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Abstract. The use of elliptic curves in cryptography requires to be
able to transform an information (generally a bit string) to a point of
an elliptic curve. This transformation, called encoding, must be such
that the encoded message can be easily and uniquely recovered from
the corresponding point. In this paper we propose a new encoding that
maps an element of Fq to a point on the theta model for elliptic curves
Eλ : 1 + x2 + y2 + x2y2 = λ2xy recently introduced in [9]. In particular,
we show that this new encoding is efficiently computable (deterministic
and polynomial-time). We also present a Sage software implementation
to ensure the correctness of the encoding on this curve.
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1 Introduction

Many elliptic curve-based cryptographic schemes require to hash into the group
of points of an elliptic curve, such as password-based authentication proto-
cols (SPEKE (Simple Password Exponential Key Exchange), PAK (Password
Authenticated Key exchange)), as well as various signature schemes based on
the hardness of the DLP (Discrete Logarithm Problem). The main idea for con-
structing a hash function into elliptic curves is the following: the image of a
message (an arbitrary string) m by the hash function F is F (m) = f(h(m)),
where h is a classical hash function and f is an encoding function that maps a
point of Fq to an element of the curve. But a problem arises: given any elliptic
curve E over any finite field Fq, how to construct, in a deterministic way, a non-
zero point of the curve? Some authors have proposed algorithms to answer this
question. But before 2006, only probabilistic solutions were known. The paper
[3] of Boney and Franklin in 2001 was one of the first that required hashing
into (supersingular) elliptic curves; in fact, the public key of their identity-based
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encryption is a point on the curve. In 2006, Shallue and Van de Woestjine pro-
posed the first algorithm [15] that maps in a deterministic way an element of Fq

(with odd characteristic) to a point of any elliptic curve over Fq. Their algorithm
is based on the Skalba’s equality theorem and requires to compute a square root
in Fq; but it can constructs only (q − 4)/8 points of the curve.

In 2009, Icart defined a new encoding function [13] for Weierstrass form of
elliptic curves, based on a very simple idea: intersect the line y = ux + v with
the equation of the curve. He showed that his algorithm works in O log3(q)
operations in Fq and conjectured (it was proven later by Tibouchi and Fouque
[12]) that the size of the image set is approximately 5

8 of the size of the curve.
Some authors have also proposed constructions of encoding functions for

special families of elliptic curves, such as Hessian curves (by Farashahi in [10]),
Edwards curves (elligator functions by Bernstein et al. in [1]), or Huff curves (by
Diarra et al. in [8]).

Our goal on this paper is to continue this line of research, by proposing an
encoding function for the theta model for elliptic curves Eλ : 1+x2+y2+x2y2 =
λ2xy, recently introduced by Fouotsa and Diao [6]. In particular, we will show
that this new encoding is efficiently computable (deterministic and polynomial-
time).

The rest of the paper is structured as follows: In Sect. 2, we recall a special
mathematical concept needed in the work. We briefly define elliptic curves and
present the theta model for elliptic curves. together with an overview of main
existing encodings into elliptic curves. The Sect. 3 describes our new encoding on
the theta model and describes its properties. A numerical example is given with
a code written with the Sage software to ensure the correctness of the encoding.
We conclude our work in Sect. 4.

2 Preliminaries

2.1 Quadratic Character

Let p �= 2 be a prime and Fpn = Fq the finite field of q = pn elements (where
n ≥ 1 is an integer). An element a ∈ Fq is a quadratic residue if there exists
r ∈ Fq s.t. a ≡ r2 mod q. We define the quadratic character as follows: χ :
Fq → Fq : a �→ χ(a) = a(q−1)/2; it verifies: χ(a) = 1 if a is a non-zero quadratic
residue, χ(a) = 0 if a = 0 and χ(a) = −1 otherwise. The following properties are
also verified: χ(ab) = χ(a) · χ(b) for any a, b ∈ Fq; χ(a2) = 1 for any a ∈ F

∗
q ; and

if q ≡ 3 mod 4, χ(−1) = −1, χ(χ(a)) = χ(a), for any a ∈ Fq. If q ≡ 1 mod 4,
then χ(−1) = 1.
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2.2 The Theta Model for Elliptic Curves

Elliptic Curves. An elliptic curve E over a field K is the set of solution in
A

2(K) of the equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6,with (a1, a2, a3, a4, a6) ∈ K

5 (1)

together with a rational point O and the condition Δ �= 0 where Δ = −d22d8 −
8d34 − 27d26 + 9d2d4d6 with d2 = a2

1 + 4a2, d4 = 2a4 + a1, d6 = a2
3 + 4a6, d8 =

a2
1a6 + 4a2a6 − a1a3a4 + a2a

2
3 − a2

4.
The quantity Δ is called the discriminant of E and the condition ΔE �= 0

ensures that the curve E is smooth. In the set of point of an elliptic curve, it is
very easy to set an additive group structure using the chord-and-tangent method
(see [16] for complete details). When an elliptic curve is defined over a finite field,
the resulting group presents a difficult mathematical problem known as the Dis-
crete Logarithm Problem stated as follows: Given a point Q multiple of another
given point P , find the integer n such that Q = nP . This problem justifies the
use of elliptic curves in cryptography for the construction of several secure cryp-
tosystems. The model of elliptic curve given by Eq. (1) is called the Weierstrass
model and is the commonly used in the literature. Several other models exists
in the literature such as the Edwards model [7], Hessian curves [14], Huff curves
[5] and the Jacobi curves [2,4] including the theta model recently introduced by
Fouotsa and Diao [6]. Although these curves are birationally equivalent to each
other, in an algorithmic point of view and for security and efficiency purposes,
careful choices need to be made on which model of elliptic to use in cryptography.

The Theta Model. This model of elliptic curves was proposed by Fouotsa and
Diao [9]. The model is obtained from theta functions and the equation is given
as follows Eλ : 1 + x2 + y2 + x2y2 = λ2xy. They showed that their model is
birationally equivalent to the Weierstrass model v2 = u3 − (1 + c4)u2 − 4c4u +
4c4(1 + c4). This model enjoys many other properties such as unified formulas
(addition and doubling of points use the same formulas) and presents competitive
addition formulas over binary fields. More details can be found in [6,9].

2.3 Existing Encodings for Elliptic Curves

In this section, we give a short overview of existing methods to encode into
elliptic curves.

Trivial Encoding: For an elliptic curve Ea,b : y2 = x3 + ax + b over the field
Fq, the simplest way to construct a point of Ea,b from an element of Fq is to
use the trivial encoding, also known as the try-and-increment method. The idea
is to pick a x-coordinate and try to deduce the y-coordinate by computing a
square root: choose a random element u ∈ F

∗
q and compute u3 + au + b; and

then test whether u3 + au + b is a square in Fq. If it is the case, then returns
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(x, y) = (u,±√
u3 + au + b) as a point of the curve. Otherwise, one can choose

another u in Fq and try again. But this method has at least one drawback as
it cannot run in constant time: the number of operations depends on the input
u. In practice the input u is the message m we want to hash; thus running this
algorithm can allow the attacker to guess some information about m.

Icart’s Encoding: Let q ≡ 2 mod 3. The map x �→ x3 is a bijection and then
computation of a cubic root can be done as an exponentiation. In [13], Icart
defined a new encoding function, based on the following idea: intersect the line
y = ux + v with the Weierstrass curve Ea,b : y2 = x3 + ax + b, with a, b ∈ Fq.
He defined the encoding function:

fa,b : Fq → Ea,b

u �→ fa,b(u) = (x, ux + v)

where x = (v2 − b − u6

27 )1/3 + u2

3 and v = (3a − u4)/6u.
As shown in the paper, this function presents many interesting properties. In

fact, it can be implemented in polynomial time with O(log3 q) operations. The
inverse function f−1

a,b is also computable in polynomial time. Icart also showed
that |f−1

a,b (P )| ≤ 4, given a point P on the elliptic curve.

Other Existing Encodings: There exist many other encodings for special
families of elliptic curves, such as supersingular curves (by Boneh and Franklin
in [3]), Hessian curves (by Farashahi in [10]), Edwards curves (Elligator functions
by Bernstein et al. in [1]), Huff curves (by Diarra et al. in [8]), etc.

3 A New Encoding for the Theta Model

3.1 The Algorithm

In this section, we propose a deterministic algorithm that given an element r
(with additional conditions) of Fq, constructs a point on Eλ(Fq). From this
algorithm, we define the new encoding function which does not cover all points
of Fq, unless we make some additional hypothesis on the underlying field Fq.
Nevertheless, we can send all elements of Fq that are not in the set of definition
(there are at most 6 such points) of the encoding to the point at infinity.
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Algorithm 1. Encode-Theta-Model
Input : q be a prime power, c ∈ Fq s.t. c(1 − c4)(1 + c4) �= 0, u ∈ Fq s.t. χ(u) = −1,

r ∈ R = {r ∈ Fq : 4ur2c6 �= (1 − c4)(1 + 3c4), 4ur2c6 �=
−(1 − c4)4, (4ur2c6)(1 + 3c4) �= (1 − c4)3 } ⊆ Fq

Output: A point (xλ, yλ)

v = c ·
(

4ur2c6 + (1 − c4)(3 + c4)

4ur2c6 + (1 − c4)(−3c4 − 1)

)
;

ε = χ
(
(c2 − v2)(1 − c2v2)

)
;

X =
1

2

(
(1 + ε)v + (1 − ε)

(
(−c4 − 1)(v + c) − c(1 − c4)

2c3(v + c) + 1 − c4

))
;

Y = −ε

√
c2 − X2

1 − c2X2
;

xλ =
X + 1

X − 1
;

yλ =
Y − 1

Y + 1
;

return (xλ, yλ);

Theorem 1. The output (xλ, yλ) of Algorithm1 is a point of the curve Eλ :

1 + x2 + y2 + x2y2 = λ2xy, where λ2 =
4(1 + c2)
1 − c2

and λ(λ2 − 4)(λ2 + 1) �= 0.

Proof. 1. v is well-defined from the definition of R.
2. Let us show that ε �= 0. Suppose that ε = 0 ⇔ c2 = v2 or c2v2 = 1.

(a) c2 = v2 ⇒ c = ±v ⇒ 4(1 − c4)(1 + c4) = 0 (impossible by the choice of
c) or 4ur2c6 = (1 − c4)2 (impossible since u is not a square).

(b) c2v2 = 1 ⇒ cv = ±1 ⇒ 4ur2c6 = (c2 + 1)4 or 4ur2c6 = (c − 1)4(c + 1)4;
this is impossible since u is not a square.

So ε �= 0 and then ε = ±1.
3. Let us show that X,Y are well-defined. For this, we consider the two cases

ε = 1, ε = −1 and show that the quantity
c2 − X2

1 − c2X2
is a square.

ε = 1 ⇒ X = v and χ

(
c2 − X2

1 − c2X2

)
= χ

(
c2 − v2

1 − c2v2

)
= ε = 1; so X and Y

are well-defined.

ε = −1 ⇒ X = − (−c4 − 1)(v + c) − c(1 − c4)
2c3(v + c) + 1 − c4

. Now let H(X) =
c2 − X2

1 − c2X2
=

(c − X)(c + X)
1 − c2X2

; we want to express H(X) in term of H(v) and use the value

χ(H(v)) = χ

(
c2 − v2

1 − c2v2

)
= ε = −1. Now to have an expression of H(X) in

terms of H(v), we compute separately the value of c−X, c+X and 1− c2X2

and find that:



An Encoding for the Theta Model of Elliptic Curves 229

[
2c3(v + c) + (1 − c4)

]
(c − X) = (v + c)(c4 − 1),[

2c3(v + c) + (1 − c4)
]
(c + X) = (v + c)(3c4 + 1) + 2c(1 − c4),

and
[
2c3(v + c) + (1 − c4)

]2 (1 − c2X2) = (1 − c2v2)(c4 − 1)2. This leads
to

H(X) =
(v + c)(c4 − 1)

[
(v + c)(3c4 + 1) + 2c(1 − c4)

]
(1 − c2v2)(c4 − 1)2

=
H(v)
c − v

(
(v + c)(3c4 + 1) + 2c(1 − c4)

c4 − 1

)

Since (v+c)(3c4+1)+2c(1−c4) = 2c
(

8ur2c6(1 + c4)
4ur2c6 + (1 − c4)(−3c4 − 1)

)
and

(c − v)(c4 − 1) = 4c
(

(1 − c4)2(1 + c4)
4ur2c6 + (1 − c4)(−3c4 − 1)

)
, then we can rewrite

H(X) as follows:

H(X) = H(v)
(

4ur2c6

(1 − c4)2

)

and thus χ(H(X)) = χ(H(v)) · χ
[
(4ur2c6)(1 − c4)2

]
= −χ(u) = 1. In other

words,
c2 − X2

1 − c2X2
is a square and Y is well-defined.

4. Since X and Y are well-defined (for both cases ε = 1 and ε = −1), we can

compute Y 2 =
c2 − X2

1 − c2X2
⇒ X2 + Y 2 = c2(1 + X2Y 2). Now we have to show

that xλ and yλ verify the relation 1 + x2
λ + y2

λ + x2
λy2

λ − λ2xλyλ = 0, where

λ2 =
4(1 + c2)
1 − c2

. In fact, we have:

1 + x2
λ + y2

λ + x2
λy2

λ − λ2xλyλ = 1 +
(

X+1
X−1

)2
+

(
Y −1
Y +1

)2
+

(
X+1
X−1

)2 (
Y −1
Y +1

)2 − λ2
(

X+1
X−1

) (
Y −1
Y +1

)

= 1
(X−1)2(Y +1)2

[
2(X2 + 1)((Y + 1)2 + (Y − 1)2) − λ2(X2 − 1)(Y 2 − 1)

]

= 1
(X−1)2(Y +1)2

[
4(1 + X2Y 2 + c2(1 + X2Y 2)) − 4(1+c2)

1−c2

(
1 + X2Y 2 − c2(1 + X2Y 2)

)]

= 4
(1−c2)(X−1)2(Y +1)2

[
(1 − c2)(1 + X2Y 2 + c2(1 + x2Y 2)) − (1 + c2)(1 + X2Y 2 − c2(1 + x2Y 2))

]

=
4

(1 − c2)(X − 1)2(Y + 1)2

[
2c

2
(1 + X

2
Y

2
) − 2c

2
(1 + X

2
Y

2
) − c

4
(1 + X

2
Y

2
) + c

4
(1 + X

2
Y

2
)
]

= 0. Moreover λ verifies λ(λ2 − 4)(λ2 + 1) �= 0 from the conditions on c.

Definition 1. The encoding function for the theta model for elliptic curves is
the function

fλ : R ⊆ Fq → Eλ(Fq)
r �→ (xλ, yλ),

where xλ and yλ are defined by Algorithm1. If r ∈ Fq \ R, we set fλ(r) = Oo.
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3.2 Size of the Set R
– Our encoding covers a subset R of Fq; this means that only elements of R

can be encoded. And from the definition of R, it is easy to see that at most 6
elements of Fq can not be encoded, that is card(Fq \R) ≤ 6. Since in practice
q (the size of the field) is much greater than 6, thus we can state that our
encoding fλ covers a great proportion of Fq. For example, for q = 503 (see
the Appendix for the complete example), we find that card(R) = 501 and
thus f covers more than 99% of Fq.

– To cover Fq (that is R = Fq), one can choose an element c ∈ Fq such
that χ

(
(1 − c4)(1 + 3c4)

)
= 1 and −1 is a square (for example when q ≡ 2

mod 3), and then R = Fq.

Remark 1. – The choice of c (and u) does not have any impact on the running-
time of the algorithm, since one must choose a suitable c (and u) before
starting the algorithm. When q ≡ 3 mod 4, one can choose u = −1; if q ≡ 5
mod 8, one can choose u = 2.

– Compared to many existing encodings, we do not put any requirements on q
(the authors of [13] proposed for example to choose q ≡ 2 mod 3, in order
to compute efficiently cubic roots).

3.3 Properties of Our Encoding

Lemma 1 (Polynomial time).
The function fλ can be implemented in deterministic polynomial time, with
approximately O(log3(q)) operations over Fq.

Proof. – The function fλ is deterministic in the sense that, once the parameters
q, c and u are fixed, then any input r ∈ R will always give the same output
P = (xλ, yλ). In fact, the algorithm does not involve any random value.

– To show that the algorithm is also computable in polynomial time, we must
evaluate its complexity. Globally, the computation of P = (xλ, yλ) requires
some inversions, some multiplications, one computation of the quadratic char-
acter χ and one square root computation. The computation of χ can be
replaced by an exponentiation (to test if a is square, just compute a to
the exponent (q − 1)/2), which requires O(log3(q)) operations. Computing a
square root in Fq requires O(log3(q)) operations when q ≡ 3 mod 4; and more
generally, it can be done in probabilistic polynomial time by using the Tonelli-
Shanks algorithm. The inversions can be made efficiently by using extended
Euclid algorithm or avoided by using projective coordinates (excepted for the
last two inversions in xλ and yλ). So globally, we can expect our algorithm
to run in polynomial time (with approximatively O(log3(q)) operations). �

From definition (1) and from Algorithm (1), it is easy to see that given
any point P ∈ Im(fλ) such that fλ(r) = P (for a certain r ∈ R), we have
f−1

λ (P ) = {r,−r}. This results from the fact that the definition of the encoding
fλ only involves r2. Hence, if fλ(r) = P , then fλ(−r) = P also. And one can
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show that r,−r are the only points in the set f−1
λ (P ) (like in [1] or in [8], this

property of fλ is called almost-injectivity). Moreover, we can invert fλ as follows.

Lemma 2 (Inverting fλ).
Given a point P = (xλ, yλ) ∈ Im(fλ), we can compute its preimage r ∈ R as
follows:

– if χ(yλ) = −1, then r =
1

2c3

√
c(x − 1)(3 + c4) + (1 + x)(1 + 3c4)

u[x(1 − c) + 1 + c]
;

– if χ(yλ) = 1, then r =
1

2c3(1 − c4)

√
(1 + x)(5c4 − 1) + c(1 − x)(3 + c4)

u[(1 − c4)(1 + x + c(x − 1))]
.

The proof is similar to those in [1,8].

Remark 2. Encodings into elliptic curves can be used in several ways. For exam-
ple, Bernstein et al. [1] used an almost-injective encoding, namely Elligator-2, to
make uniform strings indifferentiable from random. When the encoding function
is well-distributed, it can be used to design an indifferentiable hash function into
E(Fq). We can use these two applications for our encoding, since it is:

– almost-injective: injective when restricted to a certain subset S of Fq. In fact,
we can characterize the image set of fλ and show that given a point P in
Im(fλ), f−1

λ (P ) ∈ {r,−r} for some r ∈ Fq. When Fq is a prime field, one can
just set S = {0, 1, . . . , q−1

2 };
– and well-distributed: in [11], Farashahi et al. showed that any deterministic

encoding into elliptic curves can be transformed into a well-distributed one.

Example 1. We consider an example with the following parameters: q = 503, we
set u = −1 and c = 3. A code for the implementation is given in appendix as
well as the outputs for this example.

4 Conclusion

In this work, we described the first known encoding for the theta model for
elliptic curves Eλ : 1 + x2 + y2 + x2y2 = λ2xy. And we showed that this
new encoding is efficiently computable (deterministic and polynomial-time). A
numerical example is also given to ensure the correctness of our encoding. Like
existing encodings for other models of curves, our encoding has some interesting
features, like almost-injectivity and inversibility. Such properties can be used to
design indifferentiable hash functions in the group of points of the curve, or to
design IBE-schemes.
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A An Implementation of Theta-Model-Encoding in Sage

class ThetaModel():

def init(self,q,u,c): ##assuming q is prime

self.F=FiniteField(q,’a’)

self.q=q

self.u=u

self.c=c

def verificationParameters(self):

F=self.F

q=self.q

u=self.u

c=self.c

if F.characteristic()==2:

print ’Error: The characteristic is egal to’, F.characteristic()

return False

else:

if (F(c).is_zero() is True) or (F(1-c^4).is_zero() is True) or (F(1+c^4).is_zero() is True):

print ’Error: bad value for c’

return False

else:

if (F(u).is_zero() is True) or (F(u).is_square() is True):

print ’Error: u={} is zero or is a square’.format(u)+’ in the finite field of {} elements’.format(F.order())

return False

else:

return True

def setOfDefinition(self,value):

F=self.F

c=self.c

u=self.u

r=F(value)

if (F(4*u*r*r*(c^6)-(1-c^4)*(1+3*c^4)).is_zero() is True) or

( F(4*u*r*r*(c^6)+(1-c^4)^4).is_zero() is True ) or ( F(4*u*r*r*(c^6)*(1+3*(c^4))-(1-c^4)^3).is_zero() is True):

print ’r={} is not in the set of definition’.format(r)

return False

else:

return True

def quadraticCharacter(self,value):

F=self.F

try:

residu=value.is_square()

except:

residu=F(value).is_square()

if residu is True:

return 1

else:

return -1

def encodeTheta(self,value):

if self.verificationParameters() is True:

if self.setOfDefinition(value) is True:

F=self.F

r=F(value)

c=self.c

u=self.u

v=F( c*(4*u*r*r*(c^6)+(1-c^4)*(3+c^4))/(4*u*r*r*(c^6)+(1-c^4)*(-3*(c^4)-1)) );

e=self.quadraticCharacter((c*c-v*v)*(1-c*c*v*v));

X=F( v*(e+1)/2 + (((-c^4-1)*(v+c)-c*(1-c^4))/(2*(c^3)*(v+c)+1-c^4))*(e-1)/2 );

try:

a=F((c*c-X*X)/(1-c*c*X*X))

root=a.square_root()

Y=-e*root

x=(X+1)/(X-1)

y=(Y-1)/(Y+1)

return (F(x),F(y))

except:

print ’Error when computing the square root of f(x)’

return {}

B Example with q = 503, u = −1, c = 3:.

t=ThetaModel()

t.init(501,-1,3)

if t.verificationParameters() is True:

for i in t.F:

if t.setOfDefinition(i) is True:

print ’r=’,i,’=====>(x,y)=’,

t.encodeTheta(i)

r= 0 =====>(x,y)= (430, 121)

r= 1 =====>(x,y)= (441, 382)

r= 2 =====>(x,y)= (386, 240)

r= 3 =====>(x,y)= (283, 274)

r= 4 =====>(x,y)= (212, 73)

r= 5 =====>(x,y)= (307, 100)

r= 6 =====>(x,y)= (23, 298)

r= 7 =====>(x,y)= (42, 171)

r= 8 =====>(x,y)= (311, 239)

r= 9 =====>(x,y)= (491, 332)

r= 10 =====>(x,y)= (415, 385)

r= 11 =====>(x,y)= (125, 490)

r= 12 =====>(x,y)= (330, 470)

r= 13 =====>(x,y)= (328, 205)

r= 14 =====>(x,y)= (315, 483)

r= 15 =====>(x,y)= (77, 31)

r= 16 =====>(x,y)= (352, 369)

r= 17 =====>(x,y)= (283, 123)

r= 18 =====>(x,y)= (327, 188)

r= 19 =====>(x,y)= (411, 365)

r= 20 =====>(x,y)= (480, 265)

r= 21 =====>(x,y)= (25, 485)

r= 22 =====>(x,y)= (386, 153)

r= 23 =====>(x,y)= (176, 404)

r= 24 =====>(x,y)= (368, 142)

r= 25 =====>(x,y)= (121, 62)

r= 26 =====>(x,y)= (40, 422)

r= 27 =====>(x,y)= (461, 50)

r= 28 =====>(x,y)= (318, 46)

r= 29 =====>(x,y)= (170, 76)
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r= 30 =====>(x,y)= (217, 310)

r= 31 =====>(x,y)= (171, 12)

r= 32 =====>(x,y)= (187, 49)

r= 33 =====>(x,y)= (436, 313)

r= 34 =====>(x,y)= (31, 98)

r= 35 =====>(x,y)= (43, 350)

r= 36 =====>(x,y)= (382, 73)

r= 37 =====>(x,y)= (490, 125)

r= 38 =====>(x,y)= (338, 435)

r= 39 =====>(x,y)= (124, 141)

r= 40 =====>(x,y)= (378, 387)

r= 41 =====>(x,y)= (416, 457)

r= 42 =====>(x,y)= (63, 32)

r= 43 =====>(x,y)= (86, 51)

r=44 is not in the set of definition

r= 45 =====>(x,y)= (470, 330)

r= 46 =====>(x,y)= (259, 352)

r= 47 =====>(x,y)= (153, 460)

r= 48 =====>(x,y)= (318, 339)

r= 49 =====>(x,y)= (237, 69)

r= 50 =====>(x,y)= (220, 380)

r= 51 =====>(x,y)= (442, 330)

r= 52 =====>(x,y)= (213, 166)

r= 53 =====>(x,y)= (495, 110)

r= 54 =====>(x,y)= (393, 8)

r= 55 =====>(x,y)= (185, 164)

r= 56 =====>(x,y)= (287, 364)

r= 57 =====>(x,y)= (378, 13)

r= 58 =====>(x,y)= (472, 405)

r= 59 =====>(x,y)= (232, 304)

r= 60 =====>(x,y)= (51, 310)

r= 61 =====>(x,y)= (216, 139)

r= 62 =====>(x,y)= (258, 199)

r= 63 =====>(x,y)= (60, 476)

r= 64 =====>(x,y)= (258, 91)

r= 65 =====>(x,y)= (382, 441)

r= 66 =====>(x,y)= (352, 259)

r= 67 =====>(x,y)= (350, 117)

r= 68 =====>(x,y)= (109, 149)

r= 69 =====>(x,y)= (102, 336)

r= 70 =====>(x,y)= (467, 375)

r= 71 =====>(x,y)= (425, 154)

r= 72 =====>(x,y)= (339, 318)

r= 73 =====>(x,y)= (231, 209)

r= 74 =====>(x,y)= (379, 362)

r= 75 =====>(x,y)= (116, 334)

r= 76 =====>(x,y)= (252, 502)

r= 77 =====>(x,y)= (149, 109)

r= 78 =====>(x,y)= (235, 278)

r= 79 =====>(x,y)= (466, 338)

r= 80 =====>(x,y)= (457, 416)

r= 81 =====>(x,y)= (16, 123)

r= 82 =====>(x,y)= (495, 471)

r= 83 =====>(x,y)= (141, 215)

r= 84 =====>(x,y)= (470, 157)

r= 85 =====>(x,y)= (127, 94)

r= 86 =====>(x,y)= (334, 490)

r= 87 =====>(x,y)= (311, 181)

r= 88 =====>(x,y)= (301, 409)

r= 89 =====>(x,y)= (458, 67)

r= 90 =====>(x,y)= (440, 471)

r= 91 =====>(x,y)= (360, 253)

r= 92 =====>(x,y)= (350, 43)

r= 93 =====>(x,y)= (304, 245)

r= 94 =====>(x,y)= (322, 192)

r= 95 =====>(x,y)= (173, 33)

r= 96 =====>(x,y)= (18, 342)

r= 97 =====>(x,y)= (410, 179)

r= 98 =====>(x,y)= (485, 25)

r= 99 =====>(x,y)= (190, 488)

r= 100 =====>(x,y)= (475, 161)

r= 101 =====>(x,y)= (225, 122)

r= 102 =====>(x,y)= (8, 393)

r= 103 =====>(x,y)= (73, 382)

r= 104 =====>(x,y)= (342, 18)

r= 105 =====>(x,y)= (69, 237)

r= 106 =====>(x,y)= (442, 157)

r= 107 =====>(x,y)= (443, 27)

r= 108 =====>(x,y)= (403, 290)

r= 109 =====>(x,y)= (12, 453)

r= 110 =====>(x,y)= (148, 214)

r= 111 =====>(x,y)= (291, 430)

r= 112 =====>(x,y)= (289, 486)

r= 113 =====>(x,y)= (135, 361)

r= 114 =====>(x,y)= (250, 401)

r= 115 =====>(x,y)= (369, 493)

r= 116 =====>(x,y)= (305, 376)

r= 117 =====>(x,y)= (167, 143)

r= 118 =====>(x,y)= (493, 369)

r= 119 =====>(x,y)= (212, 441)

r= 120 =====>(x,y)= (125, 116)

r= 121 =====>(x,y)= (38, 235)

r= 122 =====>(x,y)= (490, 334)

r= 123 =====>(x,y)= (196, 337)

r= 124 =====>(x,y)= (263, 43)

r= 125 =====>(x,y)= (324, 93)

r= 126 =====>(x,y)= (357, 77)

r= 127 =====>(x,y)= (337, 290)

r= 128 =====>(x,y)= (337, 196)

r= 129 =====>(x,y)= (164, 185)

r= 130 =====>(x,y)= (460, 153)

r= 131 =====>(x,y)= (14, 224)

r= 132 =====>(x,y)= (245, 412)

r= 133 =====>(x,y)= (110, 495)

r= 134 =====>(x,y)= (271, 91)

r= 135 =====>(x,y)= (478, 18)

r= 136 =====>(x,y)= (151, 134)

r= 137 =====>(x,y)= (435, 189)

r= 138 =====>(x,y)= (467, 279)

r= 139 =====>(x,y)= (404, 483)

r= 140 =====>(x,y)= (489, 279)

r= 141 =====>(x,y)= (409, 301)

r= 142 =====>(x,y)= (493, 259)

r= 143 =====>(x,y)= (315, 176)

r= 144 =====>(x,y)= (28, 478)

r= 145 =====>(x,y)= (237, 226)

r= 146 =====>(x,y)= (157, 442)

r= 147 =====>(x,y)= (465, 268)

r= 148 =====>(x,y)= (394, 354)

r= 149 =====>(x,y)= (460, 240)

r= 150 =====>(x,y)= (198, 202)

r= 151 =====>(x,y)= (202, 198)

r= 152 =====>(x,y)= (189, 466)

r= 153 =====>(x,y)= (87, 339)

r= 154 =====>(x,y)= (78, 454)

r= 155 =====>(x,y)= (240, 386)

r= 156 =====>(x,y)= (213, 100)

r= 157 =====>(x,y)= (143, 250)

r= 158 =====>(x,y)= (224, 36)

r= 159 =====>(x,y)= (51, 86)

r= 160 =====>(x,y)= (435, 338)

r= 161 =====>(x,y)= (215, 132)

r= 162 =====>(x,y)= (411, 390)

r= 163 =====>(x,y)= (376, 305)

r= 164 =====>(x,y)= (275, 355)

r= 165 =====>(x,y)= (316, 349)

r= 166 =====>(x,y)= (307, 166)

r= 167 =====>(x,y)= (272, 294)

r= 168 =====>(x,y)= (502, 252)

r= 169 =====>(x,y)= (485, 161)

r= 170 =====>(x,y)= (463, 118)

r= 171 =====>(x,y)= (381, 38)

r= 172 =====>(x,y)= (217, 86)

r= 173 =====>(x,y)= (476, 60)

r= 174 =====>(x,y)= (264, 317)

r= 175 =====>(x,y)= (333, 427)

r= 176 =====>(x,y)= (88, 81)

r= 177 =====>(x,y)= (298, 175)

r= 178 =====>(x,y)= (67, 458)

r= 179 =====>(x,y)= (281, 119)

r= 180 =====>(x,y)= (338, 466)

r= 181 =====>(x,y)= (199, 258)

r= 182 =====>(x,y)= (362, 288)

r= 183 =====>(x,y)= (128, 14)

r= 184 =====>(x,y)= (384, 222)

r= 185 =====>(x,y)= (98, 357)

r= 186 =====>(x,y)= (290, 403)

r= 187 =====>(x,y)= (466, 189)

r= 188 =====>(x,y)= (186, 239)

r= 189 =====>(x,y)= (104, 69)

r= 190 =====>(x,y)= (36, 128)

r= 191 =====>(x,y)= (132, 124)

r= 192 =====>(x,y)= (46, 87)

r= 193 =====>(x,y)= (225, 268)

r= 194 =====>(x,y)= (263, 117)

r= 195 =====>(x,y)= (475, 25)

r= 196 =====>(x,y)= (487, 229)

r= 197 =====>(x,y)= (404, 176)

r= 198 =====>(x,y)= (328, 265)

r= 199 =====>(x,y)= (82, 390)

r= 200 =====>(x,y)= (104, 226)

r= 201 =====>(x,y)= (229, 220)

r= 202 =====>(x,y)= (488, 190)

r= 203 =====>(x,y)= (342, 28)

r= 204 =====>(x,y)= (161, 475)

r= 205 =====>(x,y)= (334, 116)

r= 206 =====>(x,y)= (489, 375)

r= 207 =====>(x,y)= (480, 205)

r= 208 =====>(x,y)= (403, 196)

r= 209 =====>(x,y)= (380, 487)

r= 210 =====>(x,y)= (278, 381)

r= 211 =====>(x,y)= (175, 238)

r= 212 =====>(x,y)= (375, 467)

r= 213 =====>(x,y)= (401, 167)

r= 214 =====>(x,y)= (288, 371)

r= 215 =====>(x,y)= (87, 46)

r= 216 =====>(x,y)= (271, 199)

r= 217 =====>(x,y)= (371, 379)

r= 218 =====>(x,y)= (50, 491)

r= 219 =====>(x,y)= (186, 181)

r= 220 =====>(x,y)= (10, 244)

r= 221 =====>(x,y)= (146, 426)

r= 222 =====>(x,y)= (31, 77)

r= 223 =====>(x,y)= (117, 263)

r= 224 =====>(x,y)= (440, 110)

r= 225 =====>(x,y)= (189, 435)

r= 226 =====>(x,y)= (502, 2)

r= 227 =====>(x,y)= (441, 212)

r= 228 =====>(x,y)= (465, 122)

r= 229 =====>(x,y)= (279, 489)

r= 230 =====>(x,y)= (483, 315)

r= 231 =====>(x,y)= (17, 228)

r= 232 =====>(x,y)= (91, 271)

r= 233 =====>(x,y)= (94, 127)

r= 234 =====>(x,y)= (169, 387)

r= 235 =====>(x,y)= (453, 42)

r= 236 =====>(x,y)= (15, 45)

r= 237 =====>(x,y)= (116, 125)

r= 238 =====>(x,y)= (20, 99)

r= 239 =====>(x,y)= (357, 98)

r= 240 =====>(x,y)= (310, 217)

r= 241 =====>(x,y)= (346, 61)

r= 242 =====>(x,y)= (226, 104)

r= 243 =====>(x,y)= (73, 212)

r= 244 =====>(x,y)= (471, 440)

r= 245 =====>(x,y)= (169, 13)

r= 246 =====>(x,y)= (412, 232)

r= 247 =====>(x,y)= (32, 63)

r= 248 =====>(x,y)= (332, 461)

r= 249 =====>(x,y)= (478, 28)

r= 250 =====>(x,y)= (82, 365)

r= 251 =====>(x,y)= (16, 274)

r= 252 =====>(x,y)= (16, 274)

r= 253 =====>(x,y)= (82, 365)

r= 254 =====>(x,y)= (478, 28)

r= 255 =====>(x,y)= (332, 461)

r= 256 =====>(x,y)= (32, 63)

r= 257 =====>(x,y)= (412, 232)

r= 258 =====>(x,y)= (169, 13)

r= 259 =====>(x,y)= (471, 440)

r= 260 =====>(x,y)= (73, 212)

r= 261 =====>(x,y)= (226, 104)

r= 262 =====>(x,y)= (346, 61)

r= 263 =====>(x,y)= (310, 217)

r= 264 =====>(x,y)= (357, 98)

r= 265 =====>(x,y)= (20, 99)

r= 266 =====>(x,y)= (116, 125)

r= 267 =====>(x,y)= (15, 45)

r= 268 =====>(x,y)= (453, 42)

r= 269 =====>(x,y)= (169, 387)

r= 270 =====>(x,y)= (94, 127)

r= 271 =====>(x,y)= (91, 271)

r= 272 =====>(x,y)= (17, 228)

r= 273 =====>(x,y)= (483, 315)

r= 274 =====>(x,y)= (279, 489)

r= 275 =====>(x,y)= (465, 122)

r= 276 =====>(x,y)= (441, 212)

r= 277 =====>(x,y)= (502, 2)

r= 278 =====>(x,y)= (189, 435)

r= 279 =====>(x,y)= (440, 110)

r= 280 =====>(x,y)= (117, 263)

r= 281 =====>(x,y)= (31, 77)

r= 282 =====>(x,y)= (146, 426)

r= 283 =====>(x,y)= (10, 244)

r= 284 =====>(x,y)= (186, 181)

r= 285 =====>(x,y)= (50, 491)

r= 286 =====>(x,y)= (371, 379)

r= 287 =====>(x,y)= (271, 199)

r= 288 =====>(x,y)= (87, 46)

r= 289 =====>(x,y)= (288, 371)

r= 290 =====>(x,y)= (401, 167)

r= 291 =====>(x,y)= (375, 467)

r= 292 =====>(x,y)= (175, 238)

r= 293 =====>(x,y)= (278, 381)

r= 294 =====>(x,y)= (380, 487)

r= 295 =====>(x,y)= (403, 196)

r= 296 =====>(x,y)= (480, 205)

r= 297 =====>(x,y)= (489, 375)

r= 298 =====>(x,y)= (334, 116)

r= 299 =====>(x,y)= (161, 475)
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r= 300 =====>(x,y)= (342, 28)

r= 301 =====>(x,y)= (488, 190)

r= 302 =====>(x,y)= (229, 220)

r= 303 =====>(x,y)= (104, 226)

r= 304 =====>(x,y)= (82, 390)

r= 305 =====>(x,y)= (328, 265)

r= 306 =====>(x,y)= (404, 176)

r= 307 =====>(x,y)= (487, 229)

r= 308 =====>(x,y)= (475, 25)

r= 309 =====>(x,y)= (263, 117)

r= 310 =====>(x,y)= (225, 268)

r= 311 =====>(x,y)= (46, 87)

r= 312 =====>(x,y)= (132, 124)

r= 313 =====>(x,y)= (36, 128)

r= 314 =====>(x,y)= (104, 69)

r= 315 =====>(x,y)= (186, 239)

r= 316 =====>(x,y)= (466, 189)

r= 317 =====>(x,y)= (290, 403)

r= 318 =====>(x,y)= (98, 357)

r= 319 =====>(x,y)= (384, 222)

r= 320 =====>(x,y)= (128, 14)

r= 321 =====>(x,y)= (362, 288)

r= 322 =====>(x,y)= (199, 258)

r= 323 =====>(x,y)= (338, 466)

r= 324 =====>(x,y)= (281, 119)

r= 325 =====>(x,y)= (67, 458)

r= 326 =====>(x,y)= (298, 175)

r= 327 =====>(x,y)= (88, 81)

r= 328 =====>(x,y)= (333, 427)

r= 329 =====>(x,y)= (264, 317)

r= 330 =====>(x,y)= (476, 60)

r= 331 =====>(x,y)= (217, 86)

r= 332 =====>(x,y)= (381, 38)

r= 333 =====>(x,y)= (463, 118)

r= 334 =====>(x,y)= (485, 161)

r= 335 =====>(x,y)= (502, 252)

r= 336 =====>(x,y)= (272, 294)

r= 337 =====>(x,y)= (307, 166)

r= 338 =====>(x,y)= (316, 349)

r= 339 =====>(x,y)= (275, 355)

r= 340 =====>(x,y)= (376, 305)

r= 341 =====>(x,y)= (411, 390)

r= 342 =====>(x,y)= (215, 132)

r= 343 =====>(x,y)= (435, 338)

r= 344 =====>(x,y)= (51, 86)

r= 345 =====>(x,y)= (224, 36)

r= 346 =====>(x,y)= (143, 250)

r= 347 =====>(x,y)= (213, 100)

r= 348 =====>(x,y)= (240, 386)

r= 349 =====>(x,y)= (78, 454)

r= 350 =====>(x,y)= (87, 339)

r= 351 =====>(x,y)= (189, 466)

r= 352 =====>(x,y)= (202, 198)

r= 353 =====>(x,y)= (198, 202)

r= 354 =====>(x,y)= (460, 240)

r= 355 =====>(x,y)= (394, 354)

r= 356 =====>(x,y)= (465, 268)

r= 357 =====>(x,y)= (157, 442)

r= 358 =====>(x,y)= (237, 226)

r= 359 =====>(x,y)= (28, 478)

r= 360 =====>(x,y)= (315, 176)

r= 361 =====>(x,y)= (493, 259)

r= 362 =====>(x,y)= (409, 301)

r= 363 =====>(x,y)= (489, 279)

r= 364 =====>(x,y)= (404, 483)

r= 365 =====>(x,y)= (467, 279)

r= 366 =====>(x,y)= (435, 189)

r= 367 =====>(x,y)= (151, 134)

r= 368 =====>(x,y)= (478, 18)

r= 369 =====>(x,y)= (271, 91)

r= 370 =====>(x,y)= (110, 495)

r= 371 =====>(x,y)= (245, 412)

r= 372 =====>(x,y)= (14, 224)

r= 373 =====>(x,y)= (460, 153)

r= 374 =====>(x,y)= (164, 185)

r= 375 =====>(x,y)= (337, 196)

r= 376 =====>(x,y)= (337, 290)

r= 377 =====>(x,y)= (357, 77)

r= 378 =====>(x,y)= (324, 93)

r= 379 =====>(x,y)= (263, 43)

r= 380 =====>(x,y)= (196, 337)

r= 381 =====>(x,y)= (490, 334)

r= 382 =====>(x,y)= (38, 235)

r= 383 =====>(x,y)= (125, 116)

r= 384 =====>(x,y)= (212, 441)

r= 385 =====>(x,y)= (493, 369)

r= 386 =====>(x,y)= (167, 143)

r= 387 =====>(x,y)= (305, 376)

r= 388 =====>(x,y)= (369, 493)

r= 389 =====>(x,y)= (250, 401)

r= 390 =====>(x,y)= (135, 361)

r= 391 =====>(x,y)= (289, 486)

r= 392 =====>(x,y)= (291, 430)

r= 393 =====>(x,y)= (148, 214)

r= 394 =====>(x,y)= (12, 453)

r= 395 =====>(x,y)= (403, 290)

r= 396 =====>(x,y)= (443, 27)

r= 397 =====>(x,y)= (442, 157)

r= 398 =====>(x,y)= (69, 237)

r= 399 =====>(x,y)= (342, 18)

r= 400 =====>(x,y)= (73, 382)

r= 401 =====>(x,y)= (8, 393)

r= 402 =====>(x,y)= (225, 122)

r= 403 =====>(x,y)= (475, 161)

r= 404 =====>(x,y)= (190, 488)

r= 405 =====>(x,y)= (485, 25)

r= 406 =====>(x,y)= (410, 179)

r= 407 =====>(x,y)= (18, 342)

r= 408 =====>(x,y)= (173, 33)

r= 409 =====>(x,y)= (322, 192)

r= 410 =====>(x,y)= (304, 245)

r= 411 =====>(x,y)= (350, 43)

r= 412 =====>(x,y)= (360, 253)

r= 413 =====>(x,y)= (440, 471)

r= 414 =====>(x,y)= (458, 67)

r= 415 =====>(x,y)= (301, 409)

r= 416 =====>(x,y)= (311, 181)

r= 417 =====>(x,y)= (334, 490)

r= 418 =====>(x,y)= (127, 94)

r= 419 =====>(x,y)= (470, 157)

r= 420 =====>(x,y)= (141, 215)

r= 421 =====>(x,y)= (495, 471)

r= 422 =====>(x,y)= (16, 123)

r= 423 =====>(x,y)= (457, 416)

r= 424 =====>(x,y)= (466, 338)

r= 425 =====>(x,y)= (235, 278)

r= 426 =====>(x,y)= (149, 109)

r= 427 =====>(x,y)= (252, 502)

r= 428 =====>(x,y)= (116, 334)

r= 429 =====>(x,y)= (379, 362)

r= 430 =====>(x,y)= (231, 209)

r= 431 =====>(x,y)= (339, 318)

r= 432 =====>(x,y)= (425, 154)

r= 433 =====>(x,y)= (467, 375)

r= 434 =====>(x,y)= (102, 336)

r= 435 =====>(x,y)= (109, 149)

r= 436 =====>(x,y)= (350, 117)

r= 437 =====>(x,y)= (352, 259)

r= 438 =====>(x,y)= (382, 441)

r= 439 =====>(x,y)= (258, 91)

r= 440 =====>(x,y)= (60, 476)

r= 441 =====>(x,y)= (258, 199)

r= 442 =====>(x,y)= (216, 139)

r= 443 =====>(x,y)= (51, 310)

r= 444 =====>(x,y)= (232, 304)

r= 445 =====>(x,y)= (472, 405)

r= 446 =====>(x,y)= (378, 13)

r= 447 =====>(x,y)= (287, 364)

r= 448 =====>(x,y)= (185, 164)

r= 449 =====>(x,y)= (393, 8)

r= 450 =====>(x,y)= (495, 110)

r= 451 =====>(x,y)= (213, 166)

r= 452 =====>(x,y)= (442, 330)

r= 453 =====>(x,y)= (220, 380)

r= 454 =====>(x,y)= (237, 69)

r= 455 =====>(x,y)= (318, 339)

r= 456 =====>(x,y)= (153, 460)

r= 457 =====>(x,y)= (259, 352)

r= 458 =====>(x,y)= (470, 330)

r=459 is not in the set of definition

r= 460 =====>(x,y)= (86, 51)

r= 461 =====>(x,y)= (63, 32)

r= 462 =====>(x,y)= (416, 457)

r= 463 =====>(x,y)= (378, 387)

r= 464 =====>(x,y)= (124, 141)

r= 465 =====>(x,y)= (338, 435)

r= 466 =====>(x,y)= (490, 125)

r= 467 =====>(x,y)= (382, 73)

r= 468 =====>(x,y)= (43, 350)

r= 469 =====>(x,y)= (31, 98)

r= 470 =====>(x,y)= (436, 313)

r= 471 =====>(x,y)= (187, 49)

r= 472 =====>(x,y)= (171, 12)

r= 473 =====>(x,y)= (217, 310)

r= 474 =====>(x,y)= (170, 76)

r= 475 =====>(x,y)= (318, 46)

r= 476 =====>(x,y)= (461, 50)

r= 477 =====>(x,y)= (40, 422)

r= 478 =====>(x,y)= (121, 62)

r= 479 =====>(x,y)= (368, 142)

r= 480 =====>(x,y)= (176, 404)

r= 481 =====>(x,y)= (386, 153)

r= 482 =====>(x,y)= (25, 485)

r= 483 =====>(x,y)= (480, 265)

r= 484 =====>(x,y)= (411, 365)

r= 485 =====>(x,y)= (327, 188)

r= 486 =====>(x,y)= (283, 123)

r= 487 =====>(x,y)= (352, 369)

r= 488 =====>(x,y)= (77, 31)

r= 489 =====>(x,y)= (315, 483)

r= 490 =====>(x,y)= (328, 205)

r= 491 =====>(x,y)= (330, 470)

r= 492 =====>(x,y)= (125, 490)

r= 493 =====>(x,y)= (415, 385)

r= 494 =====>(x,y)= (491, 332)

r= 495 =====>(x,y)= (311, 239)

r= 496 =====>(x,y)= (42, 171)

r= 497 =====>(x,y)= (23, 298)

r= 498 =====>(x,y)= (307, 100)

r= 499 =====>(x,y)= (212, 73)

r= 500 =====>(x,y)= (283, 274)

r= 501 =====>(x,y)= (386, 240)

r= 502 =====>(x,y)= (441, 382)
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