
SeDeUse: A Model for Service-Oriented

Computing in Dynamic Environments

Hervé Paulino and Carlos Tavares

CITI - Departamento de Informática
Faculdade de Ciências e Tecnologia

Universidade Nova de Lisboa
Portugal

herve@di.fct.unl.pt

Abstract. The current state-of-the-art in service-oriented computing
targets mostly business-to-business interaction, as service directories
store business specific instead of general, abstract, interfaces. Moreover,
the established coordination models were designed to operate mainly
over business processes with immutable, previously known, locations and
tightly couple resource awareness and usage, inhibiting the program-
mer to separate the purpose of the program from its execution environ-
ment. In this paper we present SeDeUSe, a model that features novel
programming abstractions sustained by a middleware layer that hides
the idiosyncrasies of using service-oriented computing in highly dynamic
environments.

Keywords: Service-oriented computing, Middleware for service-oriented
computing, Middleware for mobile computing.

1 Introduction

The increase of networks composed of mobile and pervasive devices, and their
interaction with the Internet, has established these as one of the main driving
forces behind the research on distributed systems, and one of the top priori-
ties of the service-based Internet business market. Nowadays, with the Internet
available everywhere, the possibility of using a service deployed anywhere in the
world is a reality. This fact has highly contributed to the current popularity of
the service-oriented computing (SOC) paradigm.

Services, however, can be used not only to abstract businesses but also to ab-
stract common publicly available resources, such as a network printer. Nonethe-
less, the current state-of-the-art in SOC targets mainly business-to-business
interaction, as service directories store business specific instead of general, ab-
stract, interfaces. Moreover, the established coordination models, such as service
orchestration [1] and choreography [2], were designed to operate mostly over
business processes with immutable, previously known, locations and tightly cou-
ple resource awareness and usage, inhibiting the programmer to separate the
purpose of the program from its execution environment.

C. Giannelli (Ed.): Mobilware, LNICST 0007, pp. 157–170, 2009.
c© Institute for Computer Science, Social Informatics and Telecommunications Engineering 2009

158 H. Paulino and C. Tavares

Several solutions have been proposed to bridge these limitations [3, 4, 5, 6, 7]
but, in our opinion, it is time to think the problem from scratch and design
programming abstractions custom made for this kind of environment.

In this paper we present SeDeUse, a model that hides the idiosyncrasies of
using SOC in highly dynamic environments, such as the one composed of mo-
bile devices. The model was designed with the service end-user in mind and,
thus, focuses on the proposition of novel intuitive abstractions for service use.
Resource (or service) awareness is completely abstracted from the functional
logic by using the two-level application construction found in policy and aspect-
based approaches [8,9,5,7]. This provides complete resource awareness isolation,
which allows for the definition of a clean and simple coordination language for
the functional components.

A middleware layer abstracts the user from the dynamic nature of the execu-
tion environment. It resides between the application and the services’ technolo-
gies and provides transparent dynamic discovery, acquisition and management
of services.

As discussed in [10], services and software mobility provide a good execu-
tion environment for today’s networks. This reasoning inspired our middleware
that also supports the migration of computations, providing suitable support
for moving computation away from devices with low computational resources.
The novelty is that the migration is associated to the nature of the services in
use, being completely transparent to the functional logic. This means that the
exactly same functional code can be used in both stationary and mobile settings.

The remainder of the paper is structured as follows: the next two sections
present the state-of-the-art in services and software mobility in dynamic envi-
ronments; section 4 presents the SeDeUse model; section 5 better illustrates the
proposed concepts with a simple programming example; and, finally, section 6
presents some conclusions and future guiding lines.

2 Service-Oriented Computing in Dynamic Environments

Combining service-oriented with mobile and pervasive computing is a hot re-
search topic that intends to port to dynamic environments the concepts of
service-oriented architectures. However, as said before, services can be used not
only to abstract business services but also to abstract common publicly avail-
able resources, such as a network resource (e.g. a printer) or a sensor (e.g. road
condition information from sensors placed in a highway). This means that re-
source bindings may be ephemerous, thus requiring dynamic reconfiguration on
the client side.

Although this execution model maps seamlessly in the loosely bound compo-
nents of service-oriented architectures, the porting of SOC to these environments
is not trivial. The state-of-the-art in SOC is mostly targeted at static environ-
ments and the coordination technologies operate over businesses, each with its
own interface and logic. Service directories, such as UDDI [11], are used to store
specific business interfaces instead of general, abstract, interfaces. For example,

SeDeUse: A Model for SOC in Dynamic Environments 159

every insurance company registers its own specific interface (a WSDL [12] de-
scription in the usual Web Service technology), even if all of them provide the
same kind of service, This is not the suitable for dynamic reconfigurations where
bindings must be done towards abstract interfaces instead of specific instances.

Some work as already been done in the field of service description categoriza-
tion and uniformity. The most known concept is the one of semantic service-
oriented architectures that uses ontologies to upgrade service descriptions with
semantic information. Popular examples of these description languages are OWL-
S [13] and RDF [14]. Although some of these languages have been ported to Java
APIs [15,16] and semantic service discovery can be incorporated in current UDDI
directories [17], no standard APIs have yet aroused.

Regarding service coordination, this has been a research topic for quite some-
time, and technologies such as BPEL [1] are widely used. These, however, were
designed to coordinate business process that resort static bindings to services
and the support for dynamic binding is very limited. The limitations of BPEL
are discussed in detail in [3], a paper that proposes JOpera, a visual composition
language that uses reflection to control, from within a composition, the binding
and registry of the services available in the system.

Other approaches, such as WS-Binder [4] and the MASC middleware [5] pro-
vide dynamic binding by associating BPEL service bindings to locally generated
proxies instead of particular service instances. These proxies are responsible for
discovering services on-the-fly and relaying the invocations. The difference be-
tween both is that WS-Binder uses a graphical interface (the service integrator)
for the user to specify the constrains to impose on a service (QoS or attribute
values) while MASC resorts to policies by extending WS-Policy [18].

Constraints over services can be seen as a cross-cutting concern and thus
the application of aspect-oriented programming (AOP) to this domain came
naturally. Aspects have been proposed to solve several limitations of BPEL.
AO4BPEL [6], for instance, concentrates in the ability to introduce cross-cutting
concerns, such as logging or auditing, and alter the composition logic at runtime,
i.e., use aspects to dynamically add/remove services to/from the process work-
flow. WSML (Web Services Management Layer) [7] provides dynamic selection
and integration of services. Sequence diagrams are used to map abstract in-
terfaces into concrete ones, which requires the definition of a diagram for each
concrete service interface available. Based on this mappings, a middleware layer
selects among the services currently available the ones to use. Actual interaction
with services is done through a redirection aspect (a stub). Aspects are also used
to define the non-functional properties of services.

3 Software Mobility in Dynamic Environments

Software mobility has been a research for quite some time now and many ap-
proaches have been proposed. Here we present the systems that are closer to our
work, i.e., that focus on dynamic environments.

160 H. Paulino and C. Tavares

Lime (Linda in Mobile Environments) [19] brings the Linda model [20] to
the world of software mobility in mobile environments. Mobile agents travel
between (possibly) mobile hosts that are seen as roaming boxes which host the
agents, providing them an execution environment. Lime introduces the concept
of transiently shared tuple space to describe a shared tuple space between agents.
The transient concept also applies to hosts and works the same manner. Hosts
on the same network may constitute a federated tuple space.

Poema [8] uses policies to decouple mobility from the remainder functional-
ities. A computational component is divided in three parts: state, application
behavior and mobility behavior. State is the data used or created by the compo-
nent and the application behavior is the definition of how the application will use
or produce the data. No mobility behavior goes on the application behavior part,
there is complete separation of those concerns. Mobility is defined externally in
a second phase through the use of policies: declarative event-condition-action
rules used to reconfigure the application.

Mob [10] is a service-oriented scripting language for programming mobile
agents in distributed systems. The main novelty of the language is the inte-
gration of both the service-oriented and mobile agent paradigms. Services may
be provided transparently by several agents in the network which is especially
important in networks with volatile resources. Agents may be simultaneously
clients and servers, creating a more flexible framework for implementing dis-
tributed applications. The downside is that the language uses its own interfaces
to specify services instead of standard technologies, such as Web services.

4 The SeDeUse Model

The SeDeUse model intends to hide the idiosyncrasies of using SOC in dynamic
environments by proposing a set of intuitive programming abstractions sustained
by a middleware layer that lives between the application and the standard service
technologies.

The programming model follows the two-layer approach to software construc-
tion that can be found in most of the systems discussed in the previous section
(WS-Binder, MASC, Poema, and the AOP based approaches). This allows to
separate service usage (functionality) from awareness (non-functionality). The
two layers of SeDeUse are:

– The service awareness layer (SAL) that defines the kinds of services to be
used in the application, i.e., the services to be discovered in the network and
the criterias that each of these must obey. We denote as kind the constraining
of a service interface with a set of specific properties.

– The service use layer (SUL) that defines a simple coordination model,
orthogonal relatively to the common existing programming languages (as is
the Linda model [20]).

The model does not define a complete language and, thus, must rely on a
hosting language to perform computation and to interact with the middleware

SeDeUse: A Model for SOC in Dynamic Environments 161

SAL
Components

SUL
Components

Pre-processor
Host ing

Language
Compiler

Genera ted
Code

Code Implemented in the
Host ing Language

references

Run-t ime Librar ies
Imp lement ing the

Midd leware

references

Fig. 1. The compilation process

layer. As such, a pre-processing stage is required to generate code of the hosting
language, which is then compiled by the language’s own compiler, as illustrated
in figure 1.

The generated code will naturally resort to the run-time middleware libraries
that provide for service discovery based on structure and content, dynamic re-
configuration of the service bindings, transparent process mobility and failure
recovery.

In the remainder of this section we will present both layers of the model in
an informal manner.

4.1 Service Awareness Layer

The syntax for both SAL and SUL relies on the identifiers and values defined in
table 1. We denote a sequence of zero or more elements of a given category γ by
γ̃, an empty sequence by ε and an optional symbol or production by the usual
[] notation.

Table 1. Values and identifiers

s, r Service identifier

o Service operation identifier

a Variable identifier

t Type identifiers of the hosting language

x Exception identifiers of the hosting language

v Values of the hosting language

As illustrated in table 2, the SAL is composed by a sequence of service
kind declarations. A kind is defined by a service interface identifier and a set
of attribute-value associations. The former defines the key for discovering the
service in the available repositories, while the later narrow the search space by

162 H. Paulino and C. Tavares

Table 2. Syntax of declarative components

D ::= D D Sequence of declarations

| s { Ã } Service kind declaration

| s { Ã } alias r Service kind declaration with alias

A ::= [pref] a = v Attribute constraint

| [pref] a in { v1, v2, . . . , vn } Attribute soft constraint

imposing constraints on the service’s attributes. These constraints may be hard,
defined by a single value (the = operator), or soft, allowing the attribute to
range over a set of values (the in operator). It is also possbile to declare them
as simple preferences by using the pref keyword.

Aliases are introduced to avoid name clashing when requiring distinct kinds
of the same service. These aliases are service identifiers and thus can be used
both in the SAL and the SUL. To better illustrate these concepts we introduce
a small example.

Consider a service interface Printer that defines a printing service that features
attributes type, colors and paper, among others. We have, on the listing 1, the
definition of a printer that prints in black and white on letter paper and, on
listing 2, the definition of a second printer that prints in color on A4 paper. The
conjunction of a SUL with one of these printer declarations will produce different
results, although the program is always the same. Recall that the declaration of
the attributes of the Printer service does not define a concrete printer, but rather
a printer kind.

Listing 1. A printer

P r i n t e r {
c o l o r s = ” b l a ckandwh i t e ” ,
paper = ” l e t t e r ”

}

Listing 2. Another printer

P r i n t e r {
c o l o r s = ” c o l o r ” ,
paper = ”a4”

}

Many kinds of printers can be used in a single program. In order to distinguish
between them we must resort to aliases, as in the listing 3. The ColorPrinter iden-
tifier stands for a service Printer with the specified attributes. ColorLaserPrinter
further constrains the scope of the search by defining the type attribute of Col-
orPrinter as one of laser or ink jet.

Listing 3. More printer type definitions

P r i n t e r { c o l o r s = ” c o l o r ” , paper = ”a4” } C o l o r P r i n t e r
C o l o r P r i n t e r { t ype i n {” l a s e r ” , ” i n k j e t ”} } C o l o r L a s e r P r i n t e r

4.2 Service Usage Layer

At this level the purpose is to provide good programming abstractions and a
simple coordination model, in order to delegate computation in network services.
The syntax for this layer is defined in table 3.

SeDeUse: A Model for SOC in Dynamic Environments 163

Table 3. Syntax of functional components

P ::= use S̃ in c(ã) P X̃ Service use abstraction

| P | P Parallel composition

| P ; P Sequential composition

| { P } Grouping

| [a =] E Assignment

| retry in e Restart a transaction

| ĩ Hosting language process

E ::= new c(ẽ) An instance of an use abstraction

| s.o(Ẽ) | s[e].o(Ẽ) Method invocation

| e Hosting language expression

S ::= [volatile] E s | [volatile] all s Service allocation

X ::= catch (x a) { P } Exception handling

Defining Computations: Actual computation is performed by processes (se-
quences of instructions) of the hosting language or by external services. Processes
can be parallelly or sequentially composed1. For each parallel composition P | P ′

a new thread is created to execute the rightmost process. The ; operator defines
a synchronization point, guaranteeing that all threads spawned from the cur-
rent execution flow have terminated their execution. An example is illustrated
in figure 2.

Fig. 2. Execution flow for {{ P1 | P2 } ; P3 } | P4

Using services: Regarding process abstraction and service usage, the syntax bor-
rows many constructions from the Object-Oriented languages: the use construct
abstracts computation in a set of parameters much like a class; instances of such
abstractions are created by the new construct, that binds the parameters of
the abstraction to the values supplied as arguments, and; service operations are
invoked as methods upon objects.

The novelty regarding computation abstraction is that the use construct al-
lows for code to be also abstracted in service identifiers and that these are bound
transparently, and on-the-fly, whenever an instance is created. Once bound, these
identifiers can be target of service operation invocations within the abstracted
code. For example, the value for the parameter doc in listing 4 is passed in the
1 Regarding parallel composition we borrowed the syntax behind some process alge-

bras, such as the π-calculus [21].

164 H. Paulino and C. Tavares

constructor, while the binding for service parameter Printer is obtained trans-
parently by the middleware.

Listing 4. Using a service

use P r i n t e r i n MyPr inter (doc) { P r i n t e r . p r i n t (doc) }
new MyPr inter (‘ ‘ myDocument ’ ’)

The pre-processor translates a use abstraction into a hosting language ab-
straction (e.g. a class in Java or C#). The constructor of this class will access
the middleware to obtain instances of the required services. For a given service
kind the procedure is as is illustrated in figure 3 and described below:

1. The program queries the middleware to obtain a service matching the Printer
kind.

2. Check if a proxy for the service interface exists2 (i.e. has already been gen-
erated)
– If so, this proxy has access to the middleware’s cache of previously discov-

ered services. Look up this cache and check if any of the stored services
is still available in the network.

- If so, return this service.
- If not, proceed to point 3.

– If not, proceed to point 3.
3. Perform a search on the available service repositories. Remember that this

discovery must obey the criterias defined in the SAL.
4. Analyse the outcome of the search:

– If no service is found issue an exception.
– If a service is found proceed to point 5.

5. Check if proxies for the retrieved services have already been generated. This
step is required because proxies depend on the invocation technology sup-
ported by the server. For instance, the server may only support SOAP 1.1
and the middleware may only have generated a proxy that uses SOAP 2.0.
In this case a proxy using SOAP 1.1 would be generated.

6. Store the retrieved services in the cache.

Another feature provided by use is the ability to easily bind to distinct ser-
vices of a given kind. This is useful to load balance service requests or even to
synchronize data between service providers. In the code these services are ac-
cessed as an array, as is illustrated in listing 5 that uses two services of kind
SearchEngine.

Listing 5. Using several instances of a service

use 2 Sea r chEng ine i n Search (query) {
Sea rchEng i ne [0] . s e a r ch (query) |
Sea rchEng i ne [1] . s e a r ch (query)

}

2 Proxies are bound to service interfaces in general, this means that distinct kinds of
the same service interface use the same proxy.

SeDeUse: A Model for SOC in Dynamic Environments 165

Midd leware

new MyPrinter("myDocument")

(1) Obtain service of kind Printer

Service
directory

Service
directory

Service
directory

(3) Discover
 service of kind

Printer

Cache

(2) Proxy
available?

Proxy

Query
cache

Return
avai lable
instance

Yes

No

No available
service found

Result

(4) Found services?(5) Generate proxy
if necessary

(6) Place services
in cache

Yes

Issue except ion

No

Fig. 3. Obtaining instances of a service kind

This feature raises the problem of issuing an exception whenever the number
of requested services is not available. To avoid this behavior, the value supplied
does not define the exact number of services to retrieve, but rather the upper
bound. This is a design choice that, in our opinion, provides a more flexible
semantics desired for dynamic environments. To ensure that no out-of-bounds
exceptions occur, indexes are always converted to values between 0 and the
number of services available.

Often one wants the code to be agnostic regarding the number of services
currently in use, i.e., omit the index and simply invoke operation regardless of the
target. This is possible in SeDeUse because s.o(ẽ) in fact stands for s[i++].o(ẽ),
where i is an integer initialized with 0. Therefore, when more than one instance
of a required kind is available, the service identifier ranges the instances using a
round-robin strategy.

The abstractions presented until now allow for the simple definition parallel
flows of execution that may access distinct services of the same kind in the
network, and thus increase resource usage efficiency. for example in the listing
6 two search operations are done in parallel both in the client, since two flows
of execution are defined, and also (possibly) in the server side, since probably
more then one instance of SearchEngine is being transparently used.

166 H. Paulino and C. Tavares

Listing 6. Using several instances of a service transparently

use 2 Sea r chEng ine i n Search (query) {
Sea rchEng i ne . s e a r ch (query) |
Sea rchEng i ne . s e a r ch (query)

}

Failure recovery: SeDeUse features an exception handling mechanism that is
syntactically similar to the one found in Java [22]. This mechanism is used to
protect the code inside a use against broken service bindings. If the discovery
or the invocation of one of the required kinds fails the exception is raised. The
difference from the usual exception handling mechanisms is that here the scope
of the protection is not the delimited code, but rather the use of the services
required by the instance of use.

Consider the code in listing 7, once the setPrinter method invocation is ex-
ecuted the code in the use terminates. The service, however, is probably still
being used by vpc and while this is true the handler will be active, thus avoiding
duplicating exception handling code.

Listing 7. Handling exceptions

use P r i n t e r i n V i r t u a l P r i n t e r (V i r tua lPC vpc) {
vpc . s e t P r i n t e r (P r i n t e r) ;

}
catch (S e r v i c eExc e p t i o n e) {

vpc . u n s e t P r i n t e r () ;
}

The code delimited by a use can be seen as a transaction. If an exception is
raised the transaction can be restarted with retry. The instruction restarts the
discovery procedure, eliminating the existing instance from the middleware’s
cache.

When the invocation of a service operation does not depend on any of the
previous there is no notion of state. In fact, the code could be decomposed in
several uses as in listing 9. In this case, use does not define a transaction but
simply the scope of the service kinds required, and so, the search for a new service
can be done without forcing the transaction to restart. This feature is supported
in SeDeUse by the qualifying the required kinds with the volatile keywork, as
shown in listing 9.

Listing 8. Decomposing a use

use S e r v i c e i n Abs () {
S e r v i c e . op1 ()

}
use S e r v i c e i n Abs () {

S e r v i c e . op2 ()
}

Listing 9. Using the volatile key-
word

use v o l a t i l e S e r v i c e i n Abs () {
S e r v i c e . op1 () ;
S e r v i c e . op2 ()

}

Handling Software Mobility: It is not our intention to explicitly refer to mobility.
The program is not explicitly ordered to visit a certain host, as is common in

SeDeUse: A Model for SOC in Dynamic Environments 167

mobile agent systems [10, 23, 24]. It is the nature of the services it requires that
will define its location. A special attribute (@) allows the programmer to state if
a given resource must be, or should be, either local or remote to the computation
and to the device itself. Of course that this migration can only happen if the
target host is willing to accept the incoming code. The odd identifier prevents
name clashes with existing attribute identifiers.

The values of the attribute may range from: local, to ensure that the resource
is local to the device, remote, to ensure the opposite; coupled, to ensure that the
resource is local to the computation (not the device), closest, to state that the
resource and the computation must as close as possible, and; performance, to
delegate in the system the choice of the best instance regarding performance.

When a new instance is created and the service bindings solved, the instance
is passed to the middleware that, according to the criterias chosen and the will-
ingness of the servers, decides where the execution takes place. Remote execution
may require proxies to be created on the server side and, more important, some
services may not be reachable from the new location. This will trigger a new
discovery procedure and possibly an exception.

5 Programming Example

We now present a simple programming example to better illustrate the concepts
and the capabilities of our model. We first need to choose a hosting language, in
order to have completeness. Our choice falls on Java, since it is a widely known
language.

Our example is an operating system shell that enables a small portable device
to use existing resources in a local network to perform computation, display
its desktop environment and print documents. With this application the device
can simply serve as an interface between the user and the actual computational
resources it is using. In listing 10 we show how SeDeUse can be used to manage
the bindings of application.

We choose to associate state to the CPU service to simulate a remote shell
session. Thus, lines 29 to 47 are seen as a transaction. If no CPU service is found
or the connectivity is lost, the exception handling code is trigerred and the user
may decide to search for a new CPU (we assume the existence of classes Question
and Info that, respectively query and inform the user).

The actual code of the transaction creates an object instance of a local class
that manages the availability of the printer and display resources, instances of
VirtualPrinter and VirtualDisplay, respectively.

VirtualPrinter (lines 1 to 7) is responsible for discovering printers in the net-
work, making one available to the user whenever it is possible. Note that the
service is volatile, thus as long as printers are available no exception is raised.
The user is notified every time printers are made available or not.

VirtualDisplay (lines 9 to 27) discovers the displays available in the network
prompting the user if it must continue the search of keep the last service found.
If the connectivity to the display in use is lost, the application resorts only the
local display and restarts the discovery procedure.

168 H. Paulino and C. Tavares

Listing 10. A virtual PC - SUL layer
1 use v o l a t i l e P r i n t e r i n V i r t u a l P r i n t e r (V i r t u a lPC vpc , i n t minutes) {
2 vpc . s e t P r i n t e r (P r i n t e r) ;
3 }
4 catch (S e r v i c e E x c e p t i o n e) {
5 vpc . u n s e t P r i n t e r () ;
6 r e t r y i n minutes ;
7 }
8
9 use Di sp l ay i n V i r t u a l D i s p l a y (V i r t u a lPC vpc , i n t minutes , boo lean s e a r c h) {

10 Quest i on q = new Quest i on (”Found new d i s p l a y : ” + D i sp l a y . g e t I n f o () + ” . Keep?”) ;
11 i f (q . ge tBoo l ())
12 vpc . s e tD i s p l a y (D i s p l a y) ;
13 }
14 catch (S e r v i c e E x c e p t i o n e) {
15 i f (s e a r c h) {
16 new I n f o (” Sw i t c h i n g to l o c a l d i s p l a y f o r now . Pe r fo rm i ng s e a r c h e s p e r i o d i c a l l y ”) ;
17 r e t r y i n minutes ;
18 }
19 e l s e {
20 Quest i on q = new Quest i on (”Remote d i s p l a y not a v a i l a b l e . Want to s e a r c h f o r a new one ?”) ;
21 i f (s e a r c h = q . ge tBoo l ()) {
22 new I n f o (” Sw i t c h i n g to l o c a l d i s p l a y wh i l e p e r fo rm i ng s e a r c h ”) |
23 r e t r y i n 0 ;
24 }
25 }
26 }
27
28 use CPU i n Vi r t u a lPC () {
29 c l a s s Vi r t u a lPC (CPU c) {
30 CPU c ;
31 P r i n t e r p ;
32 Di sp l ay d ;
33
34 s e t P r i n t e r (P r i n t e r p) {
35 t h i s . p = p ;
36 new I n f o (” P r i n t e r ” + p . g e t I d () + ” a v a i l a b l e ”) ;
37 }
38 u n s e t P r i n t e r () {
39 t h i s . p = n u l l ;
40 new I n f o (” P r i n t e r not a v a i l a b l e ”) ;
41 }
42 s e tD i s p l a y (D i s p l a y d , boo lean l o c a l) { t h i s . d = d ; }
43 . . .
44 }
45 Vi r t u a lPC vpc = new Vi r t u a lPC (CPU) |
46 new V i r t u a l D i s p l a y (vpc , 10 , f a l s e) |
47 new V i r t u a l P r i n t e r (vpc , 10)
48 }
49 catch (S e r v i c e E x c e p t i o n e) {
50 Quest i on q = new Quest i on (”CPU s e r v i c e not a v a i l a b l e . Want to s e a r c h f o r a new one?”) ;
51 i f (q . ge tBoo l ()) {
52 r e t r y i n 0 ;
53 }
54 }
55 new Vi r t u a lPC () ;

Listing 11. A virtual PC - SAL layer
P r i n t e r { @ = ” c l o s e s t ” }
Di sp l ay { type = ”TFT” }
CPU { p r o c e s s o r i n { I n t e l , AMD} , @ = ” coup l e d” }

In listing 11 we define a simple SAL to define the CPU, Display and Printer
kinds.

6 Conclusions and Future Work

The service-oriented computing paradigm provides the ideal framework for re-
source abstraction, since resources can be modelled as services. However, the
current state-of-the-art does not handle adequately the porting of these software
architectures to dynamic environments.

Some approaches have been proposed to cope with these limitations, but they
feel more like patches than real solutions. Our approach is to back to the foun-
dations and design a model that is tailored to use services in this context. The

SeDeUse: A Model for SOC in Dynamic Environments 169

SeDeUse model features novel abstractions that are simple and orthogonal rela-
tively to the common existing programming languages. It features two layers that
separate service usage from awareness and that must be combined to generate
the final code to execute.

In order to move computation away from devices with low computational re-
sources, SeDeUse uses a special service attribute that provides complete trans-
parent software mobility to the functional components. Thus, mobility is no
longer coupled with computation. The exactly same functional code can be used
in both stationary and mobile settings. It all depends on the restrictions applied
to the services (resources).

The expressiveness and capabilities of the model were illustrated in a simple
example, by resorting to Java, as the hosting language. In our opinion, the model
provides a good framework for the development of distributed and mobile soft-
ware. In turn, the loosely-bound properties of service-oriented computing, plus
the ability to migrate computation provides a good support for the deployment
of applications in highly dynamic environments, such as the ones composed of
mobile devices.

Ongoing work focuses on the actual implementation of the model, using Java
as the hosting language. The middleware will resort to the language’s native
code mobility support and the APIs available for service discovery and usage,
namely for UDDI interaction and SOAP based communication.

References

1. Chen, L., Wassermann, B., Emmerich, W., Foster, H.: Web service orchestration
with bpel. In: ICSE 2006: Proceeding of the 28th international conference on Soft-
ware engineering, pp. 1071–1072. ACM, New York (2006)

2. Yang, H., Zhao, X., Qiu, Z., Pu, G., Wang, S.: A formal model for web service
choreography description language (ws-cdl). In: IEEE International Conference on
Web Services 2006, pp. 893–894. IEEE Computer Society, Los Alamitos (2006)

3. Pautasso, C., Heinis, T., Alonso, G.: Jopera: Autonomic service orchestration.
IEEE Data Engineering Bulletin 29 (2006)

4. Penta, M.D., Esposito, R., Villani, M.L., Codato, R., Colombo, M., Nitto, E.D.:
Ws binder: a framework to enable dynamic binding of composite web services. In:
SOSE 2006: Proceedings of the 2006 international workshop on Service-oriented
software engineering, pp. 74–80. ACM, New York (2006)

5. Erradi, A., Maheshwari, P.: Dynamic binding framework for adaptive web services.
In: ICIW 2008: Proceedings of the 2008 Third International Conference on Inter-
net and Web Applications and Services, pp. 162–167. IEEE Computer Society,
Washington (2008)

6. Charfi, A., Mezini, M.: Ao4bpel: An aspect-oriented extension to bpel. World Wide
Web 10(3), 309–344 (2007)

7. Verheecke, B., Cibrán, M.A., Vanderperren, W., Suvée, D., Jonckers, V.: Aop
for dynamic configuration and management of web services. Int. J. Web Service
Res. 1(3), 25–41 (2004)

8. Montanari, R., Lupu, E., Stefanelli, C.: Policy-based dynamic reconfiguration of
mobile-code applications. Computer 37(7), 73–80 (2004)

170 H. Paulino and C. Tavares

9. Talcott, C.L.: Policy-based coordination in pagoda: A case study. Electronic Notes
Theoretical Computer Science 181, 97–112 (2007)

10. Paulino, H., Lopes, L.: A programming language for service-oriented computing
with mobile agents. Software Practice and Experience 38(7), 705–734 (2008)

11. Bellwood, T., et al.: Uddi version 3.0.2, http://uddi.org/pubs/uddi_v3.htm
12. Web Services Description Language (WSDL), http://www.w3.org/TR/wsdl
13. OWL-S: Semantic Markup for Web Services,

http://www.w3.org/Submission/OWL-S/

14. Resource Description Framework (RDF), http://www.w3.org/RDF/
15. McBride, B.: Jena: Implementing the rdf model and syntax specification. In:

SemWeb (2001)
16. JRDF (Java RDF), http://jrdf.sourceforge.net/
17. Paolucci, M., Kawamura, T., Payne, T.R., Sycara, K.P.: Importing the seman-

tic web in UDDI. In: Bussler, C.J., McIlraith, S.A., Orlowska, M.E., Pernici, B.,
Yang, J. (eds.) CAISE 2002/WES 2002. LNCS, vol. 2512, pp. 225–236. Springer,
Heidelberg (2002)

18. Bajaj, S., Box, D., Chappell, D., Curbera, F., Daniels, G., Hallam-Baker, P.,
Hondo, M., Kaler, C., Langworthy, D., Nadalin, A., Nagaratnam, N., Prafullchan-
dra, H., von Riegen, C., Roth, D., Schlimmer, J., Sharp, C., Shewchuk, J.,
Vedamuthu, A., Yalçinalp, U., Orchard, D.: Web services policy 1.2 - framework
(ws-policy). Technical report, W3C (2006)

19. Murphy, A.L., Picco, G.P., Roman, G.C.: Lime: A coordination model and
middleware supporting mobility of hosts and agents. ACM Trans. Softw. Eng.
Methodol. 15(3), 279–328 (2006)

20. Gelernter, D.: Generative communication in linda. ACM Trans. Program. Lang.
Syst. 7(1), 80–112 (1985)

21. Milner, R., Parrow, J., Walker, D.: A Calculus of Mobile Processes (parts I and
II). Information and Computation 100(1), 1–77 (1992)

22. Sun Microsystems, Inc.: Java tutorial,
http://java.sun.com/docs/books/tutorial/

23. Lange, D.B., Oshima, M.: Programming and Deploying Java Mobile Agents with
Aglets. Addison-Wesley, Reading (1998)

24. Glass, G.: Objectspace voyager - the agent orb for java. In: Masunaga, Y.,
Tsukamoto, M. (eds.) WWCA 1998. LNCS, vol. 1368, pp. 38–55. Springer, Heidel-
berg (1998)

http://uddi.org/pubs/uddi_v3.htm
http://www.w3.org/TR/wsdl
http://www.w3.org/Submission/OWL-S/
http://www.w3.org/RDF/
http://jrdf.sourceforge.net/
http://java.sun.com/docs/books/tutorial/

	SeDeUse: A Model for Service-Oriented Computing in Dynamic Environments
	Introduction
	Service-Oriented Computing in Dynamic Environments
	Software Mobility in Dynamic Environments
	The SeDeUse Model
	Service Awareness Layer
	Service Usage Layer

	Programming Example
	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

