
Proactive Data Replication Using Semantic
Information within Mobility Groups in MANET

Hoa Ha Duong and Isabelle Demeure

Institut TELECOM - TELECOM ParisTech - CNRS LTCI, 46 rue Barrault,
75013 Paris, France

hoa.haduong@telecom-paristech.fr, isabelle.demeure@telecom-paristech.fr

Abstract. In this article we propose a distributed data replication
algorithm to be used for data sharing in Mobile Ad hoc NETworks
(MANETs). Our system replicates data before users access them. To
this purpose, it uses a predictive algorithm based on semantic informa-
tion about the user and the data and previous access patterns. It also
aims at creating enough replica to prevent data loss in case a peer unex-
pectedly disappears or a partition occurs. To this end, we also propose a
stable group creation algorithm based on long lasting connectivity. While
data sharing systems for MANET already exist, both the use of seman-
tic information and of temporal stability are new in this domain. We
illustrate the interest of the proposed algorithms by showing how a wiki
service on MANETs would benefit from them.

Keywords: MANET, data sharing, intelligent replication, mobility,
wiki.

1 Introduction

Mobile Ad hoc NETworks (MANETs) are networks established spontaneously
(with no pre-existing infrastructure) between mobile terminals. In MANETs,
terminals may act as routers as well as end users terminals. The toplogy of
the network evolves as the nodes move. These networks therefore create new
challenges for distributed systems and applications designers: they must design
algorithms that adapt to the dynamic network topology; they must also take into
account that there is no guarantee of a persistent access to a given terminal.
Algorithms should avoid the use of central coordinators and should therefore
be conceived as decentralised; they should also introduce redundancy to prevent
faults created by peer disappearance and network partition. The communications
are more scarce than in a wired network and the amount of communication
directly impacts the energy consumption and therefore the amount of time a
user can work before the battery “dies”. Most mobiles terminals also have less
storage space than desktops. Algorithms should thus be aware of the potentially
limited capacities of the terminals.

Collaborative services over MANETs are of interest to academics and indus-
tries as demonstrated by the existence of projects such as the POPEYE european

C. Giannelli (Ed.): Mobilware, LNICST 0007, pp. 129–143, 2009.
c© Institute for Computer Science, Social Informatics and Telecommunications Engineering 2009

130 H. Ha Duong and I. Demeure

research project [5] or the One Laptop Per Child (OLPC) project [2]. A classic
collaborative data sharing service is a distributed file system, such as adHocFS
[3], but other services may be useful, such as a distributed editor, or a social
networking application. These services may be used as an extension of a central-
ized service, when its users are out of reach of the server but still in group, or
even as a totally independent application.

In this article we focus on the problem of data replication to increase data
availability in a MANET. To each data we associate metada giving information
about data content and attributes. Users also share information about them-
selves, advertising their interests and the resources of their terminals. We use
this semantic information to provide an efficient and adaptable replication mech-
anism. Since we aim at offering a middleware for collaborative applications, we
postulate that while users are mobile, they are moving around in group. To opti-
mize the storage space, we enforce collaborative replication within these groups.
One of our contributions with respect to other existing data sharing systems for
mobile ad hoc networks, such a the file system adHocFS[3] or the middleware
XMiddle[11], is the introduction of semantic information that allows intelligent
management of data replication by predicting users acesses. Systems such as
Bayou[22], or Coda[21] allow users to work when they are disconnected, but
they use replicated servers to store the data. Since we are in a MANET environ-
ment, a decentralized peer to peer solution, not based on reliable peers to act as
servers is better suited to our problem.

The algorithms presented in this paper are currently being implemented in a
data sharing system that will be run on top of a middleware for MANETs that
was developed within the framework of the Transhumance projet [15].

The remainder of this paper is organised as follows. In Section 2, we present
a wiki service on MANETs that is used throughout this paper to illustrate
the interest of the proposed algorithms. In Section 3, we survey the current
replication mechanisms for MANETs. In Section 4, we present our proposal that
consists in an algorithm for creating stable neighbourhoods and a replication
algorithm that reduces the latency of data access, and prevents the loss of data
in case of partition. In Section 5, we discuss the validation of the proposed
algorithms. Finally, in Section 6, we conclude and discuss the work that still
needs to be done.

2 A Target Application: Wiki over MANETs

In the work presented herein, we focus on a wiki service suited to MANETs. A
wiki is a web application allowing its users to share information by creating and
editing articles in a quick and simple way [1].

Let us consider a scenario taking place in a school where students are en-
couraged to take a scientific approch to knowledge by the deployement of a wiki
where they describe new knowledge acquired by experimentations and observa-
tions. Each student has his/her own personal laptop, with wireless capability and
ad hoc network protocols. When a class leaves for a field trip, the wiki content

Proactive Data Replication Using Semantic Information 131

is distributed on the students laptops so that they can access it even if the field
trip location does not provide network access. The students can therefore gather
new information and contribute to the school knowledge base. Upon their return
to school, the new articles produced during the trip are added to the school wiki
and the modifications are merged.

In this article we focus on the management of the wiki when users are working
in ad hoc mode. We use this service to demonstrate our algorithms. The wiki
articles are structured by hypertext links and categories. Data may be simul-
taneously modified by several peers hence the need for a coherence protocol.
Data are associated with correlated data via hypertext links, and with seman-
tic information about their content, via categories, such as Science, or Birds of
Southeast Asia. For a given data, few users edit the data and most of them are
only readers.

The algorithms presented below take into account semantic information to
enforce intelligent replication.

3 State of the Art: Replication Mechanisms for MANETs

Replication may be done with two objectives: a data may be replicated to reduce
the latency of accesses, or to enforce the data presence in the network, even if a
fault occurs. We describe 3 kinds of algorithms below. The first kind of algorithm
tries to solve the issue of fault, and more precisely partition, without overloading
the storage space. The second kind of algorithm aims at minimising the latency
without overloading the network. The third kind of algorithm attempts to solve
both issues.

In algorithms such as those proposed by Wang [12] and Chen [4], the authors
create the minimum amount of replica such that when the mobility causes the
network to split, all the parts of the network still hold a copy of every data.
To enforce this property, they predict partitioning using the users terminals
position to extrapolate their future position. These methods require GPS (Global
Positioning System) information or equivalent and complex costly computation.

The algorithms proposed by Jing [14] and Yin[13] inspect the data accesses to
decide if a replica should be created. Jing postulates that data often read should
be replicated to lower the access time while a data often written should not be
replicated as the replication would create additional coherence traffic. He counts
the accesses made in a neighbourhood and decides based on the read/write ratio.
Yin examines the traffic and counts the requests for a data. Depending on the
number of requests and the nature of the data (often edited or not), a peer may
cache the data, or a path to the closest copy.

Takahiro Hara has proposed several algorithms to determine how data should
be replicated. Depending on the information we have about the data, a quantifier
is created to evaluate the pertinence of replicating the data. In [7], Hara considers
that for each user i and each non mutable data j, we know the access frequency
f i, j. In [8], Hara considers data periodically updated, with the period tj and the
probability pi,j a peer accesses a data in this period. He defines the quantifier

132 H. Ha Duong and I. Demeure

pti,j = pi,j ∗ tj , with tj denoting the remaining time to the next update; pti,j is
the probability that the peer accesses the data before it is updated and the local
copy becomes invalid. In [10], Hara considers correlated data. For each pair of
data i and j, the correlation ci,j is the probability that the two data are accessed
together is known. For each data, a priority is calculated in order to reflect the
frequency of access to it. In [9], Hara considers data updated aperiodically, with
the probability for each peer of reading the data pRi,j and writing the data pWi,j

known. He defines the ratio RWRi,j = pRi,j

pWi,j
.

For each of those quantifiers, three algorithms are proposed. In the first al-
gorithm, each peer replicates data for itself only, using the quantifier to decide
which data should be replicated first. This algorithm is simple but two neigh-
bours may end up hosting the same data. The second algorithm tries to fix this
problem by having each peer broadcast how they quantify the data to their
neighbours. For each data, the neighbour with the highest quantifier creates a
copy. This algorithm fixes the problem of neighbours hosting the same data but
since the users are mobile, neighbours may be separated between two periods.
The third algorithm tries to fix the problem caused by mobility by creating stable
neighbourhoods: a peer considers another peer to be part of his neighbourhood
if it can be attained by two paths. Within this neighbourhood, the peers have
the same behaviour as in the second algorithm.

Hara’s algorithms use precise information about the data and the accesses,
such as the update frequency or the access frequency. This approach is suitable
for some types of data, such as those produced by sensors, but this information
does not seem to be relevant for human accessed and edited data.

Our solution introduces semantic information about the data and the user
in order to predict the user accesses on the fly by using keywords describing
the content of a data and the user interests. By observing the real accesses, we
correct our prognosis.

4 Proposal: Stable Neighbourhood and Replication
Algorithms

4.1 Asumptions

In our proposals, we make some assumptions about the target MANET system,
namely:

– First we assume that the terminals used are laptops. They have good capacity
and are scarcely mobile but nevertheless they may move and disappear.

– We do not make any specific assumptions about the communication protocols
that are out of our the scope of this research, except that the routing layer
may be queried to provide the number of hops between any two peers (which
is possible in a number of implementations such as, for example, The UniK
OLSR implementation [16].)

– Each user has a profile, in which the user’s interests are described by a list
of keywords.

Proactive Data Replication Using Semantic Information 133

– Each data has related metadata, also in the form of keywords, outlining data
content. A data may also have a set of correlated data.

In our algorithms, the targetted data granularity is that of a memory page
with size ranging from a few kiloByte to a megaByte.

4.2 Stable Neighbourhood Algorithm

To share the load of hosting data and reduce the number of adjacent replica, we
propose to do collaborative replication: a peer should host data for itself as well
as for its neighbours. This should be done among peers staying in view of each
other on the long term, else the data would be stored without being accessed.

Since the topology is not fixed, a peer needs to discover and maintain a stable
neighbourhood. Here we propose an adaptable algorithm 1 for a peer to construct
a neighbourhood that is stable over time.

In a nutshell, this algorithm 1, executed periodically, behaves as follows:

– For each peer
– If the peer is present this round, PresenceCounter is incremented, unless

the value is already at MaxPresence.
– If the peer is absent this round, PresenceCounter is decreased, unless the

value is 0 in which case we do not keep trace.
– It also stores the average distance between peers, in case an overlaying

algorithm needs this information.
– It decides on a group by setting a minimum threshold for the presence

counter value.

How we set the period of execution for the algorithm 1 is discussed in the
Validation Section (we use the OLSR algorithm route maintaining a period of 2
seconds).

The parameters of the algorithm 1 have the following meaning:

– maxPresence (line 11): the PresenceCounter value must have an upper bound
so that when a peer present for a long time disappears, it is removed from
the neighbourdhood.

– α (line 20) reflects how our evaluation of the average distance taking into
account the instant value. α must belong to [0,1]

– thresholdStable (line 26) reflects how volatile a peer in the neighbourhood
is allowed to be.

– thresholdDistance (line 26) reflects the acceptable width of the neighbour-
hood

The use of a maximum (MaxPresence) and a minimum (thresholdStable)
value for the presence counter instead of letting it increase indefinitly allows
us to eliminate a peer from the group if it disappears, while tolerating a few
intermittent disconnections. They can be understood as time spans: e.g. for a
polling period of 10 seconds, a thresholdStable of 60 and a MaxPresence of 72,

134 H. Ha Duong and I. Demeure

we expect a peer to stay 60*10s=10 minutes in our vinicity before considering
it a neighbour. We tolerate at most (72-60)*10s=2 minutes of absence before we
remove it from the neighbourhood.

Init1

Set Neighbourhood, Potential, Reachable= ∅;2

This part of the algorithm is repeated periodically until line 29 to take3

into account the mobility;
Reachable = { (peer reachable this period, distance) };4

maxDist = distance to the furthest peer;5

foreach (peer, distance) ∈ Reachable and peer /∈ Potential do6

add (peer, distance, 1) to Potential;7

end8

foreach (peer, distance, PresenceCounter) ∈ Potential do9

if (peer, distanceNew) ∈ Reachable) then10

PresenceCounter = max(PresenceCounter++, maxPresence);11

distance = α*distanceNew+(1 − α)*distance;12

end13

else14

if (PresenceCounter =1) then15

remove peer from Potential;16

end17

else18

PresenceCounter- -;19

averageNumberHops = α*maxDist+(1- α)*20

averageNumberHops;
end21

end22

end23

Neighbourhood =∅;24

foreach (peer, distance, PresenceCounter ∈ Potentials) do25

if PresenceCounter ≥ thresholdStable and averageNumberHops ≤26

thresholdDistance then
add peer to Neighbourhood;27

end28

end29

Algorithm 1. A stable group formation algorithm

As we have seen, our algorithm periodically checks which peers are within
reach. This can be done in different ways, depending of the underlaying routing
algorithm:

– a proactive routing algorithm such as OLSR creates and maintains routes
between nodes even when their is no traffic.

– a reactive routing algorithm such as AODV creates routes only when re-
quested.

Proactive Data Replication Using Semantic Information 135

We do not discuss the pros and cons of each type of algorithm which is out of
the scope of this paper. The availability of the Transhumance middleware [15]
runing OLSR in our lab, led us to choose a proactive routing algorithm (OLSR);
we can therefore obtain the list of reachable terminals by “peeking” in the OLSR
routing tables.

This algorithm does not use location information to construct groups and may
be executed independently by each terminal. While it may not be as accurate
as GPS based algorithms, it is less compute-intensive and network greedy. Some
algorithms use an average distance between peers and assume that if peers are
close for long enough, they belong to the same group; we prefere to base our
algorithm on the time peers spend within reach of each other.

4.3 Replication Algorithms

Replicating data is a mechanism used to accelerate data access by caching it. It
is also used to introduce redundancy and provide alternate access when a fault
occurs, rather than loosing the data.

In this section we present two complementary replication algorithms to solve
both problems.

Replication Based on Interest. We propose to create local copies of poten-
tially interesting data before the user tries to access them. To do so, we need to
predict the user accesses.

For a data D, described by a set of keywords KD, and a user U, whose interests
are summed up by a set of interests IU , we define in 1 the interest U may have
in the data as PU,D:

PU,D =
1
2

∗ (
card(KD ∩ IU)

card KD
+

card(KD ∩ IU)
card IU

) (1)

PU,D calculates which proportion of the keywords are interesting for the user
with respect to the number of keyword and the number of interests.

Since we want to enable collaborative sharing, a peer should take into account
the interests of its neighbours when replicating data. As terminals may have
heterogeneous capacities, a peer should only provide this service to peers with
less resources.

With K the set of peers in the stable neighbourhood, each peer ki ∈ K
evaluates the resources it possesses to produce a resource representant res, res ∈
[0, 1]. All the peers must use the same scale to establish their resources. resi is
then used to calculate how many peers may be generous in sharing their resources
with peer i. Interests and res are broadcasted in the stable neighbourhood. For
each keyword A found in the neighbourhood (ie present in at least one set of
interest), each peer kp ∈ K determines the weight of A.

First of all, it aggregates the interest of other peers ki,i�=k ∈ K with less re-
sources than it has by summing the differences between its res and the one of
peers with less resources for which A is an interest as in 2 :

SumWeight(kp, KW) =
∑

ki∈K,ki interested by A

max
(
(resp − reski), 0

)
, (2)

136 H. Ha Duong and I. Demeure

To each keyword A we then associate a weight, AWeight, using formula 3:

AWeight(kp, KW) = SumWeight(kp, KW) +
{

1 if KW interest kp

0 else
(3)

Thus, each peer creates a set of aggregated interests, AG, containing a list of
pairs interests with their weight(A, AW).

For a dataD with associated keyword KW, and a user U, with aggregated
interests AG, the interest formula becomes 4:

c =
∑

(A,AW)∈AG ∧ A∈KW

AW, PU,D =
1
2

∗ (
c

card KW
+

c∑
(A,AW)∈AG AW

) (4)

In the data sharing system that we are currently specifying, a message is
broadcasted to all peers to advertize the creation of a new data. This message
will also carry the keywords associated with this data. When a peer receives
such a creation message, it calculates its interest in the data. If P is superior to
a threshold the data is replicated. The values of the interests are also aggregated:
for each percent P between 0 and 100, we count how many data have an interest
rounded to P. If a data interest is superior to the N th centile, it may be replicated.

Example
interestThreshold : 0,8
data Keywords =A,B,C,E
if user Interests =A,B,C,D, PU,D = 0, 75 , the data is not replicated
if user AG=(A,1.3),(B,1),(C,2),(D, 1),(E,0.1), PU,D = 0, 99, the data is repli-
cated

Replication to Prevent the Loss of Data. We have seen how to decide if
a data may be interesting for the user and how to replicate it. Even with this
mechanism, since a peer is limited by its storage, some data may not be repli-
cated. We propose an algorithm to create enough replica so that, should a crash
happen, such as a crash or a network partition, no data would be lost.

This algorithm is executed when a peer learns of the existence of a new
data but is not interested enough to replicate it.

repeat1

wait to be informed of replica creation in the previous step, ie the2

RTT to the farthest node in the group ;
K = the number of copies that must be created);3

N = the number of potential hosts for the data (i.e., hosts in the4

neighbourhood with no copy);
if rand[0,1] ≤ K/N then5

Create a replica and broadcast the information;6

end7

until enough replica ∨ a local replica has be created ;8

Algorithm 2. An algorithm to enforce the creation of a minimum number
of replica

Proactive Data Replication Using Semantic Information 137

Combining the Algorithms. In the beginning, each peer establishes his stable
neighbourhood. We consider that all peers use the same parameters to tune the
algorithm. The relationship ”Belongs to neighbourhood” is thus symmetrical.
Each peer broadcast its profile (resources level and interests) to its neighbours.

The stable neighbourhood is maintained by periodically checking the state of
the neighbours. When a modification occurs in a peer profile, it is broadcasted
and the neighbours integrate the modifications.

When information about a new data is received, a peer calculates its potential
interest for the data. If it is interested, the peer replicates the data and broad-
casts this information (first algorithm). Else, it caches the metadata in case a
neighbour would later need the data. The peer then checks if there is enough
replica in the neighbourhood and if it is not the case, it attempts to create a
new one.

4.4 Learning New Interests

The user profile includes a list of interests as keywords and associated metadata;
data are also described by keywords. In the preceeding section, we have described
how this information is used to predict the user accesses and gather data which
may interest him. This allows the user to access data even when the creator of
the data is out of reach.

As the user accesses data, we want to analyze the keywords associated to
these data to see if new interests may be detected.

In a wiki, editors are encouraged to structure the articles into categories. We
take those categories as keywords; the keywords are thus organized in a graph
of categories and subcategories.

This graph is a Direct Acyclic Diagram (DAG), and not a tree; e.g. an ar-
ticle about tourism in France should be part of both the France and Tourism
categories. The uppermost categories are under a category that we call root.
Furthermore, a category cannot be a subcategory of itself, so we do not have
cycles in the graph.

Each data comes with its DAG representing its categories and each peer stores
a DAG representing all the data it has accessed so far. Each node has a counter
indicating how many times this keyword has been meet.

When an user accesses a data for the first time, the data DAG is merged with
the user DAG. To determine if a node may constitute a potential interest, we
distinguish the case of the leaf nodes and the case of the other nodes. If the
node is a leaf, we check if its value is superior to x + 2 ∗ σ, with x being the
average of the value of the leaves, and σ the variance. If the node is not a leaf,
we check how many children it has, and how the counter values are distributed:
if the variance is low enough, we consider the node as a potential new interest.

5 Validation

As we have seen in Section 3, existing algorithms have tried to solve the problem
of data access latency and data loss by replication. Hara’s algorithms attempt

138 H. Ha Duong and I. Demeure

Fig. 1. Structured keywords space

This example references Figure 1.
For the leaves E, F and H x = 2, σ =≈
0.57
None of those nodes is considered as a
potential new interest.
For the nodes D, x = 3, σ =≈ 0.5
D children have an evenly distributed
load, so we consider D as a potential new
interest.

to fix those two problems but his hypotheses are not adapted to an application
where data are edited by humans.

Our solution introduces semantic information about the data and the users
to predict their accesses. We also adapt to the user by extracting patterns from
his previous accesses.

A first version of our system has been implemented in the POPEYE project
[5]. This version implements a simple replication mechanism based on interests,
and uses clusters created at a lower level as stable neighbourhoods. A more
advanced stand alone version that could be run on top of the Transhumance
middleware, as mentioned before, is under development.

Validation and evaluation of algorithms for MANET is a complex problem.
Since the terminals are mobile, a live experience requires moving participants
and thus cannot be reproduced ad lib. Furthermore, since terminals have wireless
connectivity, the reproductibility of an experiment is heavily dependant of the
environment (e.g. how many other wireless networks are presents that can create
interferences). We now explain how we intend to validate our algorithms.

5.1 Validating the Group Algorithm

Since we are building our prototype on top of a proactive routing algorithm,
OLSR, a peer just takes a peek at the content of its routing table to update
it stable neighbourhood. Thus, the cost in messages is in effect null. We will
therefore validate our algorithm pertinency, by running it in a context where
we know the existing groups, and checking if the algorithm comes up with the
effective groups. We want to see how volatile the peers within a group can be,
with our algorithm still detecting the effective groups.

In order to validate and adjust our group algorithm, we have implemented it in
the NS-3 simulator [19]. NS-3 is an open source discrete event simulator intented
to eventually replace the NS-2 simulator. While NS-2 is much more widely used,
we choose NS-3 for several reasons. NS-2 has had a lot of contributions over the
years that make it more complete but the code is less homogeneous and more
complicated to grasp. NS-3 and NS-2 both implement the models that we need
to simulate our algorithm (WiFi, IP and OLSR routing), but while we need to

Proactive Data Replication Using Semantic Information 139

patch NS-2 to use OLSR, it is already part of the NS-3 simulator. Finally, since
NS-3 aimed at replacing NS-2, we believe that its designers learned from the
mistakes made in NS-2, and it should be, in the long term, a better tool. Even
if NS-3 is not as well documented and known as NS-2, we prefere to use it as we
think it should become more used in the future.

Since there is no Group Mobility model in NS-3, we have implemented a sim-
ple Group mobility model that allows us to predefine groups of nodes sticking
together, that peers may join and leave from time to time. These peers move
at pedestrian speed and stop at times. We set the period of the algorithm at 2
seconds, namely the period of route refreshing in OLSR. We ran different simula-
tions with differents values of parameters thresholdStable and MaxPresence, and
we made the size of the area and the number of peers vary. Then, we computed
the correlation between the actual groups as defined by the mobility model and
the groups built by our algorithm. We simulated 20 minutes of execution.

In tables 1(a) and 1(b) we can see results for two particulars simulations.
In the first one 1(a), thresholdStable=3 and MaxPresence=10 : a peer is part
of a neighbourhood as soon as it has been present for 6 seconds (threshold-
Stable*period); it leaves the neighbourhood if it is absent for more thant 14
seconds ((MaxPresence-thresholdStable)*2). In the second table 1(b), thresh-
oldStable=90 and MaxPresence=150: a peer is part of a neighbourhood as long
as it as been present for 3 minutes; it is ejected when it is absent for more than
2 minutes. We simulated for 16, 25, 36 and 50 peers and for an area side length
of 500m, 1000m, 1500m, 2000m and 2500m.

The columns represent length of the size of the simulated area while the lines
represent the number of groups by the number of peers in each group. The values
in the table are the percentage of accuracy of our algorithm: for each round and
for each peer we have checked if the calculated neighbourhood is the effective
group; we have then computed the portion of rounds where the neighbourhood
is accurate.

As we can see in 1(a) and 1(b), the accuracy of the algorithm seems to grow
when the simulated area is larger.

Figures 2 and 3 plot the percentage of accuracy, this time in relation with
the density of the terminal : nb groups∗nb peers per group

area side length2 . These figures show the
algorithm is more accurate if the density is low. Thus, those errors are due to the

Table 1. Simulation results. Columns: size of the simulated area; lines: number of
group by number of peers in each group

500 1000 1500 2000 2500
6x3 0,03 47.23 73.10 72.62 94
5x5 1.02 23 54.61 74.61 75
6x6 0 17.96 37.58 65 71
5x10 NA NA 26.2 50 58.38

(a) thresholdStable= 3 and a Max-
Presence=10

500 1000 1500 2000 2500
6x3 0,03 16,88 55,95 71,23 68,55
5x5 0 24,75 58,96 81,23 62,88
6x6 0 23,3 50,63 59,31 57,78
5x10 NA 9,42 30,12 53,92 51,41

(b) thresholdStable = 90 and Max-
Presence = 150

140 H. Ha Duong and I. Demeure

Fig. 2. Thresholdstable=3, MaxPres-
ence=10, accuracy as a function of
density

Fig. 3. Thresholdstable=90, MaxPres-
ence=150 , accuracy as a function of den-
sity

number of peers per square meter : if a lot of peers are present in a small space,
they cover enough ground to provide stable connectivity even with peers not in
their group. Other simulation results, not included, here confirm this result.

The right values of thresholdStable and MaxPresence depend of the size of
the area, the volatility and the speed of the terminals. We intend our system to
work and terminals moving to pedestrian speed but the other parameters will
depend on the situation.

While these tests underline this issue, they also show that our algorithm does
recognize the effective groups as being part of the neighbourhood, even is some
other peers happen to be connected for a time long enough to be included, mainly
because the density of peers is high enough to provide connectivity.

5.2 Validating the Replication Algorithm

We are now in the process of evaluating our replication algorithm, which leads
us to answer the following questions: What is the cost in terms of computing
power and number of messages of these algorithms? Is a replica accessed? How
many data must be fetched? How many requests cannot be satisfied because the
data is not available?

For the cost of the preemptive replication, we expect our results to be close
to the results obtained by the algorithms proposed in Hara’s works: similarly
to his proposal, the peers exchange information about their interests within a
group to decide what they should replicate.

Let us consider that we have M peers in total. How many messages are ex-
changed in a stable group of N peers? First of all, interests and resources co-
efficient are exchanged once within the group, for a cost of N*(N-1) unicast
messages. If our group algorithm manages to detect stable groups, this step
should be rarely done. We also postulate that peers seldom update their inter-
est. When a new data is shared anywhere, this information is broadcasted to all
the peers, with either M-1 unicast messages, or 1 broadcast message. The cost
for a group of N peers is therefore N. Peers decide if they intend to replicate.

Proactive Data Replication Using Semantic Information 141

When a peer creates a replica, it send a message to ask for the data, receives it
(2 unicasts messages, one whose payload is the data) and informs its neighbours
(N-1 messages). Our algorithm creates K replica when a new data is shared, in a
group of N peers, the number of messages exchanged is therefore N+K(2+N-2)
messages.

The algorithm has been implemented in the Popeye project[5] and was tested
in real conditions, as can been seen on video available on the Popeye website[18].
While our algorithm has been tested functionally within Popeye, we are missing
evaluation of the scalability and the performance of the algorithm. We also would
like to be able to execute the algorithm several time while we change a parameter
to adjust it. As we have seen before, this must be done with a simulator. We are
currently conducting more evaluations.

Our problem with evaluating this algorithm lies in deciding if a replica has
been wrongly created, and if a replica should have been created: we propose a
predictive replication algorithm that estimates the behaviour of the user based
on a set on predefined interests and its previous accesses.

We do not have for the moment a non biaised solution to validate our repli-
cation algorithm, as we do not have traces of accesses to a set of data with
semantics, by a set of users with established interests. We cannot use artifi-
cial users either since it would give us strongly biaised results: our system itself
simulates the behaviour of the users to predict which data should be replicated.

To evaluate the replication algorithm, we are currently implementing our proof
of concept application, a P2P wiki for MANETs. This system will then be de-
ployed and used and we will collect real traces of usage to reinject in a simulator.

6 Conclusion and Future Work

Collaborative services over MANETs need to take into account the particularities
of MANETs, such as the dynamic topology, or the lack of a reliable server. In this
article, we focused on the problem of data replication in MANETs, to provide
small latency data access, and to prevent the loss of data in case of a fault (e.g.
peer becoming out of reach).

First of all, we propose an algorithm to build stable peers group. Rather than
using location information or topological proximity to outline a group, we shape
up a group by surveying the continuous connections between peers over time.

Then we propose to solve both replication problems by using a two phases
algorithm using those stable groups. First of all, data are replicated by peers they
interest. Then, if not enough replica exist to guarantee the survival of the data
in case of fault, new copies are created randomly within a stable neighbourhood.
Our solution differs from existing algorithms because we introduce semantic
information about the data and the user to predict the user accesses on the fly
and manage a more intelligent replication.

In future work, we will modify our algorithm to take into account editable
data in the replication algorithm. Let it be noted that editable data raises the
problem of coherence. While this is not addressed in this paper, we are handling

142 H. Ha Duong and I. Demeure

this issue; we offer eventual consistency by using the commutative replicated
data type Treedoc[20].

We are currently developing a distributed wiki engine integrating the afore-
mentioned algorithms. We will use this application to demonstrate the validity
of our algorithms and evaluate their performance. To this end, we will also have
to decide on a positioning algorithm and a search algorithm.

References

1. http://en.wikipedia.org/wiki/wiki
2. OLPC Association, http://www.laptop.org
3. Boulkenafed, M., Issarny, V.: Adhocfs: sharing files in wlans. In: Second IEEE

International Symposium on Network Computing and Applications, 2003. NCA
2003, pp. 156–163, April 16-18 (2003)

4. Chen, K., Shah, S.H., Nahrstedt, K.: Cross-layer design for data accessibility in
mobile ad hoc networks. Wirel. Pers. Commun. 21(1), 49–76 (2002)

5. Popeye Consortium, http://www.ist-popeye.eu/
6. Inc. Google. picasa.google.com
7. Hara, T.: Effective replica allocation in ad hoc networks for improving data acces-

sibility. In: INFOCOM, pp. 1568–1576 (2001)
8. Hara, T.: Replica allocation methods in ad hoc networks with data update. Mob.

Netw. Appl. 8(4), 343–354 (2003)
9. Hara, T., Madria, S.K.: Dynamic data replication using aperiodic updates in mobile

adhoc networks. In: Lee, Y., Li, J., Whang, K.-Y., Lee, D. (eds.) DASFAA 2004.
LNCS, vol. 2973, pp. 869–881. Springer, Heidelberg (2004)

10. Hara, T., Murakami, N., Nishio, S.: Replica allocation for correlated data items in
ad hoc sensor networks. SIGMOD Rec. 33(1), 38–43 (2004)

11. Mascolo, C., Capra, L., Zachariadis, S., Emmerich, W.: Xmiddle: A data-sharing
middleware for mobile computing. Wirel. Pers. Commun. 21(1), 77–103 (2002)

12. Wang, K., Li, B.: Efficient and guaranteed service coverage in partitionable mobile
ad-hoc networks (2002)

13. Yin, L., Cao, G.: Supporting cooperative caching in ad hoc networks. IEEE Trans-
actions on Mobile Computing 5(1), 77–89 (2006)

14. Zheng, J., Su, J., Yang, K., Wang, Y.: Stable neighbor based adaptive replica allo-
cation in mobile ad hoc networks. In: International Conference on Computational
Science, pp. 373–380 (2004)

15. Demeure, I., Paroux, G., Hernando Ureta, J., Khakpour, A.R., Nowalczyk, J.:
An Energy Aware Middleware for collaboration on small scale MANets. In:
Autonomous and Spontaneous Networks Symposium Telecom ParisTech, Paris,
November 20-21 (2008)

16. Tannesen, A., Hafslund, A., Kure, O.: The UniK - OLSR plugin library. In: OLSR
interop workshop, San Diego, August 6-7 (2004)

17. Ha Duong, H.D., Melchiorre, C., Meyer, E.M., Nieto, I., Arrufat, M., Pelliccione,
P., Tastet-Cherel, F.: POPEYE: a simple and reliable collaborative working en-
vironment over mobile ad-hoc networks. In: The 3rd International Conference on
Collaborative Computing: Networking, Applications and Worksharing (Collabo-
rateCom 2007) Crowne Plaza White Plains, New York, USA, November 12-15
(2007) IEEE Catalog Number: 07EX1828C. ISBN: 1-4244-1317-6

http://en.wikipedia.org/wiki/wiki
http://www.laptop.org
http://www.ist-popeye.eu/

Proactive Data Replication Using Semantic Information 143

18. http://www.ist-popeye.eu/
19. http://www.nsnam.org/
20. Shapiro, M., Preguica, N.: Designing a commutative replicated data type (2007)
21. Kistler, J.J., Satyanarayanan, M.: Disconnected Operation in the Coda File Sys-

tem. In: Proceedings of the 13th Symposium on Operating Systems Principles, pp.
213–225. ACM Press, New York (1991)

22. Demers, A.J., Petersen, K., Spreitzer, M.J., Terry, D.B., Theimer, M.M., Welch,
B.B.: The Bayou architecture: Support for data sharing among mobile users. In:
Proceedings IEEE Workshop on Mobile Computing Systems & Applications, Santa
Cruz, California, September 1994, pp. 2–7 (1994)

http://www.ist-popeye.eu/
http://www.nsnam.org/

	Proactive Data Replication Using Semantic Information within Mobility Groups in MANET
	Introduction
	A Target Application: Wiki over MANETs
	State of the Art: Replication Mechanisms for MANETs
	Proposal: Stable Neighbourhood and Replication Algorithms
	Asumptions
	Stable Neighbourhood Algorithm
	Replication Algorithms
	Learning New Interests

	Validation
	Validating the Group Algorithm
	Validating the Replication Algorithm

	Conclusion and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

