Sin-
gle context elements are characterized by specific additional properties. Figure 2
depicts Proteus base context ontology.

To model QoC, we exploit the support for reification provided by RDF (and
inherited by OWL)1. Each context assertion can be thought as a triple connecting
a subject, a predicate and an object. For example, the assertion “Dr Green is
located in the E.R.” can be modeled as the following triple:

(Dr. Green, located, E.R.)

where the subject is Dr. Green, the object is E.R. and the predicate is located.
Such triple can be considered itself as a piece of information by means of

the RDF statement (rdf:Statement) abstraction. An RDF statement is the
statement made by a token of an RDF triple: the subject of an RDF statement
is the subject of the triple; the predicate is the predicate of the triple; the object
is the object of the triple.

We rely on this modeling structure and extend the rdf:Statement class with
a Context Assertion class, which inherits the rdf:subject, rdf:predicate
and rdf:object properties. To represent QoC information associated to each
context assertion, we add a quality property connecting each assertion to a
Quality Of Context class. This class is connected via property to several sub-
classes of the QoC attribute class representing different QoC attributes, as
shown in Figure 1. QoC constraints on context elements are represented as classes
whose restrictions define the required quality. Table 2 shows an example of a QoC
constraint defining a minimum threshold value for any context assertion about
the located property.

To calculate active protection contexts based on current state, we rely on DL-
based reasoning [6]. For instance, by considering protection contexts (i.e., sets of
context elements) as classes and a subset of the current state of the world (i.e.,
context assertions) as individuals, DL-based reasoning calculates the protection
contexts that are in effect by verifying which protection context classes the cur-
rent state is an instance of, and by figuring out how defined protection contexts
relate to each other (nesting, etc.). We also exploit DL-based reasoning to verify

1 http://www.w3.org/TR/rdf-schema

242 A. Toninelli, A. Corradi, and R. Montanari

Fig. 2. Proteus Context Ontology

Table 2. (a) Proteus QoC constraint over a context element and (b) Context assertion
with QoC value

(a)
QoC over0.8 ≡ QualityOfContext � ∃ has value.{Over0.8}
QoC constraint ≡ ContextAssertion � ∃ quality.QoC over0.8 � ∃ rdf:property.{located}
(b)
< Ctx assertion 11, Dr.Green >: rdf:subject
< Ctx assertion 11, EmergencyRoom >: rdf:object
< Ctx assertion 11, located >: rdf:predicate
< Ctx assertion 11, QoC value 11 >: quality
< QoC value 11, 0.7 >: has value

QoC constraints associated to both context element and policy definition. This
is a consequence of our modeling choice, which provides a uniform ontological
representation for both context and QoC data. Let us note that, in case QoC
constraints are expressed as numerical values, the comparison between required
(range of) values and actual QoC attribute values is performed via programming
procedures (since it is not supported by DL reasoners).

3 Policy Management in Proteus

To allow access to resources based on both context and its quality, Proteus ap-
plies a two-step QoC-filtering process. Recalling the model described in
Section 2.2, Proteus allows to define QoC constraints both on context elements
and policies. Each type of constraint is exploited during a specific phase of the
filtering process.

A Quality of Context-Aware Approach to Access Control 243

The QoC-based filtering process is composed of the following two steps:

1. Context assertions pre-filtering. Context assertions about the current state
are provided with certain QoC values. Prior to evaluating a request access,
Proteus retrieves all and only those context assertions that satisfy defined
QoC constraints. The output of this filtering phase is a set of context as-
sertions whose QoC values is compliant with imposed quality requirements,
regardless of any specific policy.

2. Protection contexts filtering to activate policies. Proteus activates policies
based on current state information. Each policy has a specific QoC thresh-
old representing the minimum QoC value that any current state must satisfy
to activate the policy protection context. Among all potentially active poli-
cies (because context assertions, as filtered at step 1, are instances of their
protection context), Proteus selects only those policies, whose QoC threshold
is reached by the QoC value of the current state. The output of this second
step (and of the whole QoC-based filtering process) is a set of active policies
compliant with both context element and policy-specific QoC constraints.

3.1 Policy, Context and QoC Specification

The application manager or the security manager can configure QoC constraints
for context elements at application deployment time, e.g., by setting values for
certain QoC attributes, such as freshness or accuracy, that apply to all context
elements. It is also possible to set values for context element QoC constraints
based on the specific application domain. For instance, if access control policies
are mainly based on location conditions, then the security manager can define
QoC constraints on any context element describing location information. Table 2
shows an example of context element QoC constraint definition.

The policy manager/security administrator defines Proteus policies by cre-
ating ontological associations between actions and policy activating contexts.
Table 1b shows a policy controlling access to a patient’s HPI. The policy man-
ager also sets the QoC threshold for the defined policy. Such threshold value
typically depends on the sensitivity of the access resource and on the kind of
access action as well. For example, a read access on the HPI might be less critical
than a write access. OWL-based reasoning over contexts and policies is used to
infer new contexts and policies from existing ones, thus allowing policy reuse
and simplifying policy evaluation [1].

Let us note that context elements QoC constraints serve as a coarse-grained
filter since they apply to all context elements (and consequently to all installed
policies), while policy QoC provide a fine-grained filtering mechanism to ensure
that each policy is enforced under certain QoC conditions.

3.2 QoC-Based Policy Evaluation

In this section we describe in detail how Proteus evaluates access control policies
by applying the two-step QoC-based filtering process.

244 A. Toninelli, A. Corradi, and R. Montanari

Context Assertions Pre-Filtering. Each context element might be associ-
ated to one or more QoC constraints. These constraints are expressed as OWL
restrictions on any RDF statement containing a specific subject, property or
object, or any combination of these elements (see, for example, Table 2). On the
other side, any context assertion (i.e., a triple composed of a subject, a predi-
cate and an object describing the current state) is provided with a QoC value.
Prior to performing policy reasoning, Proteus filters out information describing
the current state by selecting only those context assertions whose QoC value
satisfies any defined QoC constraint on context elements. The output of this
pre-filtering process is a base of context assertions whose quality is compliant
with QoC requirements.

Let us note that QoC values might be obtained according to different ap-
proaches and mechanisms, from sensor training to utility functions [7]. Being
the aim of our present work the design of an access control framework, we do
not focus on QoC determination low level mechanisms by relying on existing
work on this topic.

Protection Contexts Filtering to Activate Policies. The second filtering
step is specific to each policy. Once pre-filtered current state information, Pro-
teus performs DL-based (subsumption) reasoning to determine which protection
contexts and associated policies could be activated by the current state. For each
protection context, Proteus needs to compare the policy QoC threshold value
with the QoC value of the (subset of) the current state activating the protection
context. The latter is calculated from the single QoC values of context assertions
by means of a weighted sum. Weights assigned to the different context elements
can be defined by the policy manager at policy definition time. In case weights
have not been defined, Proteus assigns the same weight to each context assertion.

4 Proteus Middleware Architecture

The Proteus QoC-aware policy framework includes a middleware architecture
that supports policy specification, semantic evaluation and enforcement based
on current context and QoC conditions. Figure 3 shows the main components
of Proteus architecture, namely: the Policy Installation Manager, the Reasoning
Core, the Policy Enforcement Manager and the Context Manager. Hereinafter
we particularly focus on the Context Manager that is mostly responsible for QoC
management in Proteus.

The Policy Installation Manager (PIM) is responsible for the setup, con-
figuration and management of the Proteus systems. In particular, PIM provides
support to load context and policy ontologies, to install application-specific ac-
cess control policies, and to define policy QoC constraints.

The Reasoning Core (RC) performs reasoning over context and policies to
determine currently active policies, according to the QoC-aware policy model
described in Section 3. In particular, by exploiting DL-based reasoning, RC
determines which protection contexts and policies are active given the current
state and its QoC.

A Quality of Context-Aware Approach to Access Control 245

Fig. 3. Proteus Middleware Architecture

The Policy Enforcement Manager (PEM) is in charge of enforcing access
control policies on protected resources. When a tentative access is performed on
a resource controlled by Proteus, such as a file or a remote connection, PEM
intercepts it, collects relevant information about the action and interacts with
RC to verify whether access should be permitted or prohibited.

The Context Manager (CM) collects and manages current state and QoC
information from available context sources, and provide them to the Reasoning
Core. As shown in Figure 3, CM is designed as a layered component. More in detail:

– The Context Source Layer is in charge of interacting with context providers
to acquire context data and their associated QoC. Context providers reg-
ister to CM via the Context Source Layer, which implements provider-
specific modules (called Context Sources) to translate context data from the
provider’s format to CM internal representation. Translation also includes
the normalization of different quality parameter values (e.g., freshness and
resolution).

– The Context Processing Layer acquires, stores, filters and reasons over con-
text assertions by implementing QoC-based filtering, as detailed in the next
section.

– The Context Service Layer is the mediator between CM and Proteus Rea-
soning Core. This layer implements a module (a Context Service) for each
application that needs to be provided with context information according
to defined QoC constraints. The Service Layer allows two different modali-
ties for context/QoC provisioning, namely: (i) the context level agreement
(CLA)-based approach establishes QoC requirements that apply to all con-
text assertions provided by CM to RC; (ii) the query-based approach specifies
associates QoC constraints to each context query from RC to CM.

4.1 Implementation Details

We have developed a Java prototype implementation of the Proteus middle-
ware architecture. Our deployment setting is a wireless Internet scenario, i.e., a

246 A. Toninelli, A. Corradi, and R. Montanari

computing environment where wireless solutions extend the accessibility of the
fixed Internet infrastructure via access points, working as bridges between fixed
and mobile devices.

For the sake of brevity, we only provide implementation insights about the
Context Manager, which is the middleware component that is actually in charge
of managing QoC in Proteus. Additional details and experimental results about
the prototype can be found at http://lia.deis.unibo.it/research/Proteus.

Both the Context Source and Service layers are designed as modular com-
ponents, thus allowing CM to interact with multiple context providers and
consumers via specific modules. At present we have implemented the Proteus
Context Service module, which interacts with Proteus RC and PIM, and the
Contory Context Source module, which interacts with the context provisioning
and management framework Contory [8]. In the current implementation, we sup-
port context acquisition by means of a context server. Contory is queried via its
SQL-like declarative language.

The Context Processing Layer is composed of four main sub-components,
each one addressing a specific functionality, and a context repository storing all
available data about the current state.

Query. This unit allows Proteus to install and remove context queries, which
are executed by the Proteus Context Service to retrieve context assertions. In
particular, it supports three query modalities, namely: single query, time-based
query (executed at fixed intervals), event-based query. Queries are encoded in
SPARQL and the prototype includes a user-friendly query specification tool for
non-expert users.

Contract. This unit allows the Proteus Context Service to define a context
provisioning contract defining supported context queries and required QoC con-
straints. Proteus currently adopts a CLA approach, where QoC constraints are
defined at system start up and stored in a configuration file.

Collection. This is the most important unit since it is directly responsible
of managing QoC at the context element level. The Context Processing Layer
collects data from available context providers via the Context Source Layer,
manages their quality and keeps the current state repository up to date. Each
context assertion is provided with certain quality attributes values, which have
been normalized by the Contory Context Source module. For example, in Table 2,
the assertion “Dr.Green is located in the E.R.” is provided with freshness = 0.7.
The Collection unit exploits these single quality attribute values to determine a
global QoC value for each context assertion according to the following scoring
function:

QoCctx assertion =
n∑

i=0

wi ∗ QoC attri.

0 ≤ wi ≤ 1,
0 ≤ QoC attri ≤ 1

A Quality of Context-Aware Approach to Access Control 247

Weights wi represent the contribution of different quality attributes to the
global QoC value. Their value is set in a configuration file at system installation
time. QoC attribute values are provided by sensors, except for freshness, which
is calculated by Proteus using appropriate timestamps. Let us note that setting
a specific weight to zero means that the corresponding attribute will not be
considered when calculating QoC. Conversely, if a quality attribute value is not
provided by the context source, the Context Processing Layer sets it to a pre-
determined value. If the QoC values of a context assertion do not satisfy CLA
requirements, that assertion is not stored in the repository.

Reasoning. The Reasoning unit is in charge of managing the Repository by
allowing ontology installation and removal, and periodically executing a back-up
transfer (currently on file). Ontologies include both concepts describing context
(TBox) and context assertions (ABox): while the former generally remains con-
stant unless the application domain is changed, the latter is frequently updated
due to changes in the current state of the world. To increase efficiency, the Rea-
soning unit therefore performs periodical checks on the ABox repository, and
removes those context assertions whose QoC is not compliant with the required
level, for example because their freshness has decreased over time. It is worth
noting that such QoC-based check not only allows to reduce the repository size
for improved efficiency, but it also filters out context information that are not
reliable enough to support access control decisions. In addition, this unit per-
forms DL-based reasoning to answer context queries and to ensure that the
current state knowledge base is consistent. This is important whenever context
assertions are added and especially when they are removed (due to their decayed
QoC). The current prototype exploits the DL reasoner Pellet (version 1.5)2, with
support for incremental reasoning, accessed via OWL-API and SPARQL queries.

5 Evaluating QoC-Aware Access Control in a Pervasive
Scenario

The exploitation of a QoC-aware semantic middleware for access control intro-
duces different forms of overhead, depending on both the deployment environ-
ment and the performance of middleware facilities. The most critical aspects
for the performance and feasibility of our approach are (i) the introduction of
a QoC modeling and evaluation model, and (ii) the exploitation of semantic
technologies. In particular, the overhead due to these design choices should be
considered at two different levels: when acquiring and managing context infor-
mation (i.e., at the Context Manager level), and in policy management and
evaluation (i.e., at the Reasoning Core level). We hereinafter provide some eval-
uations about CM performance. Additional implementation insights and evalu-
ations, e.g., about context and policy reasoning in Proteus RC, are available at
http://lia.deis.unibo.it/research/Proteus.

2 http://clarkparsia.com/pellet

248 A. Toninelli, A. Corradi, and R. Montanari

To build a test setting for our evaluations, we considered a mobile healthcare
scenario, where access control policies are needed to regulate access to private
health information (PHI) of patients, such as their electronic medical record.
Example policy, protection context and QoC constraints are represented in Table
1 and 2 according to a concise DL format. For our case study, we developed an
application specific ontology, including concepts like Physician, Healthcare center
and PHI, to integrate with Proteus policy, context and QoC ontologies.

5.1 Performance Evaluation

Our tests were executed on a AMD Athlon 2800+ processor @2.08GHz, with
1024 MB RAM, running Windows XP SP2, Java SE 1.6.0 03 and Pellet 1.5.
We also performed tests in a distributed deployment setting. To avoid a biased
evaluation of QoC-related overhead due to variable network conditions, however,
we do not consider them in this evaluation.

Context Repository Management. Managing the context Repository re-
quires to add and remove context assertions provided by context sources, to
keep the current state KB up to date and QoC-compliant. We have measured
the time needed to add/remove a new context assertion in the Repository with
the repository dimension growing up. After each context assertion addition or re-
moval, the CM Reasoning unit performs a consistency check. Pellet 1.5 provides
support for incremental reasoning (IR), i.e., optimized reasoning when variations
in the knowledge base only involve assertions (ABox) and not ontology concepts
(TBox). Results show that Pellet incremental reasoning significantly increases
efficiency in case of context assertion addition: by enabling IR, addition times
tend to keep constant, around 10 ms, with repository size varying from 100 to
25k context assertions. As for removal times, IR does not bring any substantial
advantage: for example, with 1k context assertions in the repository, times keep
below 5.2 seconds, both with and without IR.

Query. Another critical evaluation regards the Reasoning unit response time to
context queries. We particularly focus on queries executed to periodically remove
context assertions based on their QoC. We measured the response time to four
different types of SPARQL query with increasing complexity: each query basi-
cally retrieves context assertions having one/two/three constraints on quality
parameters, while the trivial query has no constraints on QoC (thus returning
all context assertions in the repository). Below is shown the most complex query:

SELECT ?ca WHERE
{ ?ca context:hasQuality ?q.
?q context:hasCorrectness ?qp1.
?q context:hasPrecision ?qp2.
?q context:hasFreshness ?qp3.
FILTER (?qp1 > 0.5 && ?qp2 > 0.5 && ?qp3 > 0) }

A Quality of Context-Aware Approach to Access Control 249

Fig. 4. Average times to answer QoC-based filtering queries

In this test, the repository was initialized with a number of assertions hav-
ing the same predicate and different subjects, objects and QoC attribute values
(randomly determined). As shown in Figure 4, queries with QoC constraints are
answered within 10 ms, while response times for the query with no QoC con-
straints (not shown here) indicate a linear dependence with the repository size.
These results show that QoC-based context assertion filtering brings a significant
advantage also in terms of performance.

6 Related Work

Several research efforts have addressed the issue of ensuring security in mo-
bile/pervasive environments, particularly access control to shared resources.
Considering context as a design principle is a novel research direction with few
emerging proposals of context-based policy models, mainly in the field of ac-
cess control. Quality of context has also been the subject of recent research
efforts, which have investigated representation models, calculation techniques
and distributed architectures for applying QoC to context provisioning and
management/context-aware systems. To the best of our knowledge, however,
none of existing solutions considers the issue of modeling, evaluating and assess-
ing the security impact of QoC when used to regulate access to resources. In this
section we review some significant research efforts in the fields of context-based
security and QoC support for context management systems, respectively.

The security model presented in [9] extends role-based access control by cre-
ating a new type of role called environment role. Environmental roles, which
capture relevant conditions in the current situation, are used to restrict user
privileges in accessing resources. Acting as intermediaries between users and
permissions they are similar to Proteus protection contexts. The implicit assump-

250 A. Toninelli, A. Corradi, and R. Montanari

tion, however, is that environmental roles activation is always reliable and the
model does not deal with possibly incorrect or imprecise context information. In
addition, no integrated support for environmental role/policy representation at a
high level of abstraction and reasoning is provided. The context-sensitive access
control Cerberus framework implicitly deals with QoC by supporting authenti-
cation with a variable “confidence level”: different strengths of authentication
are associated with confidence values representing how confident the authenti-
cation system is about the identity of the principal [10]. Although the concept
of confidence is clearly related to QoC, mainly trustworthiness and correctness,
Cerberus does not provide any explicit modeling support for QoC and only deals
with quality for authentication mechanisms. Several other context-aware access
control solutions for distributed/pervasive environments have recently emerged,
such as [11] and [12], but they do not support QoC management not take QoC
security impact into account when controlling access to resources.

The term “quality of context” was firstly introduced in work by Buchholz,
which provided the original concept and a set of base QoC attributes [4]. Vari-
ous research works have defined since then QoC abstraction and representation
models, mostly referring to a similar set of quality attributes, such as the ones de-
scribed in [5]. Proteus support the representation of all significant attributes, but
also allows the application developer to personalize the set of needed attributes.
Some approaches provide ontology models to represent quality parameters, ei-
ther modeled with logic predicates [10], or with DL-based ontologies [13, 14].
With respect to these ontologies, the Proteus QoC ontology has the advantage
of being built on RDF reification model, thus simplifying representation and
reasoning since based on the very structure of adopted semantic languages.

As far as QoC values calculation is concerned, very few existing systems ac-
tually provide applicable methods to numerically determine quality attribute
values: [7], for example, represents a promising direction as it describes func-
tions to concretely calculate accuracy and correctness values.

7 Conclusions and Future Work

Context-aware access control solutions, which exploit context-awareness to con-
trol access to resources based on context visibility and changes, should take into
account the security impact deriving from the quality of context information
used to regulate access decisions. In this paper we presented Proteus, a QoC-
aware access control framework for sharing resources in pervasive environments.
Proteus exploits QoC and semantic technologies to discard context data with
insufficient quality, and to select applicable policies based not only on current
context, but also on its quality. This helps minimizing the risk of granting ac-
cess to resources based on incorrect or ambiguous context information, while
reducing the overhead due to policy management.

First evaluations on Proteus prototype middleware show encouraging results.
We are currently working on an optimized context data storage model to make

A Quality of Context-Aware Approach to Access Control 251

context assertion removal faster and more efficient. We are also testing perfor-
mances with the new support for incremental reasoning provided with the Pellet
2.0. Finally, we are planning to extend the current CM implementation with
additional context source modules to support interaction with different context
provisioning systems.

References

1. Toninelli, A., et al.: A semantic context-aware access control framework for secure
collaborations in pervasive computing environments. In: ISWC, pp. 473–486 (2006)

2. Dey, A.K.: Understanding and using context. Personal and Ubiquitous Comput-
ing 5(1), 4–7 (2001)

3. Sandhu, R.S., et al.: Role-based access control models. IEEE Computer 29(2), 38–
47 (1996)

4. Buchholz, T., Kupper, A., Schiffer, M.: Quality of context: What it is and why we
need it. In: HPOVUA 2003 (2003)

5. van Sinderen, M., et al.: Supporting context-aware mobile applications: an infras-
tructure approach. Communications Magazine 44(9), 96–104 (2006)

6. Lassila, O., Khushraj, D.: Contextualizing applications via semantic middleware.
In: MOBIQUITOUS 2005, pp. 183–191. IEEE Computer Society, Washington
(2005)

7. Kim, Y., Lee, K.: A quality measurement method of context information in ubiq-
uitous environments. In: ICHIT 2006, vol. 2, pp. 576–581 (November 2006)

8. Riva, O.: Contory: A middleware for the provisioning of context information on
smart phones. In: Middleware, pp. 219–239 (2006)

9. Covington, M.J., et al.: Securing context-aware applications using environment
roles. In: SACMAT 2001, pp. 10–20. ACM, New York (2001)

10. Al-Muhtadi, J., et al.: Cerberus: a context-aware security scheme for smart spaces.
In: PerCom 2003, pp. 489–496 (March 2003)

11. Dersingh, A., Liscano, R., Jost, A.: Utilizing semantic knowledge for access control
in pervasive and ubiquitous systems. In: WIMOB 2008, pp. 435–441 (October 2008)

12. Lachmund, S., et al.: Context-aware access control; making access control decisions
based on context information. In: Mobiquitous 2006, pp. 1–8 (July 2006)

13. Tang, S., Yang, J., Wu, Z.: A context quality model for ubiquitous applications.
In: IFIP NPC Workshops, pp. 282–287 (September 2007)

14. Bu, Y., et al.: Managing quality of context in pervasive computing. In: QSIC 2006,
pp. 193–200 (October 2006)

	A Quality of Context-Aware Approach to Access Control in Pervasive Environments
	Introduction
	Proteus QoC-Aware Policy Model
	Context and Policy Model
	Quality of Context Model
	Context and QoC Representation

	Policy Management in Proteus
	Policy, Context and QoC Specification
	QoC-Based Policy Evaluation

	Proteus Middleware Architecture
	Implementation Details

	Evaluating QoC-Aware Access Control in a Pervasive Scenario
	Performance Evaluation

	Related Work
	Conclusions and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

