
C. Giannelli (Ed.): Mobilware, LNICST 0007, pp. 197–207, 2009.
© Institute for Computer Science, Social Informatics and Telecommunications Engineering 2009

Extending an IMS Client with Peer-to-Peer Content
Delivery

J. Fiedler1, T. Magedanz2, and J. Müller1

1 Fraunhofer FOKUS, Kaiserin-Augusta-Allee 31, 10589 Berlin
{Jens.fiedler,Julius.Mueller}@fokus.fraunhofer.de
2 Technische Universität Berlin, FR 5-14, Franklinstr 28/29 10587 Berlin

tm@cs.tu-berlin.de

Abstract. The increasing demand for mobile applications implies an increase in
service availability and content delivery capacities across the networks. Peer-to-
peer technologies have proven to be able to deliver media in an effective way to
the end user. In this paper, we analyze and describe the necessary extensions
and functionalities, which are needed to enable Peer-to-peer content delivery in
an IMS client, namely the MONSTER framework. A special focus is directed to
the interoperation between existing functional elements and newly developed
peer-to-peer components.

1 Introduction

In today’s telecommunication world, several aspects of the service are important to
the customer. These are e.g. mobility, service availability and diversity of services.
The IP multimedia subsystem (IMS) [11] has proven to be an architectural
framework, which grants exactly those aspects to the customer. IMS enables the
standardized access to IP based services out of different types of networks.

Due to its All-IP approach, the IMS is a key enabler for converged internet
services, not limited to Voice-over-IP (VoIP) communication. Today, we see an
increasing demand for additional services on the mobile phones, like television,
gaming, community services, etc.

Today, two basic ways exist to gain access to multimedia content. One way is by
using a media server (central streaming), the other by joining a Peer-to-peer (P2P)
content delivery overlay (distributed streaming).

In this paper, we present a generic blueprint for a user client, suitable for
IMS communication and P2P media delivery. As initial point we have chosen an IMS
client, because IMS clients are supposed to have similar structures, while P2P clients
heavily depend on the intended purpose, i.e. file-sharing, streaming, computing, etc.
Therefore, the presented approach can be adapted easily to different existing IMS
clients.

The layout of this paper is as follows. In chapter 2, we shortly discuss IMS
functionalities from the client point of view and Peer-to-peer media delivery
technologies. Chapter 3 will give a short motivation, why it is suitable to implement
P2P functionalities in an IMS client. In chapter 4, we introduce necessary P2P

198 J. Fiedler, T. Magedanz, and J. Müller

functional blocks and present a generic way how to extend an IMS client with them.
In chapter 5, we give an example by explaining, how a concrete IMS client is going to
be extended for P2P media delivery. Finally, in chapter 6 we draw some conclusions
and give an outlook to the future work.

2 Background

In this section we will give a brief introduction in IMS and P2P services.
The IMS is an architectural framework for delivering IP-multimedia to mobile

users. It was originally designed by the wireless standards body 3rd Generation
Partnership Project (3GPP), and was intended to lead a way for mobile networks
beyond GSM. Its original formulation (3GPP R5) represented an approach to
delivering "Internet services" over GPRS. This vision was later updated by 3GPP,
TISPAN by requiring support of networks other than GPRS, such as Wireless LAN
and fixed line. The IMS network system consists of different functions, interacting
over standardized interfaces (reference points), which form one IMS administrative
network.

Fig. 1. IMS Components and reference points

An IMS-function is not necessarily identical to a node (hardware box). An
implementer is free to combine 2 or more functions in one single node, or to spread a
single function over multiple nodes. Each function can also be present multiple times
in a single network, for load balancing, availability purposes or organizational issues.
Reference points are realized by standardized protocols, like the session initiation

 Extending an IMS Client with Peer-to-Peer Content Delivery 199

protocol (SIP) [2] or DIAMETER [3]. Fig. 1 illustrates the most relevant IMS
functions, the position of the user client and the related reference points between
them.

For P2P services, we examine P2P distributed hash tables (DHT), P2P media-
streaming and P2P file sharing. All P2P services are aiming on a distribution of data,
may it be key-value pairs, stream chunks or file pieces. We do not focus on indexing
here, i.e. the way how nodes discover content. We assume that this has been properly
done before the envisaged content distribution, i.e. that nodes know which overlay to
join for a specific content.

Nevertheless, there are two operations, which all P2P algorithms have in common.
These are join and leave. The join operation is performed by a node that wishes to
become part of the corresponding overlay. It results in a message, which is sent to a
particular node in the overlay, the bootstrap node for the joining node. The way this
bootstrap node is detected depends highly on the associated P2P network. Lists of
well-known nodes, broadcasting, etc. are suitable techniques to detect a bootstrap
node. After a successful join operation, the performing node is part of the overlay and
knows a relevant subset of nodes, its neighborhood. The leave operation is to be used
when a node orderly leaves the overlay. As P2P networks are considered to be self-
healing, this operation must be understood as “the polite way” to leave an overlay.
The remaining P2P network will continue to function even if a leaving node does not
issue a leave message to the overlay.

For a P2P DHT, the additional operation putkey and getkey are used. The
underlying DHT algorithm is not of relevance here, it can be e.g. CHORD [5] or
something similar. The putkey operation accepts a key and a value as its arguments
and decides where in the overlay this information is going to be stored. It then issues a
message either directly to the storing node, or to a node in its neighborhood, which
then either routes the message further to the storing node or returns the address of it,
optionally by recursively querying other nodes first. After the storing node received
the putkey message, it will store the key with its value. The opposite operation to
putkey is the getkey operation, which retrieves a value to a given key, basically in the
same way, as the putkey operation stores it.

For P2P streaming, many approaches exist, aiming on multiple different aspects
of live streaming. A comprehensive comparison can be found in [1]. The operations,
we are focusing on are sendstream, receivestream and requeststream. We assume that
P2P streaming is realized by a distribution graph, which is thinner to the source, and
wider, the further away in terms of overlay nodes from the source a node resides. The
graph is intended to be, but is not necessarily a tree, as nodes (children) can receive
partial streams from different senders (parents). The requeststream operation will
select a stream from one or more senders. It will also define, how the stream is to be
sent in terms of which parts of the stream (interleave), quality, etc., if this is not
implicitly done by joining the specific overlay. The sendstream operation will send
the selected stream in the requested way to the sink. The receivestream operation will
receive the stream from one or multiple senders and optionally re-assemble the partial
streams to a playable media stream. This is necessary if the stream consists of
multiple chopped sub-streams, which were received from different sources. The
requeststream operation needs to be performed only once per stream.

200 J. Fiedler, T. Magedanz, and J. Müller

For P2P filesharing there are three operations which are required. They are
requestblock, sendblock and receiveblock. The requestblock operation is used to
instruct another node to send the specified part or piece of a content (file) to the
requestor. The selection algorithm is independent from this operation. The
requestblock operation must be performed either for each block, or for a group of
blocks, depending on the distribution policy of the P2P algorithm. The sendblock
operation is used to send the requested block to the requestor. Here it is dependant on
the P2P technique, whether the block is transferred directly to the requestor or
indirectly by routing it over a set of other nodes, e.g. super-nodes, or anonymizing
nodes. The receiveblock operation receives a piece of content and places it at the
correct location in the local storage for that content.

As an IMS client uses the SIP for signaling with the IMS core and its components,
it must have a SIP stack inside. This makes it feasible to use a SIP oriented protocol at
least for the non-media part of P2P communication. Here, the P2PSIP comes in
handy, which is currently developed by an IETF group [6]. P2PSIP focuses mainly on
managing P2P overlays using the SIP. It extends SIP by defining new header-fields
and is therefore fully compliant to the original SIP and can be expected to be
supported by traditional SIP stacks.

3 Motivation

A single IMS client is exactly that, a client for the services, which are offered by the
different IMS operators. By adding P2P functions, new aspects for the customer as
well as for the providers and operators arise. Ongoing research has also discovered
the benefits of combining P2P and IMS on different layers [9] and also already for
static media [10].

It has already been discussed in [4], that an external DHT, which could be a client
based P2P network, could be used for storing contact addresses for the failure case of
the central architecture. Clients could then store and retrieve their contacts in a client
based distributed hash table (DHT) as long as the central architecture is not available.
Naturally, this results in a security challenge against falsification of such contact
records. This is currently discussed in the P2PSIP group of the IETF [7].

When talking about P2P media delivery, we must distinguish between 3 basic
types of multimedia content and content consumption. These are Live-streaming,
video on demand and static content. They differ in their real-time criticalness, which
is very high for live-streaming as it does not allow a big pre-buffering, followed by
video on demand, which does allow pre-buffering. Static content is basically classic
file sharing, which has no hard real-time requirements, it is finished when it is
finished, or when the user decides to cancel the download, because it takes too long
for him. Hence, P2P content delivery can help to unburden media servers or make
them superfluous.

This is also the reason, why user-generated content experiences better support by
P2P content delivery. A content generating user node can be seen as media server
with extremely small banded upload capacities. Making it stream to every content
sink is impossible by concept. The “IMS-way” would be to stream the content over a
media server, resulting in the known load and availability problems of media servers.

 Extending an IMS Client with Peer-to-Peer Content Delivery 201

The P2P approach here makes it much easier for a user to place its own content in the
network.

4 Relevant Extensions

The question of how an IMS client extension should look alike in a generic way,
refers to the underlying question of how the architecture of a suitable IMS client
should look like. The requirements for the architecture of an IMS client contain a
modular and extensible design and should be conforming to the relevant standards to
ensure interoperability with other IMS components. The architecture should roughly
be able to be subdivided into at least three abstract layers. Additional requirements to
the IMS client are, for instance: on top a presentation layer, in the middle an
application layer and at the bottom a service layer.

Fig. 2. Generic IMS Client Layer Model

The presentation layer is responsible for the interaction with the user. It should be
designed to be easily extensible, in order to implement new features and display
options. The presentation layer has to handle different endpoints like mobiles or
desktops concerning the presentation technology and has to provide a suitable
adaption of it.

The application layer enables the client functionalities like calling or messaging.
Events coming from the user interface have to be interpreted and translated into
program operations to provide the user interaction with the client. These operations
then will trigger services in turn.

The service layer provides core services of the IMS client and provides an API to
the upper layer for e.g. SIP-messaging for IMS-core interaction.

The described model is depicted in Fig. 2.

202 J. Fiedler, T. Magedanz, and J. Müller

The following example maps the messaging service to the three presented layers.
The user A sends a message to user B with an IMS client. Thereby the presentation
layer interacts with the user over e.g. a text field for message content, the receiver
selection and the send button. The presentation layer also includes the media capture
and play-out capabilities. The application layer provides methods to write and store a
message, send a message via the IMS core to the receiver(s) and handles incoming
messages. The service layer provides the API to use the underlying SIP stack to
perform the necessary SIP operations to send the message.

If we now want to extend the client with P2P functionalities, a protocol for the
communication between the peers is needed. All P2P tasks e.g. management of the
overlay or DHT functionalities like put and get are message based. Since all
participating peers are instantiated through IMS clients which uses the SIP protocol, it
is assumed that the IMS client architecture comprised a SIP stack.

One important technique of the domain software engineering is to reuse existing
parts. In our case the existing SIP-stack should be reused and extended to provide an
API for using P2PSIP (s.a.) operations.

The obvious challenges of extending a SIP-stack with the methods of P2PSIP base
upon the fact that SIP uses the unique SIP-URI to address a recipient whereas P2PSIP
in contrast uses the IP and port information of the client. The P2PSIP functionality
should be realized in the service layer to provide its service to the higher layer.

There are task specific functionalities which could be grouped as the following
functional blocks: general functions, overlay management, DHT, media streaming
and file sharing.

The general P2P functions are:

• Determine the next hop, which realization depends on the used P2P algorithm. The
presence of NAT lead to the fact that there occur cases in which the sending peer
isn't able to reach the requesting peer directly and has to route packages indirectly
to the requesting peer. All following tasks assume the appliance of this function to
ensure a more reliable communication.

• A method for generating hashes uses a known cryptographic hash function like
(MD5) to generate hashes e.g. out of the unique IP address and port combination of
a peer or the name of a given value.

The overlay management functions are:

• A peer uses the join method to participate in an overlay. This task has to be divided
in the active and passive case. The active part would be the bootstrapping, where a
new peer (N) contacts a known bootstrap peer (B) to receive an overlay position
with the contact information of its successor peer (S) and its predecessor peer (P).

• The passive part of joining an overlay would be
• The task of the bootstrapping peer (B) describes the passive part of joining an

overlay, in which peer (B) has to organize the arrival of peer (N). The resulting
tasks are organizationally to maintain the overlay structure after the new peer (N)
has finished the process of joining the overlay. The two adjacent peers (S) and (P)
of (N) have to be informed of its arrival, what results in the modification of their
routing tables in case of a DHT based algorithm like Chord.

 Extending an IMS Client with Peer-to-Peer Content Delivery 203

• To leave a network in a polite way means that the leaving peer (L) informs all
relevant peers and to pass optionally stored values to peers which are responsible,
when (L) leaves the overlay.

The DHT functions are:

• The method lookup maps a hash to an IP address and port tupel and is able to
associate a key with a peer.

• Since everything has its place in a DHT, each value has its defined place which
depends on its referring hash. To store a value in the way that other peers are able
to find it, a hash function is used to map the name of the value into an unique hash
value: the key referring this value. The number space of the keys and that of the
peerIDs were equal, which facilitates to assign a value with the help of its key to a
peer.

• To store a value in the DHT, a hash of the value has to be generated which refers to
peer (R). Peer (R) has to be determined with the use of the hash function in
combination with the lookup method. Finally a reference to the value has to be
send from the initiating peer to the peer (R).

• The get method is used to retrieve a value out of the overlay from other peers.
Thereby a hash of the requested value identifies the referring peer (R). The
requesting peer performs a lookup of the value and retrieves the contact
information of the peer (S), which stores the value. Now the requesting peer is able
to address peer (S).

The streaming functions are:

• The method send is used to send a particular part of a stream to a requesting peer.
• The method request_stream requests a specific part of a stream from a parent node.
• The method receive stores all requested parts of the stream to re-assemble them to

a single stream. The parts needed to be encoded independent of other parts, that
they are able to be consumed in pieces.

• The method receive_request_stream handles an incoming request for a part of a
stream. Either the request is allowed or it will be rejected. In case of free resources
of the requested peer the demanding peer will be delivered with the requested part
of the stream. In case of high utilization or missing capabilities a cancelation will
be send to the requesting peer.

The file sharing methods are:

• The method request_block is used to request a specific part of a whole file from a
known source.

• With the help of receive_block a requested part can be received.
• The interaction of the peers needs the receive_request_block method which

handles block requests which are either served to the demanding peer in case of
free recourses or rejected in case of problems.

• The method send_block finally sends a block to the requesting peer.

204 J. Fiedler, T. Magedanz, and J. Müller

To realize the mentioned P2P functions in the presented IMS client architecture, the
following extensions need to be performed to the existing layers. Fig. 3 illustrates the
distribution of the functional blocks over the different layers.

The presentation layer should be extended with two control mechanisms. First the
control of P2P streams like: select, start, stop, pause of a requested object have to be
handled. The second part covers the content presentation with VRC controls like:
start, stop and pause. As these changes affect only the GUI, they are not depicted in
Fig. 3.

Fig. 3. Extended Generic IMS Client Model

The tasks of the application layer are extended with the previously introduced
functional blocks: general functions, overlay management, DHT, media streaming
and file sharing.

The service layer is extended with P2PSIP as a new service. This is attached to the
existing SIP stack and needs no extra network operation by itself, but provides an API
to the application layer.

5 Case Study: MONSTER

The Fraunhofer FOKUS MONSTER IMS client aims the rapid development and
prototyping of NGN and internet applications.

The most motivating factors to use this client are its modular architecture, its
platform independence with a pure java implementation plus it is deployable on target
platforms like mobiles, laptops and desktops as well. The MONSTER client is
standard conform and extended the JSR281 specification which provides a high-level
API to access IP Multimedia Subsystem (IMS) services. This API hides IMS
technology details and exposes service-level support to enable easy development of
IMS applications. In February 2009 MONSTER will be offered as free-to-use. It will

 Extending an IMS Client with Peer-to-Peer Content Delivery 205

provide several free basic functions and will be extensible through an open API which
provides interfaces to enhance and extend its functionalities [8].

Since the architecture of MONSTER is modular, it is possible to divide its
architecture into the three main parts of a presentation, an application and a service
layer. Thereby it is possible to apply the presented P2P extension on it. The layers
have to be modified as follows.

The presentation layer of MONSTER provides interaction with the P2P module to
perform the requested tasks of the user. These consist of the control of the requested
content and the playback handling with the common video recording functions.

The functional blocks from chapter 4 (general, management, DHT, streaming, file
sharing) have to be aggregated to a P2P module which is needed to be adapted to the
application layer.

The domain of event handling needed to be extended, too. Notifications are
redirected to the P2P module for sending or receiving P2PSIP messages or their
retransmission.

The functional blocks are message based and needed to reply incoming requests
automatically. Therefore an instance is needed, which is able to answer requests
automatically, by performing the required P2P specific tasks.

The used SIP-stack of MONSTER has to be modified and extended to provide
P2PSIP in the service layer. To reuse the SIP stack, a type P2PSIP message has to be
derived from the type SIP message.

Since each client communicate only directly to the PCSCF on a fix port over SIP,
P2PSIP has to address clients dynamically on different ports and IP addresses.

Fig. 4. MONSTER architecture

206 J. Fiedler, T. Magedanz, and J. Müller

Fig. 4 depicts the interaction of the P2P module with the MONTER client. The P2P
module is connected with the core service of monster as well as directly with the
internet. Additional features of the MONSTER client are presented like the OCS-X
Parley Interface, which is used for IPTV and VoD. The Web 2.0 Enabler allows the
aggregation of web feeds like news, weather, Flickr, Facebook or Google APIs. The
XDM Server enables service configuration like group management or presence.

6 Conclusions and Future Work

In this Paper, we have presented a generic approach to extend IMS clients with P2P
functionalities. As an example, the necessary extensions to the Fraunhofer FOKUS
MONSTER IMS client framework have been explained and depicted. Nevertheless,
while exploring the potential of P2P and IMS coupling, it became obvious that many
features require additional support of IMS components. As an example, authentication
needs to be named along with the possibility to use the underlying NGN components
for quality-of-service (QoS) control between peers. Also, the creation of topology
aware overlays can be supported with knowledge from IMS core components. A
topology aware overlay can drastically reduce latency and cross-network traffic,
resulting in a reduction of costs for avoiding redundant traffic.

Also content integrity and security need to be addressed. These are major problems
of open P2P systems, where content poisoning and copyright infringements are a
daily appearance. Also more complex approaches to detect copyrighted content could
be considered, like distributed content fingerprint detection.

Another thing is the question “Do other P2P services require other operations?” It
is very likely, that e.g. a P2P community management will require different
operations than those which are presented here. Nevertheless, the presented approach
can be easily extended to integrate new operations, due to its modular construction.

Acknowledgements

Many thanks go to the MONSTER developer team at the group for Next Generation
Networks Infrastructures (NGNI) at the Fraunhofer FOKUS Institute in Berlin,
Germany for inspiring discussions.

The work presented in this paper is related to the ongoing EU project VITAL++.
VITAL++ is a Specific Targeted Research Project (STREP) supported by the
European 7th Framework Programme, Contract number ICT-2-1.6-224287, Project
starting date 1st June 2008 (duration 30 months).

References

[1] Magharei, N., Rejaie, R., Guo, Y.: Mesh or Multiple-Tree: A Comparative Study of Live
P2P Streaming Approaches. In: 26th IEEE International Conference on Computer
Communications (INFOCOM), pp. 1424–1432. IEEE Press, Anchorage (2007)

[2] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A.R., Peterson, J., Sparks, R.,
Handley, M., Schooler, E.: SIP: session initiation protocol, RFC 3261, IETF (June 2002)

 Extending an IMS Client with Peer-to-Peer Content Delivery 207

[3] Calhoun, P., Loughney, J., Guttman, E., Zorn, G., Arkko, J.: Diameter Base Protocol. RFC
3588, IETF (September 2003)

[4] Singh, K., Schulzrinne, H.: Using an External DHT as a SIP Location Service, Columbia
University Technical Report CUCS-007-06, New York, NY (Feb. 2006)

[5] Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord: A Scalable
Peer-to-Peer Lookup Service for Internet Applications. In: SIGCOMM (2001)

[6] Bryan, D., Matthews, P., Shim, E., Willis, D., Dawkins, S.: Concepts and Terminology for
Peer to Peer SIP, draft-ietf-p2psip-concepts-02, IETF, July 7 (2008)

[7] Jennings, C., Lowekamp, B., Rescorla, E., Baset, S., Schulzrinne, H.: Resource Location
And Discovery (RELOAD), draft-ietf-p2psip-reload-00, IETF, July 11 (2008)

[8] Bachmann, A., Motanga, A., Magedanz, T.: Requirements for an extendible IMS client
framework. In: ACM International Conference Proceeding Series, vol. 278 (Feburary
2008)

[9] Liotta, A., Ling, L.: The Operator’s Response to P2P Service Demand. In:
Communications Magazine. IEEE, Los Alamitos (2007)

[10] Fiedler, J., Magedanz, T., Menendez, A.: IMS secured content delivery over peer-to-peer
networks. In: Proceedings of SIGMAP 2007, Spain, July 28-31, 2007, pp. 5–12. INSTICC
Press, Portugal (2007)

[11] TS 23.228, IP multimedia subsystem (IMS), 3GPP (2006)

	Extending an IMS Client with Peer-to-Peer Content Delivery
	Introduction
	Background
	Motivation
	Relevant Extensions
	Case Study: MONSTER
	Conclusions and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

