
Scalable Interactive Middleware Components for
Ubiquitous Fashionable Computers

Gyudong Shim and Kyu Ho Park

KAIST, Daejeon, Korea
gdshim@core.kaist.ac.kr, kpark@ee.kaist.ac.kr

http://core.kaist.ac.kr

Abstract. The middleware for location based interactive applications
requires scalability in large scale spaces. As the number of users and
target services are increased, the server has to process massive spatial
queries and event handling requests efficiently. Our middleware compo-
nents are developed to extend the U-interactive system for large scale
environments. The system manages the location information for large
number of users and target objects. In addition the system handles
events caused by user commands. We developed efficient tuple indexing
and query mechanism by composite keys. As a new spatial query, Fan
search is invented to provide efficient target selection by distance and an-
gle. We optimized the query processing by efficient node traversing and
data-aware interval skipping. The tuple matching process is performed in
bounded time up to 100,000 objects. Fan search with C-Cuve has supe-
rior performance than Z-Curve in high density nodes in the experiment.

Keywords: Ubiquitous middleware, human machine interactions, tuple
spaces, spatial query indexing.

1 Introduction

Many researches have been come out to realize ubiquitous computing environ-
ments in the real world. The common philosophy of the researches is to make a
convenient life with interaction with surrounding computers. Users in the ubiq-
uitous environment can obtain any information by multiple interfaces and dis-
plays. Location based interactive applications in the ubiquitous environments
have been developed in many research projects [10], [11], [12], [13].

Our research project teams have developed testbed on KAIST campus called
U-TOPIA and a wearable computers named Ubiquitous Fashionable Computer
(UFC)[3]. U-TOPIA has been equipped with indoor and outdoor testbed for
location services which consist of ZigBee and UWB[9] sensor networks.[7].

UFC has been developed as a wearable gadget and cloth as shown in Fig.1 for
convenience and portability. In order to interact with the environments with in-
tuitive gestures, UFC has a gesture recognition device called iThrow [4]. iThrow is
a ring typed intuitive interface device. iThrow can recognize specific movements
and two dimensional pointing direction of the finger.

C. Giannelli (Ed.): Mobilware, LNICST 0007, pp. 144–156, 2009.
c© Institute for Computer Science, Social Informatics and Telecommunications Engineering 2009

Scalable Interactive Middleware Components for UFC 145

pKASSO, Security Server
µ-ware, Middleware

Testbed(Wi-Mesh [Outdoor])

UFC (Ubiquitous Fashionable Computer)

Testbed(ZigBee, UWB[Indoor])

iThrow Main Module Attachable Modules

Fig. 1. U-TOPIA architecture and UFC components

A UFC user can interacts with objects and services by gestures. A UFC user
can select a target inside the testbed by pointing it with iThrow. The selected
target is shown at the display of UFC as a feedback. After target selection, the
user can control the target through intuitive gestures such as throwing, pulling
up, and rolling left or right. For example, user can print a document file by
throwing to the printer after pointing the document object.

Wedesigned an interactivemiddleware system, calledU-interactive[5], that pro-
vides spontaneous interaction between UFC users and U-TOPIA. U-interactive
provides Virtual Map which is a container and interface to the interactive objects.
Each physical object can be assigned into the Virtual Map with location and
interactive attributes.

In this paper, we introduce scalable middleware components designed upon
the U-interactive system. It is important that the middleware should be scalable
to be effective even in the massive environments such as subway stations, stadi-
ums, and auditoriums. We assume that the target service areas would have up to
hundreds of thousands objects with UFC users. We will focus on data indexing
and query processing for the interactive services with scalability.

In U-interactive system, the server contains many objects of tuples for the
target services and user locations. We developed a new tuple space based coor-
dination middleware, which manages tuples and provides scalable tuple matching
schemes in reverse time orders. In addition, it contains useful functionalities for
file transfer and event handling mechanisms.

We propose efficient spatial query processing, which is called Fan search, will
reduce computing overhead from massive query processing from users. The ob-
jects are searched within a specific fan query region. Fan search differs from
previous rectangular based query processing such as NN, k-NN by query region
and indexing scheme. Fan search indexes spatial objects by one-dimensional key

146 G. Shim and K.H. Park

which is converted by a space-filling curve. As implementation optimizations,
the path stacks of the index tree and skipping query regions are invented.

The paper is organized as follows. In Section 2, we describe the ubispace as
basic coordination middleware for our system. The target selection algorithm
will be presented in Section 3. In Section 4, the scalability of our components
is evaluated. Section 5, 6 related middlewares and algorithms are discussed and
concluded.

2 UbiSpace

Since many mobile clients and infrastructures exist in the ubiquitous environ-
ments, it is necessary computing paradigm for this distributed environment to
communicate each other in the application level. As a black board system, tuple
space has been researched and evolved by many researchers such as T-Spaces[6],
JavaSpaces[8]. These tuple space provides applications with useful and simplified
coordination. Due to the spatial and temporal decoupling effect of tuple space,
many ubiquitous projects [1], [2] adopted tuple space as a core coordination
middleware.

2.1 Tuple Space

The peers can write or read a tuple from the tuple space. A tuple space contains
tuple which consist of a sequence of typed fields. Each field can be formal or
actual, which are some type of an attribute or exact value of an attribute. These
tuples are inserted into the space by peers who retrieve the tuples by tuple
matching.

Tuple matching is explicit addressing method because it finds any tuple which
matches a template without considering of the insertion order. Tuple matching
between tuple t1, t2 can be defined as follow conditions.

1. both t1 and t2 have the same tuple name.
2. both t1 and t2 have the same number of fields N.
3. each of fields of t1 matches the fields of t2 in order, i.e. t1.fieldi matches

t2.fieldi, ∀i ∈ {0..N}

The matching of two fields are described as shown in Table 1. Notice that the
equals on two actual comparison means java.lang.Object.equals() method. After
that this tuple matching operation costs complex comparison of java objects.

Table 1. Tuple matching condition

Field(t1) Field(t2) matching condition
formal formal t1.class = t2.class
formal actual t2.object is assignable to t1.class
actual formal t1.object is assignable to t2.class
actual actual t1.object equals t2.object

Scalable Interactive Middleware Components for UFC 147

UbiSpace is inspired by T-Spaces which is an extension of Tuple space and
stable commercial product of IBM. T-Spaces provides event handler registration
for incoming tuple by tuple matching. This mechanism is useful for implementing
white board applications such as sharing distributed clipboard which reacts the
status change of sharing data [6].

2.2 Limitations of Tuple Space

However these tuple space has some problems directly adapted in ubiquitous
environments. First, tuple matching is implicit with the insertion order of tu-
ples. If status variables are described with tuples, most of application requires
the newest tuples in the tuple space. As a result, tuple space should provides
tuple order by LIFO but T-Spaces provides only FIFO tuple matching mecha-
nism. Second, tuple has expressive and general data description but it is a little
bit complex for application developers. Application developers should pay at-
tention to the tuple matching syntax. It requires redundant code fragments. So
the API should has simple and concise method. Third, In the worst case tuple
matching requires scanning of entire tuples to find a matched tuple. This is the
most important disadvantage of tuple space. So T-Spaces provides indexed tuple
matching by naming a tuple to specific string. However it is a duty of application
developer that design and naming of tuple creation. If tuples are not properly
manipulated by users, it requires full scanning overhead and not scalable to large
number of tuples. Fourth, most of applications in our system operate a file as a
tuple. Application developer should convert file contents to a general tuple field
but it is burden of space to the server repositories because most of tuple space
hold data in the memory of the server. Therefore tuple of File should be handled
differently to save the server’s memory space.

2.3 Design and Motivation of UbiSpace

From these limitation of tuple space, we designed and implemented a new tuple
space or UbiSpace. The important characteristic of UbiSpace as follow.

1. Design of String key based concise operations. Like a hash table, tuple
are indexed by string name tag. A tuple can be inserted, updated, and read
by exact string match. For event handling we added publish and subscribe
methods. subscribe method can register event handler for tuple event such
as insertion of tuple, delete of tuple, update of tuple. these operations are
anomaly of T-Spaces’ event register, deregister operation but we added the
count of event handler invocation. The event handler can be executed only
the count times.

2. Indexing tuples by name and tuple id for scalable and deterministic
tuple matching. UbiSpace prevents tuple matching from scanning entire tu-
ples. Each tuple has a given name and unique id for indexing. By default
there are two index of tuples, the fist is index of tuple ID for direct tuple
addressing, the second is index of <tuple name, tuple ID> composite key.

148 G. Shim and K.H. Park

The tuple ID is sorted reverse order for LIFO of tuples. In order to guarantee
the bounded time of indexing insert, read operations, we adapted B+tree[14]
as a basic indexing tree.

3. Automatic file transfer by tuple operations. Any tuple which has a field
of java.io.File objects are inspected during normal tuple space operations. If
a tuple has File field, the content of the File object are transferred between
client and server. Since both server and client have the same copy of the
file in the given directory, the redundant file transfer is not performed by
caching of the file. This automatic file operation is very simple and useful
for file transferring application, especially in ithrow file throwing operations

2.4 Usage Example of UbiSpace

A typical usage of UbiSpace for interactions are outlined in Fig.2.4. In this
example, a UFC user throws a file to the target service 2. In order to receive
the command from the UFC, the services should register the subscription by
subscribe operation. The subscription is identified by the prefix of “ithrow data ”
and “X” of actual target object id. By this manner, each services register their
subscription by different string key of own ID in the system. The type of data can
be recognized in the event handler of the subscription. After these registrations
of subscription, any inserted tuples are examined whether they are matched
to a specific subscription tuple template. The template tuples of ID 2, 3 and
4 are examined whether match the template key of “ithrow data 2”. Since the
templates are named by “ithrow data 2”, “ithrow data 3”, and “ithrow data 4”,
only the template tuple of ID 2 matches the inserted tuple <“ithrow data 2”,
cam.jpg>. It is published to the ID 2, and the second field is type of File, the
file contents are delivered to the ID 2. Finally the event handler is performed.
The event handler has routine to display the image file.

<“ithrow_data_2”, cam.jpg>

ID: 1

ID:2

ID:3

ID:4

<“ithrow_data_2”, * > <“ithrow_data_3”, * >

<“ithrow_data_4”, * >

publish

subscribe

Formal

Actual

UbiSpace

Fig. 2. UbiSpace usage for interaction between UFC and services

2.5 Implementation of UbiSpace

UbiSpace is implemented by traditional thread level server/client model. Fig.3
describes the thread level architecture of UbiSpace implementation. Considering

Scalable Interactive Middleware Components for UFC 149

IO
 T

hread

IO
 T

hread

IO
 T

hread
IO

 T
hread

Process T
hread 1

P
rocess T

hread N

U
biS

pace Interface

Space 1

...

Tuple Tuple Tuple

B+Tree Key Indexing
Space N

Tuple Tuple Tuple

B+Tree Key Indexing

Subscribe Info Subscribe Info

Server sideClient side

...

Request Queue

Response Queue

Event HandlerSubscription ID
s1
s2

eh1
eh2

Subscription T
hread

IO
 T

hread

Fig. 3. UbiSpace architecture in thread level

harsh or unstable network conditions, the flow of request and response should be
reliable to the packet loss or error of internal server status. Therefore we imple-
mented timer based reliable request delivery mechanism. If a client cannot receive
the proper response in a given timeout from the server, the request is retransmit-
ted into the server. If a client fails to receive the response and retransmits the
request over than N times in a row, the connection is closed and the client regards
the server as unavailable. In order to implement timer based operations, we sep-
arated the application thread and IO thread which takes network IO handling.
In addition java.lang.Object.wait(timeout)’s monitor is used for timer’s timeout.
Due to synchronization problem of requests of clients, the requests are serialized
by the incoming order, i.e. FIFO in the synchronized queue. There are two queues
per the space, request queue and response queue. The request is put on the request
queue in a order, IO thread of the client take it from the right side. The response
queue is used for waiting condition variables. The application thread waits on this
queue to take the response. Because there are multiple spaces in the server, we bal-
anced the workload of the single space to single thread. This approach is proper
and beneficial because any further synchronizationmechanisms are necessary such
as condition variables or mutual exclusive locks.

B+tree has been implemented basically algorithm of [14]. We modified query
routine of nodes into bound check and binary search of a key. Since each node
contains ordered keys, finding a key can be performed binary search in O(logN)
complexity. However binary search requires constant time of key traversal to
escape the loop condition even when the lookup key is left or right side of the
node. In order to eliminate unnecessary binary search attempts, UbiSpace checks
the boundary of the traversing node whether this node has the key by with the
lowest key and the highest key comparison. It may be constant overhead when
a search key is inside of the traversing node range. Even though most of our
system workloads find the newest key which resides on left side leaf nodes.

150 G. Shim and K.H. Park

Table 2. String key based basic operations of UbiSpace

Return Method signatures
long insert(String key, java.io.Serializable obj)
Object take(String key)
Object read(String key)
long publish(String key, java.io.Serializable obj)

long subscribe (String key, java.lang.Class clazz,
EventHandler callback, boolean isWrite)

void unsubscribe(long seqNumber)
void update(long itemID, String key, java.io.Serializable obj)
void delete (long itemID)

The basic string key based operations are listed in Table.2. The API doesn’t re-
quire additional tuple manipulation logic for tuple matching. Only single string key
can be assigned for tuple matching. The string key and object are sent in method
parameters. The general tuple indexing operations are omitted due to the limit of
this space. The general tuple space operation is similar with T-Spaces.

3 Fan Search: Target Selection Algorithm

Users can select an target service or an interactive object by pointing gesture
of iThrow. Yoo et al, proposed target selection algorithm which select a object
which has minimum angle difference.[4] They also proposed adaptive angle place-
ment scheme for easy target selection of clusted objects. We devised Fan search
in order to support a scalable target selection mechanism even in the large spaces
such as square or stadium. Therefore the target selection algorithm has to filter
objects by distance and angle efficiently.

3.1 Definition of Fan Search

The fan is defined by 4 arguments - radius, θ1, θ2, and origin(the location of the
user) as shown in Fig.4(b). The radius is the maximum distance from the user

OB

OA

OD

OC

User

θC

Pointing direction

θB

The least angle
difference OC is selected

(a) Ray-based minimum angle

OB

OA

OD

OC

User

Pointing direction

OC in the fan(r, θW)
is selected

r

θW

θ1
θ2

(b) Fan search

Fig. 4. Target selection algorithms

Scalable Interactive Middleware Components for UFC 151

location to the target. θ1 is the start angle in counter clock wise direction. θ2 is
the end angle in counter clock wise direction. The angle of the fan is 0 to 2π.

The target objects residing in the fan are selected as the result of the search.
The target objects are sorted by angle difference of the pointing direction and
distance from the user location.

Algorithm 1. Fan search pseudo code
if θ1, θ2 span multiple quadrants then

divide the angle from θ1 to θ2 by the piece of quadrants to Ai, i ∈ {1, 2, 3, 4} {Ai

denotes the angle in the i’th quadrant}
end if
for all Ai do

calculate MBRs(Minimum Bounding Rectagles)-{Rx̂i}, x̂i ∈ representative value
of x-axis of Ai

add Rx̂i into ListR

end for
merge MBRs -Rx̂i ∈ ListR which have same x-axis interval : x̂i

for all Rx̂i ∈ ListR do
lookup target objects by range query Rx̂i in the B+-tree indexed by representative
location.
insert the target object Oi into Queue Qr

end for
for all Oi ∈ Qr do

calculate the distance and angle.
if Oi is outside the fan then

remove Oi from Qr

end if
end for
sort the Qr by the angle difference and distance from O.
return Qr

3.2 Multiple Interval Query Optimization in B+-tree

The localized objects can be indexed by one-dimensional value which can be re-
solved by space filling curves such as Z-curve, H-curve, and C-curve. Space filling
curve traverses entire points just once with given sequences. Since H-curve and Z-
curve has good space locality, they are used in spatial queries such as the nearest
neighbor query or k-nearest neighbor query. Most of spatial queries performs rect-
angular region query by region decomposition or approximation with sub-regions.
It is inevitable that this spatial query requires multiple interval queries in trans-
formed address space. If this spatial query is performed in separated queries, it
requires redundant index, leaf node traversals on the given index tree. When data
are distributed sparsely, we can eliminate unnecessary interval query by skipping
the query interval by checking next item in the leaf node.

In order to solve the overhead of separated multiple interval queries over B+-
tree, we adopted traverse path stack and data-aware interval jumps schemes to

152 G. Shim and K.H. Park

O1

O2

O3

O4

O5

O6

22 41

0 4 22 37

B+-tree indexing

41 46

O1 O2 O3 O4 O5 O6

Fig. 5. MBR calculation and B+-tree indexing for target objects

reduce the node traverse overhead. The traversed index nodes in a query are
cached in the memory.

4 Performance Evaluation

In order to verify scalable middleware components, the efficient data indexing
scheme and the query process are evaluated in scales up to hundreds thousands of
data. The latency of implemented our middleware components are evaluated by
Linux PCs. As the number of objects in the space increases, the target selection
or tuple matching operation whould be the most overhead of the processing.
The tuple indexing in time and name will be shown as a scalable and efficient
indexing scheme. The complexity of Fan search is measured by the different node
numbers in the same space.

4.1 Tuple Indexing Effect of UbiSpace

The performance characteristics of T-Spaces and UbiSpace are evaluated by
average latency of read and insert operations. The average latency of 100 op-
erations is collected since the latency of one operation is too small to collect.
Each experiment is repeated by 5 times. There are two Linux PCs in the same
rack which take the role of a server and a client machine. The average latency
of read, insert operations is measured between the server and the client. The
latency consists of network packet latency between request and response packet
and query processing time. The read operation finds the newest tuple which
matches the tuple name. In T-Spaces all of tuples are named by “tuple” and
indexed in string key automatically. In UbiSpace, all tuples are indexed by the
tuple name and sequence ID as a composite key. Fig.6(a) shows the average la-
tency of read operations on T-Spaces and UbiSpace. T-Spaces cannot take the
benefit of tuple indexing for the given tuple matching by name and id. As result,
the read operation scans all of tuples in T-Spaces. This result indicates that the
indexing scheme for tuples should be designed carefully to be scalable for large
number of tuples. On the other hand, UbiSpace index the tuples by name and

Scalable Interactive Middleware Components for UFC 153

(a) Average latency of read operation by
tuple numbers

(b) Average latency of insert operation
by tuple numbers

Fig. 6. Scalability of Ubispace in tuple numbers

id by default, it is scalable for the string key based tuple operations with large
number of tuples in finding the newest matching tuple.

Fig.6(b) describes the average latency of insert operations on T-Spaces and
UbiSpace. The overall processing consist of pruning, distance and theta calcu-
lation, and Both T-Spaces and UbiSpace update the indexing trees in bounded
complexity. The latency is calculated by average of 100 insertions. UbiSpace has
about 15% less latency than T-Spaces. Since the initial latency is caused by
class loading of JVM, the latency of insertion in 0 tuples are the largest. Most
of reduced time comes from that UbiSpace takes benefits of java object caching
in the Virtual Machine. Because the inserted objects are cached in the client
side, the retrieval of the object can skip the downloading of the cached object
from the server side. Since T-Spaces performs deep copying of tuple object for
persistency, all of the tuple objects should be downloaded from the server.

4.2 Fan Search with Space Filling Curves

Fan search algorithm is primarily designed by C-Curve space filling curve. In
order to find out the relative computing overhead of fan search, we compared
the overall latency of the target selection algorithm with Z-Curve and C-Curve.
Fan search is performed with Z-Curve by single MBR range query over the
given fan. Z-curve is implemented by linear intersection algorithm [15]. Z-curve
should traverse more objects out of the fan due to discontinuity of the Z-curve.
The space has 1km by 1km space. The position of the fan is selected randomly.
The radius is 50 and the angle is 40 to 50 degrees. Each query is repeated
10 times. Fig.7-(a) shows latency of queries over variable node density. In high
node density, Fan search with C-Curve outperforms Z-Curve due to query region
approximation. Z-Curve suffers from coarse pruning objects out of the fan due
to single MBR query. However, Fan search with C-curve takes more latency
than Z-curve in low node density, because it has constant MBR calculation and

154 G. Shim and K.H. Park

(a) Latency of different node density. In C-Curve with multi-
interval,the path stack and skipping interval optimizations are applied.

0

0.2

0.4

0.6

0.8

1

1.2

L
a
t
e
n
c
y
(
m
s
)

Pruning

Query

MBR

(b) Computing time of search operations. The number inside () means
the total number of objects.

Fig. 7. Fansearch target selection latency

query overhead. As an implementation optimization, C-Curve with multi interval
shows the effect of the path stack and skipping intervals. However they have less
than 5% improvements and no benefit on high node density.

Scalable Interactive Middleware Components for UFC 155

Fig.7-(b) shows the computing overhead of target selection. The query pro-
cessing consists of query decomposition into MBRs, B+-tree interval queries,
and pruning out of the fan objects. Most of latency comes from the B+-tree
interval queries. As the node density increases, the pruning process takes more
time because the candidate objects are increased. As the node density goes high,
Z-curve suffers from false hit on out of objects. Since Z-curve with DRU algo-
rithm [15] has few advantages of interval skips in high node distribution in the
interval query, it requires much computing time in fan query process.

5 Related Works

There are many location based interactive services in the literature such as [11],
[17], and [12]. In Virtual Information Tower, mobile users can interact with
visible items on the advertising columns. VIT provides a metaphor to access
information which is assigned to physical location. In the view of middleware
framework, VIT[11] is very similar to our system by server-client model. How-
ever VIT focuses on frameworks for information management by web-browser
interface of the wearable device.

Juha at el. presented an interactive middleware by gestures.[13]. The target
space is small indoors and no interaction with other users. They focus on the
flexible gesture sets to extend general intuitions for VCR and lighting controls.

Round Eye[17] provides tracking continuous nearest surrounders by NS query.
The NS query is similar to Fan search in query by angle and distance aspects.
NS provides the one possible object for a given angle but Fan search may provide
multiple objects given directions. The NS query is optimized by MBR manage-
ment by considering moving objects in the query region. Round Eye achieves
low computing overhead in the server by query indexing scheme. In other while,
our Fan search tries to minimize given one spatial query by query region decom-
position with C-Curves.

The fan search MBR approximation is similar to that of SCUBA[16]. In
SCUBA, any arbitrary polygonal objects can be approximated by sum of squares
in Z-address. However we designed and implemented the query by different C-
Curve not Z-Curve in order to minimize false hits on the interval queries. In
addition, the Z-curve should transform Z-address into x, y Cartesian point with
relatively high computing overhead.

6 Conclusions

Tuple indexing and spatial query are proposed to be scalable middleware compo-
nents in massive environments. The tuples are indexed by composite key to pro-
vide bounded latency on tuple matching with the newest object. Because UbiSpace
manages the tuples by composite keys by default, it can provide scalable comput-
ing overhead in our services. Fan search is proposed to provide distance and angle
queries for target selection. Fan search with C-Curve can provide low latency than
Z-Curve in high node densities. Fan search is optimized in tree traversing by path
stack and data-aware interval skipping. The paper focuses only on the indexing

156 G. Shim and K.H. Park

schemes and query processing. We would research further on the overall system
architecture to support massive environments with network limitations.

References

1. Johanson, B., Fox, A.: The event heap: A coordination infrastructure for interactive
workspaces. In: WMCSA, pp. 83–93. IEEE Computer Society Press, Los Alamitos
(2002)

2. Julien, C., Roman, G.C.: Egospaces: Facilitating rapid development of context-
aware mobile applications. IEEE Transactions on Software Engineering 32(5), 281–
298 (2006)

3. Lee, J., Lim, S.H., Yoo, J.W., Park, K.W., Choi, H.J., Park, K.H.: A Ubiquitous
Fashionable Computer with an i-Throw Device on a Location-based Service Envi-
ronment. In: PCAC (2007)

4. Yoo, J.W., Jeong, Y.W., Song, Y., Lee, J.P., Lim, S.H., Park, K.W., Park, K.H.:
iThrow: A New gesture-based wearable input device with target selection algo-
rithm. In: ICMLC (2007)

5. Shim, G.D., Moon, S.K., Song, Y., Kim, J.S., Park, K.H.: U-Interactive: A Mid-
dleware for Ubiquitous Fashionable Computer to Interact with the Ubiquitous
Environment by Gestures. In: IFIP International Conference on Embedded and
Ubiquitous Computing, pp. 694–705 (2007)

6. Lehman, T.J., Cozzi, A., Xiong, Y., Gottschalk, J., Vasudevan, V., Landis, S.,
Davis, P., Khavar, B., Bowman, P.: Hitting the distributed computing sweet spot
with TSpaces. In: Computing Networks, pp. 457–472 (2001)

7. KAIST UFC Project, http://core.kaist.ac.kr/UFC
8. Freeman, E., Arnold, K., Hupfer, S.: JavaSpaces Principles. In: Patterns, and Prac-

tice (1999)
9. UbiSense, http://www.ubisense.net

10. Want, R., Pering, T., Danneels, G., Kumar, M., Sundar, M., Light, J.: The Personal
Server: Changing the Way We Think about Ubiquitous Computing. In: Borriello,
G., Holmquist, L.E. (eds.) UbiComp 2002. LNCS, vol. 2498, p. 194. Springer, Hei-
delberg (2002)

11. Leonhardi, A., Kubach, U., Rothermel, K., Fritz, A.: Virtual Information Tow-
ers - A Metaphor for Intuitive, Location-Aware Information Access in a Mobile
Environment. In: ISWC (1999)

12. Nakajima, T., Satoh, A.: Software infrastructure for supporting spontaneous and
personalized interaction in home computing environments. Personal Ubiquitous
Comput. 10(6), 379–391 (2006)

13. Kela, J., Korpipaa, P., Mantyjarvi, J., Kallio, S., Savino, G., Jozzo, L., Marca, D.:
Accelerometer-based gesture control for a design environment. Personal Ubiquitous
Comput. 10(5), 285–299 (2006)

14. Silberschatz, A., Korth, H.F., Sudarshan, S.: Database System Concepts, 5th edn.,
pp. 481–500. McGraw-Hill, New York (2006)

15. Skopal, T., Kratky, M., Pokorny, J., Snasel, V.: A new range query algorithm for
Universal B-trees. Elsevier Information Systems 31(6), 489–511 (2006)

16. Hogers, C.: Approximation of arbitrary polygonal objects using space filling curves
versus a bouding box approach. In: Munich University of Technology Faculty for
Computer Science, Section III Database Systems, Knowledge Bases (2003)

17. Lee, K.C.K., Schiffman, J., Zheng, B., Lee, W.C., Leong, H.V.: Round-Eye: A
system for tracking nearest surrounders in moving object environments. Elsevier
Information Systems 80(12), 2063–2076 (2007)

http://core.kaist.ac.kr/UFC
http://www.ubisense.net

	Scalable Interactive Middleware Components for Ubiquitous Fashionable Computers
	Introduction
	UbiSpace
	Tuple Space
	Limitations of Tuple Space
	Design and Motivation of UbiSpace
	Usage Example of UbiSpace
	Implementation of UbiSpace

	Fan Search: Target Selection Algorithm
	Definition of Fan Search
	Multiple Interval Query Optimization in B^{+}-tree

	Performance Evaluation
	Tuple Indexing Effect of UbiSpace
	Fan Search with Space Filling Curves

	Related Works
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

