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Abstract. We consider the problem of executing composite computing
applications called workflows on top of unreliable computing infrastruc-
tures. Having in mind the situation of the electric delivery in the sub-
saharan area, we propose BEDWE, a decentralized workflow engine able
to dynamically assign portions of the workflow to currently live compute
nodes. More precisely, in a point-to-point manner, each node can receive
a part of the workflow and delegate a subpart of it to another node.
This mechanism can be repeated recursively until the whole workflow
is executed. BEDWE includes a mechanism to support nodes leaving
the network due to power outage. We present a software prototype of
BEDWE and its experimentation over the French nation-wide Grid’5000
platform.

Keywords: Workflows · Decentralized orchestration
Fault-tolerance · Best-effort infrastructures

1 Introduction

Computing reliably is a major challenge in countries struggling to deliver a
constant electric power delivery. For instance, African countries from the sub-
Saharan region are used to face power outages, due to an insufficient level of
electric injection to satisfy the needs of people, administration and companies.
This problem can be solved by cutting electricity in some area/while another one
is supplied. These cuts are planned according to a predefined schedule that are
publicly announced so people can organise themselves. Being able to ensure the
completion of computations running on computers located in such an environ-
ment calls for fault-tolerance mechanisms to be injected in the system supporting
these applications. This paper explores a specific problem in this area, where we
consider a fully-decentralized computing platform composed of compute nodes
running in an electric environment subject to power cuts. More specifically, we
consider applications which are compositions of building block services, as fol-
lowed by service-oriented computing.

Service-oriented computing has become one of the dominant paradigms to
develop applications in both scientific and industrial contexts. This model advo-
cates the composition of services as a programming model to build complex
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applications out of existing building blocks, or simpler services [1]. A sibling
concept is the workflow. A workflow is a temporal composition of services com-
pleting a specific task. More precisely, each service in a workflow corresponds to
a particular step in the workflow and may have precedence constraint dependen-
cies with other services. These dependencies between services can be represented
as a directed acyclic graph where nodes are the services and links are the depen-
dencies/precedence constraints between services.

A workflow needs to be enacted. For this, it traditionally relies on a workflow
engine i.e.,a program that takes a workflow’s specification and deploys it on
compute nodes, starting each service once its dependencies have been satisfied
i.e., when the services to get run before completed. This engine is tradition-
ally a centralized, reliable component. If it fails, the whole workflow coordina-
tion is undermined and the workflow may not complete. Having this centralized
engine is no longer possible when the workflow is supposed to run over unreli-
able platforms, where having one reliable node on which to run the engine is no
longer possible. The problem becomes even more complicated when considering
these emerging computing platforms described above. Recently, decentralizing
workflow execution has been the focus of some researches aiming at providing
solutions where centralized enactment systems cannot be used any more.

The objectives of our work is to propose: (1) a truly decentralized work-
flow execution whose management is shared by each participant node and (2) a
mechanism to support crashes and delays for common workflow patterns. Our
solution, called BEDWE (Best Effort Decentralized Workflow Execution) runs
on every node taking part in the workflow engine. It uses a specific protocol
allowing to send, receive and process portions of the workflow.

The remainder of this paper is organized as follows. In Sect. 2, we define
our model and describes, by syntactic means, the type of workflows supported.
Section 3 describes BEDWE execution model and illustrates its execution and
deployment over the nodes for different workflow patterns. In Sect. 4, we dis-
cuss the problems brought about by potential crashes (for instance due to power
cuts) and devise a simple solution, based on a heartbeat protocol to deal with
failures in BEDWE. Experimental results using the Montage workflow over the
Grid’5000 platform are presented in Sect. 5. Finally, Sect. 7 presents some appli-
cations perspective and concludes the paper.

2 Workflow Patterns and Grammar

Workflow computing is a major paradigm in both business process management
and many scientific fields. We distinguish between (1) a workflow specification
module that allows to describe services and the ordering amongst them, and
(2) a workflow enactment system that coordinates the execution of the services
in the correct order. Our contribution is focused on the workflow enactment
system level which should handle most workflow models through an appropriate
language.
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2.1 Workflow Patterns

We here describe the type of workflows that we want to support in BEDWE.
A workflow is a finite set of services that are composed in some specific logical
order to accomplish a specific process/application. Most commonly, patterns
found in workflows are the three following models, as illustrated in Fig. 1: (a)
the sequential pattern, (b) the parallel pattern, and (c) conditional pattern.

S1 S2

a)

S1

S2

FORK SYNC

b)

S1

S2

CHOICE ENDCHOICE

c)

Fig. 1. The three basic workflow patterns.

In order to express more complex patterns, these basic patterns can be com-
bined. Therefore, the loop structure will not be considered in this dissertation.
As an example, Fig. 2 shows a concrete workflow which integrates 10 services.
The first two, S1 and S2 services are sequentially processed. After service S2, the
execution diverges into two parallel branches. The execution of branches will be
merged before the execution of service S9. Also, after the execution of service S3,
the two outgoing branches are associated with the choice condition and either
S3 S4 S6 or S3 S5 S6 path will be selected. Consequently, after S3, a sequential
order process is obtained with S6.

S1 S2 FORK SYNC

S4

S5

CHOICE

ENDCHOICE

S3

S7 S8

S6

S9 S10

Fig. 2. Example of workflow.

2.2 Workflow Description Language

Defining a workflow consists in describing the patterns that compose it and the
relationships among them so, any programmable analyzer can interpret it. As
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mentioned in Sect. 2.1, a workflow pattern is defined by control-flow dependen-
cies between services. In order to build our workflow grammar, we summarize
the possible workflow definition as follows: (1) a workflow is composed of pat-
terns; (2) a pattern is either a parallel, a conditional or a sequential model, or
a composition of two or three different models; (3) a parallel workflow pattern
starts with the FORK keyword which splits the workflow, followed by a list of
branches and ends with the SYNC keyword which merges incoming result of
branches; (4) a conditional workflow pattern starts with the CHOICE keyword
which splits the workflow, followed by a list of switch branches and ends with the
ENDCHOICE keyword indicating a simple merge step. (5) a sequential workflow
pattern is one or a set of services with a basic dependency (a simple transition).
Using some compiling languages principles and rules it is easy to convert above
summary in a grammar annotation similar to the BNF notation that is depicted
in Table 1.

Table 1. Workflow grammar.

WF → t {WFs | WFp | WFc }∗ with:

WFs → t+ t: service identifier, BRC: branch

WFp → FORK(BRC {,BRC}+)SYNC WFs: sequential pattern

WFc → CHOICE(BRC {,BRC}+)ENDCHOICE WFp: parallel pattern

BRC → WFs | WFp | WFc WFc: conditional pattern

According to this grammar, the workflow in Fig. 2 is easily described as follow,
where Si is a service identifier:

S1 S2 FORK(S3 CHOICE(S4, S5)ENDCHOICE S6, S7 S8)SYNC S9 S10

We developed a parser program based on Flex and Bison to validate this
grammar [2].

3 BEDWE Workflow Processing

3.1 Pattern Extraction Model

BEDWE decentralized procedure relies on workflow extraction: any workflow w
in our grammar can be written as w = y.z, y being the first atomic service to be
executed on the local node, and z the rest of the workflow definition to be sent
in a message pack to another node able to execute it. More precisely:

– if y is a sequential pattern, then the first service of the sequence is extracted;
– if y is a parallel pattern, then a list of its branches is extracted;
– if y is a conditional pattern, then from the extracted list of branches, one is

chosen according to the choice condition.
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3.2 Workflow Execution in BEDWE

In the following, we describe how BEDWE operates, by illustrating its behaviour
on a particular workflow composed of the three basic patterns. We assume a set
of agents (processes) running on a set of possibly distributed compute nodes, and
that are able to communicate through message passing. All these agents run the
same software stack; they can invoke services, check the well-formedness of the
workflow (or part of a workflow) received and communicate via message-passing.
These agents are thus interchangeable and any one of them can be selected to
manage the workflow or part of it, as we will now describe. Let us use the example
of Fig. 2 that contains the three basic patterns to illustrate different main phases
of the process illustrated in Figs. 3, 4, 5, 6 and 7.

Initialization. A first contact node (N1 in Fig. 3), gets a complete description
of a workflow from the client, it extracts the first pattern, here S1, it assembles
with the rest of definition into a message pack which will be sent to a node N2
that can invoke S1.

S1 S2 FORK SYNC

S4

S5

CHOICE

ENDCHOICE

S3

S7 S8

S6

S9 S10

N1

Fig. 3. BEDWE workflow execution (initialisation).

Processing of a Sequential Pattern. As illustrated in Fig. 4, some node N2 gets a
message pack from N1, it invokes service S1 and, in the same way extracts from
the content of definition the first pattern (here it is S2), it assembles with the
rest of definition into a message pack which will be sent to a node N3, that can
invoke S2.

S1 S2 FORK SYNC

S4

S5

CHOICE

ENDCHOICE

S3

S7 S8

S6

S9 S10

N2N1

Fig. 4. BEDWE workflow execution (sequential pattern).
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Processing of a Parallel Pattern. As illustrated in Fig. 5, some node N3, receives
a message pack from N2, it invokes service S2 and try to extract from the content
of definition the first pattern, here it is a parallel model. It extracts all branches
belonging to that pattern, here there are “S3 CHOICE(S4, S5)ENDCHOICE
S6” and “S7 S8”. It then assembles message pack from each branch and sends
them to different nodes (here are N4 and N5) which are respectively able to
invoke service S3 and service S7. It keeps the following patterns of the parallel
model (here: S9 S10) that will be processed after synchronization. Nodes N4 and
N5 receive their message packs from the node N3 and they concurrently process
to it. Node N5 will process as sequential pattern while node N4 will operate on
a conditional pattern after service S3.

S1 S2 FORK SYNC

S4

S5

CHOICE

ENDCHOICE

S3

S7 S8

S6

S9 S10

N3N2

(a) before branching.

S1 S2 FORK SYNC

S4

S5

CHOICE

ENDCHOICE

S3

S7 S8

S6

S9 S10

N3
N2

(b) after branching.

Fig. 5. BEDWE workflow execution (parallel pattern).

Processing of a Conditional Pattern. A conditional pattern execution is illus-
trated in Fig. 6. Node N4, after invocation of service S3 and tries to extract
from the content of definition the first pattern, here it is a conditional model. It
extracts the two branches belonging to that pattern, here it is S4 and S5. Then,
it evaluates the condition of selection, we suppose S4 is selected. The selected
conditional branch forms with rest of the branch a sequential model (S4 S6)
which will be processed as sequential phase pattern.

S4

S5

CHOICE

ENDCHOICE

S3 S6

N4

(a) before choice.

S4S3 S6

N4

(b) after choice.

Fig. 6. BEDWE workflow execution (conditional pattern).

Processing of a Synchronization. As illustrated in Fig. 7, the nodes which has
invoked services S6 and S8 send their results to the node N3 who had split
branches for parallel processing. At the end of synchronization, node N3 reads
the following of achieved parallel pattern and processes it as any pattern. For
our example case, we have a pattern S9 S10 which is a sequential model.
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S1 S2 FORK SYNC

S4

S5

CHOICE

ENDCHOICE

S3

S7 S8

S6

S9 S10

N2
N3

Ni Ni+1

Fig. 7. BEDWE workflow execution (synchronisation pattern).

Ending Output. Still as shown in Fig. 7, after the invocation of service S10, the
workflow has completed its execution. The output result of S10 is sent to the
client as such a good process of the workflow.

4 Fault Tolerance in BEDWE

A service’s execution time can significantly vary between invocations, even for
different invocations within the same workflow. This can be due to network’s
and CPU’s load fluctuation. Incidentally, processes may crash. This raises the
common question of detecting crashes of computing nodes hosting services: how
much time should we wait for an answer before considering a service invocation
as failed. In BEDWE, we rely on the classical heartbeat mechanism and fix a
particular duration above which no heartbeat received from a process makes it
considered as failed.

4.1 BEDWE’s Resilience Principle

The implementation of the heartbeat protocol in BEDWE is illustrated in Fig. 8.
Assume Node 1 sends a message to Node 2 to request it to process the next
workflow pattern. We can consider that Node 1 becomes the client for Node 2
which becomes the server for this particular part of the workflow. During the
service’s execution on Node 2, Node 2 sends a particular heartbeat message to
Node 1 periodically, informing it that it is still running the task. Upon receipt,
Node 1 updates its the liveness status of Node 2 as alive. Also, periodically,
Node 1 checks this liveness status and resets it to crash. If, at the next checking
time, the status is not back to alive, it means Node 2 did not send the heartbeat
and thus will be considered as crashed by Node 1. When, the task completion’s
notification is received, Node 1 stops its periodic checking of Node 2’s liveness.
Note that a node can be both a server and a client for different tasks.

4.2 Fault Tolerance for Each Pattern

Let us now review more precisely how the resilience is done for each possible pat-
tern. Note that the resilience mechanism is recursively done in recursive patterns
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Node 1 
(client)

Node 2 
(serveur)

2. Periodic server's 
liveness checking

1. Task request

3. Task completion's 
notifcation

2. Periodic heartbeat 
sent to the client

Fig. 8. BEDWE’s resilience principle.

such as nested parallel patterns. The key assumptions in the following are that:
(1)A node cannot be responsible for the execution of two consecutive services in
a sequence. (2) The two nodes responsible for two consecutive services cannot
fail at the same time.

Sequential Pattern. In a sequence of services, the heartbeat protocol presented
previously is repeated between each pair of nodes managing consecutive services.
Given a sequence of three services whose execution is hosted by N1, N2 and N3
respectively, the process is first started when N2 starts executing, N2 being the
server and N1 the client. Once N2 completes, it sends the subsequent part of the
workflow to N3. At this point, the heartbeat mechanism is also triggered between
N2 which is now the client and N3 which is the server. Once the mechanism is
started between N2 and N3, N2 sends the notification of completion and the
heartbeat protocol between N1 and N2 is stopped.

Parallel Pattern. Assume a node N1 starting a parallel pattern whose first nodes
are respectively N2 and N3. In this case, N1 sends one distinct workflow branch
to N2 and N3. Two concurrent instances of the heartbeat protocol are started
between N1 and N2 on one hand and N1 and N3 on the other hand. When N2
(respectively N3) completes its service and if there are other services in this
branch, then N2 (resp. N3) forwards the residual branch to another node say
N4, (resp. N5). When N4 and N5 receive their respective residual branch, N2
and N3 stops sending hearbeats to N1 but two new heartbeats protocols are
started between N2 and N4 on one hand, and N3 and N5 on the other hand.
The process of shifting the heartbeat along the branch is done in parallel inside
the two branches until reaching their ends.

Conditional Validation. A conditional pattern is converted to sequential one
after the selection test. So, their validation is similar to the sequential case.
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Fig. 9. Experiments with sequential workflows.

5 Experimental Validation

To validate BEDWE, we developed a Java-based software prototype implement-
ing the algorithms described above. It represents more than 1700 lines of code.
The prototype has been enhanced with the resilience mechanism described in
Sect. 4. Deploying BEDWE means deploying BEDWE agents (as described in
Sect. 3) implementing the algorithms described above, and using sockets to
communicate portions of workflows, acks and heartbeats. The prototype was
deployed over the Grid’5000 platform which gathers more than 8000 compute
cores distributed over 8 geographically distributed sites [3]. In the following
experiments, a set of BEDWE agents were deployed over computing cores of
Grid’5000, and different workflows were submitted to these agents. All the exper-
iments were conducted on the parapide cluster located in Rennes, composed of
Intel Xeon X5570 CPUs with 8 cores and 24 GBs of memory each. For whole set
of experiments, 40 BEDWE agents were deployed over 40 different cores. Agents
are initially idle: they are listening for an incoming workflow (or sub-workflow)
to be submitted.

The first experiments were done on sequential workflows, workflows com-
posed of a single sequential pattern whose length varied between 5 and 200, as
illustrated in the right part of Fig. 9). The results are given in the right part of
Fig. 9. We observe an execution time growing linearly with the number of ser-
vices. This is to be expected in the sense that such a workflow does not require
to have many agents to work at the same time. At most two agents are required
to be active at the same time due to the resilience mechanisms: an agent that
completed a service waits for the completion of the next service in the workflow,
running in another agent, before becoming idle again.

The second set of experiments conducted was performed using parallel work-
flows. These workflows were composed of one fork giving birth to a number of
branches varying between 2 and 20. The number of sequential services within a
branch was kept constant, at 10. Such a workflow is illustrated for a number of
branches of 5 in the left part of Fig. 10. The objective of this experiment was to
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Fig. 10. Experiments with parallel workflows.

test the ability of BEDWE to tackle high parallelism. The result is shown in the
right part of Fig. 10. It suggests that the BEDWE prototype is able to leverage
the parallelism: recall that in the previous, sequential experiment, 200 sequential
services were completed in more than 9 s. Now, when we have 20 branches, we
have also 200 services, but the length of the branches are only 10, and the com-
pletion time is between 2 and 2.5 s, which is far closer to the case of a sequential
case of 10 services (even if still significantly longer).

The last experiment was performed on workflows with nested forks. The
workflows used in this part are all composed of 100 services, but the number of
nested forks varies from 1 to 5. This supposes to adapt the number of services
per branch for each case. The particular case illustrated in the left part of Fig. 11
is for the case of 2 nested forks, resulting in 25 services in each branches. For
cases where the total number of services cannot be divided by the number of
branches, few isolated services were added between forks. In our experiments, as
plotted in the right part of Fig. 11, we observed a slightly increasing completion
time, which can be explained, in spite of the higher degree of parallelism, by the
increased complexity of forks management. In particular, the more nested forks,
the more nodes waiting for the completion of the fork they are responsible for,
making less nodes available to run tasks and an increase in sequentiality.

6 Related Work

Workflow execution is a topic which is not settled yet, as highlighted by the
recent articles covering it in literature [4,5]. Traditionally, workflow execution is
centralized, would it be in an industrial [1] or more academic/scientific context [6,
7]. While very mature and efficient, these tools cannot be used in a context where
the continuous presence of an orchestrating tool is mandatory.

The idea of describing direct interactions between services in the execution
of a composition was proposed in the concept of choreography of web services [8].
Choreography allows to describe at once all the interactions that will take place
at execution time. It allows to be more precise than orchestration in which the
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. . . 

. . . 

. . . 

. . . 

25 services per branch

Fig. 11. Experiments with nested parallel workflows.

execution is seen from a single point of view, and to describe interactions between
different organizations each providing part of the services to be combined [9].

Decentralising the workflow execution by relying on direct interactions (based
on messaging) between services has been proposed in [10–12]. In particular, A
continuation-passing style, where information on the remainder of the execu-
tion is carried in messages, has been proposed in [11]. Nodes interpret such
messages and thus conduct the execution of services without consulting a cen-
tralised engine. However, nodes need to know explicitly which nodes to interact
with and when, in a synchronous manner. A similar idea, based on the dynamic
partitioning of the workflow as its execution moves forward has also been studied
in [13]. Bedwe follows a similar principle but focus on parallel splits and choices,
while extending such mechanisms with a particular protocol for fault-tolerance.

7 Conclusion

This paper has proposed BEDWE to decentralize workflow execution over unre-
liable platforms. The platform envisioned in this work is a set of compute nodes
in regions subject to power cuts according to a predefined schedule, due to an
insufficient level of electric injection to satisfy all the needs. Ensuring the com-
pletion of workflow execution on computers located in such an environment calls
for decentralization and fault-tolerance. The BEDWE engine is supposed to run
on every node taking part in the workflow engine. Engines use a specific proto-
col allowing to send, receive and process portions of the workflow, to split the
workflow into several parallel executions, and synchronize their outcomes. Nodes
taking care of contiguous portions of the workflow are watching each others. A
BEDWE prototype was implemented in Java and validated over the Grid’5000
platform. Our future work will include devising a solution based on BEDWE
for executing workflows in an African context, specifically for the city of Lome,
Togo, which is subject to planned power cuts. With such a solution, a workflow
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execution will dynamically move from power outages area to some neighbor-
hood supplied with power. While the targeted platform is very different from
the platform used for the experiment, the present article was about validating
the approach.
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