
An Evaluation Framework for EU Research and

Development e-Health Projects’ Systems�

Androklis Mavridis, Stamatia-Ann Katriou, and Adamantios Koumpis

ALTEC S.A, M. Kalou St 6, Thessaloniki, 54629, Greece
Tel.: +302310595646; Fax: +3023210595640

{mavr,akou}@altec.gr

Abstract. Over the past years it has become evident that an evalua-
tion system was necessary for the European Research and Competitive
funded projects which are large and complex structures needing con-
stant monitoring. This is especially so for e-Health projects. The race
to complete assignments means that this area is usually neglected. A
proposed framework for the evaluation of R & D project systems using
ATAM, ISO 14598 and ISO 9126 standards is presented. The evaluation
framework covers a series of steps which ensures that the offered system
satisfies quality, attributes such as operability, usability and maintain-
ability imposed by the end users. The main advantage of this step by
step procedure is that faults in the architecture, software or prototype
can be recognised early in the development phase and corrected more
rapidly. The system has a common set of attributes against which the
various project’s deliverables are assessed.

Keywords: Evaluation, e-Health, Research and Development projects,
Software.

1 Introduction

In most European Research and Competitive funded projects, the strict time
plans and time limitations often lead consortia to focus mostly on delivering the
proposed system without providing proper justification of the system’s quality,
the appropriateness and overall acceptance by the involved stakeholders. The
dedicated resources spent on a system’s evaluation tasks are only adequate for
software evaluation and proof of concept through end users’ participation in
prototypes, which often happens too late in a project’s life cycle. This lack of
proper evaluation often hinders a project moving from research into its applied
form. This is especially important when coping with the peculiarities of e-Health
projects.

With the cooperation of EU partners, ALTEC has developed a unified frame-
work aiming to evaluate the proposed architecture, the developed software, and
the prototypes offered to end users of the systems that are the product of Eu-
ropean Research and Development projects. These projects, funded by the EU,
� eHealth 2008, September 8th and 9th, 2008, City University, London EC1.

D. Weerasinghe (Ed.): eHealth 2008, LNICST 1, pp. 9–16, 2009.

c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2009

10 A. Mavridis, S.-A. Katriou, and A. Koumpis

consist of large and complex Research structures, which involve a constellation
of members, including universities, research centres and business companies who
cooperate collectively on each research project.

When the expected research outcome is software the main evaluation task is to
test the offered functionalities, but few, if any, resources are spent on evaluation
tasks, as the consortium is usually limited by time constraints ordered by strict
work plans. Yet there is the need to ensure that each offered system satisfies
quality attributes, such as operability, usability, maintainability, etc, imposed
by end users.

The framework for evaluating these complex structures was developed while
ALTEC was participatiing in the SAPHIRE project (IST- 27074 SAPHIRE “In-
telligent Healthcare Monitoring based on a Semantic Interoperability Platform”
PRIORITY 2.4.13 Strengthening the Integration of the ICT research effort in
an Enlarged Europe Focus: eHealth). The SAPHIRE project was to develop an
intelligent healthcare monitoring and decision support system on a platform in-
tegrating the wireless medical sensor data with hospital information systems.
The resulting system is employed on two pilot medical prototypes, namely the
Homecare and Hospital Prototypes and the operation involves real patients and
real healthcare data to be handled by the system. It was thus, a major require-
ment to have our system evaluated in order to assure not only its intended
functionality but also its acceptance by the end users, which in this case, are the
patients and the medical staff operating the system.

2 Aims and Objectives

Our aims and objectives were to assess the various deliverables of the project
against a set of quality goals ordered by the system’s stakeholders. To achieve
this we employed the Architecture Tradeoff Analysis Method (ATAM) [1] method
and the ISO 14598 and ISO 9126 2-4 standards [2].

For the evaluation of the SAPHIRE system, our objectives were:

1. To provide a unified evaluation framework able to accommodate the evalu-
ation of architecture, software and developed prototypes.

2. To have this framework as generic as possible - not focusing only to the
specific needs of the SAPHIRE project - to adopt to other projects easily
without modifications.

3. To involve the end users in the evaluation process as early as possible by
stating their true requirements from their perspective.

4. To exploit the results from the evaluation steps early on, providing valuable
assistance to the development team.

The evaluation process follows a sequence of steps starting with the evaluation
of the system’s architecture under selected quality attributes. It then moves on
to examine the pieces of software developed against a set of quality criteria, and
finishes by evaluating the final integrated prototype through the employment of
scenarios and metrics desired by end users.

An Evaluation Framework for EU Research 11

3 Methodology

The proposed framework performs three different evaluations, namely the sys-
tem’s architecture, software and prototypes evaluation. Architecture Tradeoff
Analysis Method (ATAM) was used for the architectural part, and the ISO 14598
and ISO 9126 (2-4) for the software and prototypes evaluations (Figure 1). The
step sequence is described in the following paragraphs.

Business
Drivers

Quality
Attributes

Further development/Bug Fixing

Evaluation
scenarios

ATAM
Utility tree

Quality Goals

Prototype
Evaluation

Software
Evaluation

ATAM
1

2 3

Fig. 1. The evaluation steps

3.1 STEP ONE: Evaluating the System’s Architecture

For evaluating the system’s architecture we employ the recognised methodology,
ATAM. Apart from offering the most complete and assistive approach [3], ATAM
ideally fits in our framework as it is driven by quality attributes that must be met.
ATAM reveals how well an architecture satisfies particular quality goals (such as
performance or modifiability), and provides insight into how those quality goals
interact with each other—how they trade off against each other. Such design
decisions are critical. By using this methodology, poor architecture is exposed
early in the developmental sequence.

ATAM focuses on quality attribute requirements. Quality attribute charac-
terisations answer the following questions:

1. What are the triggers/stimuli inputs to which the architecture must respond?
2. What is the measurable or observable definition of the quality attribute by

which its achievement is judged?
3. What are the key architectural decisions that impact on achieving the at-

tribute requirement?

The consequence of using the ATAM is a clarification and concretization of
quality attribute requirements, achieved in part by eliciting scenarios from the
stakeholders that clearly state the quality attribute requirements in terms of

12 A. Mavridis, S.-A. Katriou, and A. Koumpis

triggers and responses. The process of brainstorming scenarios also fosters stake-
holder communication and consensus regarding quality attribute requirements.

Scenarios are the second key concept upon which ATAM is built. Based on
these scenarios and refinements of quality attribute goals the team builds the
quality utility tree. Utility trees translate the business drivers of the system under
examination into concrete quality attribute scenarios. For example: “security is
central to the success of the system since ensuring the privacy of the patients’
data is of utmost importance”; and “usability is central to system’s acceptance
since we need to assure the patients’ satisfaction.”

Before assessing the architecture, these system goals must be made more spe-
cific and more concrete. The team needs to understand the relative importance
of these goals versus other quality attribute goals, such as performance, to de-
termine where we should focus our attention during the architecture evaluation.

The primary aim of ATAM, is to record any risks, sensitivity points, and trade-
off points that may be found when analyzing the architecture. Risks, sensitivity
points, and tradeoff points are areas of potential future concern with the architec-
ture. The output of this first step is a list of quality attributes and the scenarios
identified in the utility tree. These, feed the next step of software evaluation.

Fig. 2. An example of a Utility Tree

3.2 STEP TWO: Evaluating the System’s Software

To evaluate the software in our framework, the ISO 14598 standard is used, pro-
viding an overall software evaluation quality model. This model orders how, when,
whom and what is to be measured, defining as the primary tools for assessments
the Quality in use measures. The process as adopted from the ISO 14598 standard
involves the use of quality characteristics and it orders four stages:

1. Establish evaluation requirements
2. Specify the evaluation
3. Design the evaluation
4. Execute evaluation

An Evaluation Framework for EU Research 13

Fig. 3. ISO9126 2-4 standards

The first two stages can easily be performed by exploiting the set of desired
quality attributes and through the scenarios identified in the utility tree, already
accomplished in the ATAM employment. Designing the evaluation is achieved,
with the help of the quality model specification, where one needs to set quality
goals for the system under study. The ISO 9126 (2-4) standards are divided into
three classes of evaluation requirements: internal metrics, external metrics and
quality in use metrics.

The internal metrics may be applied to a non-executable software product dur-
ing its development stages (such as request for proposal, requirements definition,
design specification or source code). Internal metrics provide the users with the
ability to measure the quality of the intermediate deliverables and thereby predict
the quality of the final product. This allows the user to identify quality issues and
initiate corrective action as early as possible in the development life cycle.

The external metrics may be used to measure the quality of the software prod-
uct by measuring the behaviour of the system of which it is a part. The external
metrics can only be used during the testing stages of the life cycle process and
during any operational stages. The measurement is performed when executing the
software product in the system environment in which it is intended to operate.

The quality in use metrics measure whether a product meets the needs of
specified users to achieve specified goals with effectiveness, productivity, safety
and satisfaction in a specified context of use. This can be only achieved in a
realistic system environment. The internal and external metrics are intended for
developers performing the software evaluation.

In our methodology we employ the ISO 9126 - (2 & 3) External and Internal
metrics, intended for developers performing the software evaluation, and the ISO
9126 - 4 Quality in use metrics indented for the prototypes evaluation performed
by the end users. The selection of measures and metrics is carried out in relation
to the goals set by the evaluators and in relation to the quality goals ordered in
ATAM in the previous step. The context of use is very important, as it constrains
the interpretation of the quality of use. Given a certain type of user, in particu-
lar, the quality in use is then related to particular quality characteristics. We use
Functionality, Reliability, Usability, Portability, Efficiency and Maintainability as
the main evaluation characteristics. The development team can start the software
stress tests based on the selected metrics and the results can feed the bug-fixing
and further development activities ensuring the quality of the final software result.

14 A. Mavridis, S.-A. Katriou, and A. Koumpis

3.3 STEP THREE: Evaluation of the Prototype

As stated above, quality in use metrics selection from the pool of ISO 9126 – 4
standard is used in the prototype evaluation. The second outcome of the ATAM
employment is the utility tree which acts as a blueprint for the identification
of the scenarios employed during the prototyping evaluation. The quality goals
set in the utility tree, can easily be related to the architectural components
responsible for delivering these goals. Having these components and their related
desired quality attributes, the team can build meaningful assessment scenarios
to deliver to end users in order to verify the overall system’s quality, which
constitutes the final outcome of the proposed framework.

4 SAPHIRE Results

The proposed evaluation framework was developed to assess the SAPHIRE sys-
tem. Driven by the need to assure its overall effectiveness, we focused on mea-
suring specific quality characteristics ordered by end users, in our case, both the
patients and medical staff.

4.1 Architecture Analysis of SAPHIRE

The resulting ATAM utility tree is shown below:

Fig. 4. The SAPHIRE Utility Tree

An Evaluation Framework for EU Research 15

4.2 SAPHIRE Software Evaluation Metrics

In SAPHIRE we employed the following ISO 9126-2 & 3 metrics.

• Functionality Compliance metrics: Accuracy expectation metric, Computa-
tional Accuracy metric, Precision metric, Data exchangeability (User’s suc-
cess attempt based) metric, Data corruption prevention metric, Interface
standard compliance metric.

• Reliability Compliance metrics: Failure density against test cases metric,
Failure resolution, Breakdown avoidance metric, Incorrect operation avoid-
ance metric, Availability metric, Mean down time.

• Usability metrics: Operation Understandability metric, Understandable in-
put and output metric.

• Effectiveness Compliance metrics: Task effectiveness, Task completion, Error
frequency.

4.3 SAPHIRE Prototype Evaluation

We selected metrics that would be easy to apply and to measure. Our metrics
were user-oriented, meaning that they aimed to monitored the user’s behaviour
by using the system in the way each scenario dictated. We adopted from the
quality in use metrics pool the Effectiveness, Efficiency and Satisfaction metrics
categories.

• Effectiveness: Completion Rate, Errors, Assists.
• Efficiency: Task time, Completion Rate/Mean Time-On-Task.
• Satisfaction: Questionnaires to measure satisfaction and associated attitudes

were built using Likert and semantic differential scales. Depending on the
case, whether an external, standardized instrument is used or a customized
instrument is created, it is suggested that subjective rating dimensions such
as Satisfaction, Usefulness, and Ease of Use be considered for inclusion, as
these will be of general interest to customer organizations.

5 Business Benefits – Conclusions

The main business benefit behind our approach is the focus on the end-users’
quality requirements. These can be translated into quality goals which will drive
different evaluation tasks (architecture, software, prototypes) performed by dif-
ferent stakeholders. We manage to increase the confidence of developers, while
most importantly minimise the end users involvement (in our case real patients’
capacity and medical staff‘s time-restricted resources).

In employing the framework we took advantage of the work performed in
already completed tasks and work packages, namely those of requirements engi-
neering. Employing ATAM was a fairly easy task because it already had a set
of system’s requirements and architecture analysis. The main difficulties faced
were primarily in persuading developers to learn how to employ the ISO 9126
2-3 measurements and metrics to test the delivered software components.

16 A. Mavridis, S.-A. Katriou, and A. Koumpis

For the SAPHIRE, and similar eHealth related funded projects, the employ-
ment of this framework provided a clear evaluation path to be followed by part-
ners according to their role in the development product life cycle thereby easing
testing and validation tasks, while providing more time to focus on the critical
health/technological issues to be tackled, and thus able to allocate more effort
and money to development and refinement tasks.

In addition, we believe that the application of the proposed framework is not
limited to e-health related systems. The core concept is the early identification
of the desired quality attributes that the system being devised should satisfy.
Having these, we can apply the framework to assess the architecture, the software
and the system prototypes against the appropriate measurements and metrics
selected accordingly from the pool of ISO 9126 2-4 standards. We acknowledge
that further work should focus on extracting the quality attributes from the
requirements engineering phase in a more automated and traceable manner.
Currently we are in the requirements elaboration phase, planning to build a
software toolkit, able to offer the proposed evaluation steps and approach. It
is our intention to offer this toolkit to partners participating in EU-funding
consortia once the project is finalised and critically evaluated.

References

1. Kazman, R., Klein, M., Clements, P.: ATAM: Method for Architecture Evaluation.
Carnegie Mellon University (2000)

2. IEEE Standard for a Software Quality Metrics Methodology, IEEE Std, 1061–1992
(1992)

3. Babar, M., Zhu, L., Jeffery, R.: Framework for Classifying Software Architecture
Evaluation Methods. In: Australian Software Engineering Conference (ASWEC
2004) (2004)

	An Evaluation Framework for EU Research and Development e-Health Projects’ Systems
	Introduction
	Aims and Objectives
	Methodology
	STEP ONE: Evaluating the System's Architecture
	STEP TWO: Evaluating the System's Software
	STEP THREE: Evaluation of the Prototype

	SAPHIRE Results
	Architecture Analysis of SAPHIRE
	SAPHIRE Software Evaluation Metrics
	SAPHIRE Prototype Evaluation

	Business Benefits – Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

