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Abstract. Telemedicine is developing at high speed. In this context, patient’s
privacy and security is of great importance. Therefore any physiological signal,
needs to be encrypted before their transmission over any channel. In this paper,
we have developed an encryption system using chaotic synchronization to
encrypt and decrypt information. The system was used for secure transmission
of electrocardiograms signals as example.
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1 Introduction

E-medicine uses information technologies to deliver health services. Its goal is to widen
the access to medical services. As communication costs are growing cheap, e-medicine
is becoming widely affordable (Moore 2002). Recently, advances in telecommunica-
tions networks have led to many successful e-medicine experiences around the world.
Kontaxakis et al. (2000) developed an e-medicine workstation to acquire process and
transmit ultrasonic images while Sachpazidis and Hohlfeld (2005) proposed a com-
munication system for medical applications. The vast indian subcontinent has wit-
nessed telemedicine success stories (Ayyaga et al. 2003; Pal et al. 2005; Deodhar
2001). Remote monitoring of patients is more and more common due either to an aging
patient population, long distances to cover to find well equipped health centers or the
need to decrease healthcare costs. These informations often transit through public
channels with risk of being hijacked, intercepted, etc. This makes the need for
encryption or other protection techniques crucial. Unfortunately, the works mentioned
above and others in the field of telemedicine have not addressed the concern over
protection of patient health information. We intend to do it in this paper.

Electrocardiograms (ECG) have a dual nature in the fact that they are used for both
medical and identification purposes (Sufi et al. 2011; Almehmadi and Chatterjee 2015).
A literature review on ECG encryption reveals methods including permutation
encoding, wavelet anonymization, and noise-based obfuscation, just to name a few.
Chaos-based encryption has an advantage over the other schemes because it is appli-
cable to continuous signals, possesses a highly unpredictable nature, is sensitive to
initial conditions and other key parameters.
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To the best of our knowledge, secured ECG signal transmission with chaotic
oscillators of different natures at emission and reception ends has not been studied. In
this paper, we bridge this gap. Firstly, we develop an active control based strategy to
synchronize a Colpitts and a Hartley oscillator. Secondly, we carry out encryption of
ECG signal by the Colpitts oscillator, send it through the channel and decrypt it using
the Hartley oscillator. The block diagram of the proposed system is given in Fig. 1.

1.1 Presentation of the Encryption System

The encryption/Decryption system is made of the ECG source, two chaotic generators
and a transmission system (line). The signal from the ECG source is multiplied by the
output of chaotic generator 1, modulated then transmitted. At the reception end, the
output of chaotic generator 2 which is synchronized with chaotic generator 1 is used to
decrypt the signal by simple division of received signal after it has undergone detec-
tion. The different elements of the system are described below.

1.2 Chaotic Oscillators

In this work, we use two different chaotic oscillators, namely, Colpitts (generator 1) and
Hartley (generator 2) oscillators. These are drawn in Figs. 2 and 3 below.
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Fig. 1. ECG secured transmission system

Fig. 2. Hartley oscillator
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1.3 Oscillators Dynamics

Applying Kirchoff voltage law to the circuit in Fig. 2 and changing variables, we
obtain dimensionless equations:

_x1 ¼ y1 � z1 � ax1;
_y1 ¼ q� x1 � by1 � F z1ð Þ;
_z1 ¼ dx1 � ez1 þF� z1ð Þ:

8
<

:
ð1Þ

with

F z1ð Þ ¼ � 1
VTH

hþm� z1ð Þ; z1 � lamda
s; z1\lamda

�

and F� z1ð Þ ¼ 0; z1 � lamda
f gþ a1z1ð Þ; z1\lamda

�

Then, when we apply the Kirchhoff voltage law to the circuit in Fig. 3 and carry out
a change of variables, we obtain the following:

_x ¼ y� a2# zð Þ;
_y ¼ c� x� z� b1y;
_z ¼ e y� d1ð Þ:

8
<

:
ð2Þ

where

# zð Þ ¼ � 1þ zð Þ z\� 1;
0 z� � 1:

�

Solving (1) and (2) numerically using 4th order Runge-Kutta, yields the dynamics
of the oscillators. The phase portraits obtained are shown in Figs. 4 and 5.
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Fig. 3. Colpitts oscillator
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Fig. 4. (a) 2D phase portrait for Hartley oscillator. (b) 3D phase portrait for Hartley oscillator.
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The phase portraits of Figs. 4 and 5 are strange attractors and indicate the possi-
bility of chaotic behavior. A common method to confirm chaotic dynamics is to
compute Maximum Lyapunov Exponent (MLE). The dynamics of MLE below (Figs. 6
and 7) confirm the chaotic nature of the oscillators.

2 Synchronization

Simply put, synchronizing the two oscillators is making sure that their output have the
same values with time. Ideally, the difference should be zero. But practically, a “very
small” error is enough. The first oscillator is the drive, while the second is the response.
The controller U is the system that ensures the synchronization while the synchro-
nization error is e.
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Fig. 5. (a) 2D phase portrait for Colpitts oscillator. (b) 3D phase portrait for Colpitts oscillator.

Fig. 6. Dynamics of Lyapunov exponents for Hartley oscillator

Fig. 7. Dynamics of Lyapunov exponents for Colpitts oscillator
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For the drive system:
_x ¼ y� a2# zð Þ;
_y ¼ c� x� z� b1y;
_z ¼ e y� d1ð Þ:

8
<

:
ð3Þ

And the response system:
_x1 ¼ y1 � z1 � ax1 þU1 tð Þ;
_y1 ¼ q� x1 � by1 � F z1ð ÞþU2 tð Þ;
_z1 ¼ dx1 � ez1 þF� z1ð ÞþU3 tð Þ:

8
<

:
ð4Þ

U(t) = [U1(t), U2(t), U3(t)]
T being the controller.

The synchronization error is: e1 ¼ x1 � x; e2 ¼ y1 � y; e3 ¼ z1 � z.
Let’s choose the controller described by Eq. (5)

U1 tð Þ ¼ �e2 þ z1 þ ax� a2# zð Þ
U2 tð Þ ¼ �y b1 � bð Þþ e1 � zþF z1ð Þ

U3 tð Þ ¼ �dx1 þ ezþ e y� d1ð ÞþF� z1ð Þ

8
<

:
ð5Þ

Simulations were then carried out based on this controller and the state variables for
drive and response respectively. The error was evaluated and the system was finally
used to encrypt then decrypt the ECG signal, when the computed error converged
towards zero. The following section presents some results yielded by the system.

3 Results and Discussion

In this section we shall present results from the synchronization, encryption and finally
decryption.

3.1 Synchronization

The decrypted signal will be as close to the original one as far as the synchronization is
accurate.
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Fig. 8. (a) Synchronization error e1, e2, e3 when the controller U is not activated, (b) the error’s
norm ||en|| when the controller U is not activated (c) synchronization error e1, e2, e3 with the
controller U activated, (d) the error’s norm ||en|| with the controller U activated.
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Figure 8 is a plot of the variable, the error when there is no controller and then the
error when the oscillators are synchronized. We can see the error converging towards
zero in event of synchronization.

3.2 Encrypted and Decrypted Signals

Figures 9 displays a visual example of encrypted, then decrypted signals.

We can see from Fig. 9 that the ECG signals are first encrypted, then decrypted
correctly by the proposed system. Visually, these first results are satisfactory but will
need in future works to be confirmed by some metrics like signal over noise ratio
or/and mean square error.

4 Conclusion

In this work, we have designed and proposed an encryption and decryption system
based on synchronization of chaotic oscillators. This was applied to the secured
transmission of ECG signal. Results yielded by our system are encouraging and we
hope to implement the experimental version in our future works.
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