
A Parallelized Spark Based Version of mRMR

Reine Marie Ndéla Marone1(&), Fodé Camara2, and Samba Ndiaye1

1 Department of Mathematics, Cheikh Anta Diop University, Dakar, Senegal
reine.marie.marone@ucad.edu.sn

2 Department of Mathematics, Alioune Diop University, Bambey, Senegal
fode.camara@uadb.edu.sn

Abstract. Nowadays, we are surrounded by enormous large-scale high
dimensional data called big data and it is crucial to reduce the dimensionality of
data for machine learning problems. That’s why feature selection plays a vital
role in the process of machine learning because it aims to reduce high-
dimensionality by removing irrelevant and redundant features from original
data. However some characteristics of big data like data velocity, volume and
data variety have brought new challenges in the field of feature selection. In fact,
most of existing feature selection algorithms were designed for running on a
single machine (centralized computing architecture) and do not scale well when
dealing with big data. Their efficiency may significantly deteriorate to the point
of becoming inapplicable. For this reason, there is an increasing need for
scalable yet efficient feature selection methods. That’s why we present here a
distributed and effective version of the mRMR (Max-Relevance and Min-
Redundancy) algorithm to face real-world problems of data mining and evaluate
the empirical performance of the proposed algorithms in selecting features in
several public datasets. When we compared the efficiency and the scalability of
our parallelized method in comparison with the centralized one we have found
out that our parallelized method have given better results.

Keywords: Feature selection � Filter method � Parallel computing
Apache Spark � mRMR � SVM

1 Problematic and Related Works

1.1 Introduction

Feature selection is a fundamental preprocessing step that aims to reduce input
dimensionality in machine learning and pattern recognition [1]. Many domains use
feature selection: for example in bioinformatics it is an important topic because it is
critical to define informative features from complex high dimensional biological in
disease study, drug development, etc.

Unfortunately, most feature selection algorithms are designed for centralized
computing and do not scale well with large-scale datasets [3]. To tackle these problems,
distributed computing framework like Apache Hadoop, which implements the
MapReduce model, can be a solution [3].

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2018
C. M. F. Kebe et al. (Eds.): InterSol 2018, LNICST 249, pp. 187–198, 2018.
https://doi.org/10.1007/978-3-319-98878-8_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98878-8_18&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98878-8_18&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98878-8_18&domain=pdf

But the Apache Hadoop is not adapted to feature selection because it because it
lacks built-in support for the iterative process [4]. So, an alternative to Hadoop has been
presented to overcome these problems. It is Spark, a memory-based iterative compu-
tation framework that improves the IO read/write performance issue by processing
intermediate data in-memory [4].

In regard to that, in this paper, we propose a parallel version of the centralized
mRMR algorithm that we have named SFS-mRMR (for Spark Feature Selection
method based on mRMR), on the framework Spark to ameliorate its efficiency. The
choice of mRMR is motivated by the fact that minimum-redundancy-maximum-
relevance (mRMR) selector is considered one of the most relevant method for
dimensionality reduction due to its high accuracy.

The results that we obtained show that our algorithm is scalable and outperforms
the classical mRMR feature selection method.

The rest of the paper is structured as follows:
Section 2 reviews previous works. Section 3 deals with the formulation of the

problem. Section 4 presents the centralized mRMR. Section 5 gives the metrics we
used in our proposal. Section 6 consists of the presentation of our algorithm. Section 7
describes the working environment. Section 8 presents and analyzes the results of the
experiments. Section 9 concludes and gives futures researchs.

1.2 Related Works

Feature selection is a fundamental preprocessing step to reduce input dimensionality.
There are 3 general categories of feature selection methods: Filter, Wrapper and

embedded [5].
Filters methods use some criterion to score each feature and provide a ranking to

evaluate the features which determine their relevance or discriminant powers with the
outcome variable [5].

In the wrapper methods the accuracy of classifier is estimated to select the features
[5]. Although computationally expensive the wrapper is the best feature selection
method for accuracy [5].

In Embedded methods a given model is used to guide the feature selection process,
and select the most relevant features when building the model [5].

Filter methods offer better computational complexity but do not take into account
the interactions among the variables, which cannot be ignored.

mRMR is one of the most famous filter method. But mRMR is a centralized method
and do not scale well with ultrahigh dimensional datasets. So it is fundamental to
optimize the mRMR algorithm by using efficient parallelization [7]. That’s why,
proposals have been made on the parallelization of mRMR algorithm the interest of
which is to decrease the training time and ameliorate the accuracy of the machine-
learning tasks.

188 R. M. N. Marone et al.

The work in [1] present a parallelization of many methods based on information
theory including mRMR in Apache Spark.

The Experimental results show that this methods scale well and efficiently with
ultra-high-dimensional datasets.

The work in [8] proposes to extend mRMR by using a number of approaches to
better explore the feature space and build more robust predictors. To deal with the
computational complexity of those approaches, authors implement and parallelize
functions in C using the openMP Application Programming Interface. These methods
show significant gains in terms of run-time.

Authors in [9] present a two-stage selection algorithm by combining ReliefF and
mRMR. In the first stage, ReliefF is applied to find a candidate gene set; In the second
stage, mRMR method is applied to directly and explicitly reduce redundancy for
selecting a compact yet effective gene subset from the candidate set. The experimental
results show that the mRMR-ReliefF gene selection algorithm is very effective.

In [10], authors present three implementations of an extension of mRMR named
fast-mRMR in several platforms, namely, CPU for sequential execution, GPU
(graphics processing units) for parallel computing, and Apache Spark for distributed
computing using big data technologies.

In [11], authors combined dynamic sample space with mRMR and proposed a new
feature selection method. In each iteration, the weighted mRMR values are calculated
on dynamic sample space consisting of the current unlabelled samples. The feature
with the largest weighted mRMR value among those that can improve the classification
performance is selected in preference. Five public datasets were used to demonstrate
the superiority of this method.

It is clear that the methods presented in these different works use a greedy approach
by iteratively add or remove features into a set of features. Our method selects a set of
relevant and non-relevant features on the dataset using only one iteration. That allows a
more significant reduction of the learning time and an improvement of classification
accuracy.

1.3 Formulation

Our work focuses on classification with 2 classes. Let c be the class label with 2 possible
values 0 or 1. Let S refer to the input dataset with a high number n of features {i1,..,in}
andm instances. V is an example defined by a vector (v1,..,vn), where vj is the value of the
feature i in V. Let O(S, D) denotes the evaluation function. A subset S′ of S is evaluated
by O with the data D. Let S1 and S2 be 2 subset of features in S. O(S1, D) > O(S2, D)
means that S1 is more interesting than S2.

Our proposed algorithm, called SFS-mRMR, is a distributed version of the mRMR
method that we based on Spark, a parallel programming framework. Our method aims
to find a subset S′ of features from S that maximize the function O.

A Parallelized Spark Based Version of mRMR 189

2 Improvement of MRMR

2.1 The Classical MRMR

mRMR means Minimum Redundancy and Maximum Relevance. The concept of
mRMR is to select the features so that they are mutually maximally dissimilar and
maximally relevant with the class label l [12]. Let i and j represent 2 features of S. The
mutual information between i and j is denoted by Mði; jÞ. Mðc; iÞ stands for the mutual
information between the class label c and i.

The redundancy among the features in S, is obtained by calculating the mutual
information between the features in S as follow:

QIðSÞ ¼ 1

Sj j2
X

i;j2S
Mði; jÞ ð1Þ

The relevance of features in S with the class label c is defined as

RIðSÞ ¼ 1
Sj j
X

i2S
Mðc; iÞ ð2Þ

By optimizing (1) and (2), we obtain S� the set constituted of features that are the
most relevant and less redundant in S. It is done as follows:

S� ¼ argmaxS0�S½RIðSÞ � QIðSÞ� ð3Þ

2.2 Our Proposal

SVM is an extremely powerful machine learning technique and one of the best
supervised classification techniques [13]. That’s why, SVM is used in combinaison
with mRMR in our algorithm SFS-mRMR as proposed by authors in [14]. The features
are scored by using this combinaison to obtain more performance. Let b 2 ½0; 1�
denotes a ratio between SVM scoring and mRMR scoring. The relevancy RF;i of feature
i in S is obtained as follow:

RS;i ¼ 1
Sj j
X

c

Mðc; iÞ ð4Þ

QF;i the redundancy of i is calculated as

QS;i ¼ 1

Sj j2
X

i;j2S
Mði; jÞ ð5Þ

190 R. M. N. Marone et al.

Let xi be the SVM weight of i.
The final score di of i is obtained as follow:

di ¼ b xij j þ ð1� bÞ RS;i

QS;i
ð6Þ

3 Our Method

The method that we propose (SFS-mRMR) takes as input:

– a set of data S composed of x attributes and y observations,
– the number T of attributes to select in S
– b, a ratio between SVM scoring and mRMR scoring,
– and z the desired partition number for the dataset.

Let D be the set of features in S.
Our method return S′ the subset constituted of T best features namely the features

that have the highest di values.
SFS-mRMR follows seven steps:

Stage 1:

1. Construct classes={c1,.., cy } the set of the class

labels in S.

2. Construct values={{
1
iv ,.., vi

y
}, i=1 to x }

vi
j
 represents value of the i-th feature in the j-th

observation:
3. Construct z subspaces of features SDt, t = 1..z from

D.

4. Construct z subspaces subt of {{
1
iv ,.., vi

y
}, i SD}

5. Send each subt at a worker.
Stage 2:

On each worker t:
6. Create several sets for each feature i in subt by

mapping i with each other feature j in D as follows:

i=>{ i, {
1
iv ,.., vi

y
}, { 1

jv ,.., vj
y
} , { c1,.., cy }}

The resulting set constituted of {i, {
1
iv ,.., vi

y
},

{ 1
jv ,.., vj

y
} , { c1,.., cy }, i=1 to x, j=1 to y } is called

rdd2.

A Parallelized Spark Based Version of mRMR 191

rdd3

192 R. M. N. Marone et al.

Stage6:
In this step calculate for each feature i its ranking

measure di and sent all di scores to the master.

It corresponds to the following instructions:

For each element (i, ijsumM , Ri) rdd4

10.rdd [(i, di)]= mapToPair ({i, sumMij, Ri } =>{i, di
})

Qi= ijsumM /(n*n);

di =β + ωi+((1-β)* (Ri /Qi));

/* ωiis SVM weight of feature i*/

End For each

11.All workers send di values to the master

Stage 7:
In this stage the features are collected and ordered by

the master. Master then returns the T attributes with the

best scores di.

This corresponds to the following sentences:
On the master:
12.Collect and ordered
13.Return S’: the set of T attributes that have the

best divalues.

4 Experimental Setup and Results

4.1 Data Description

The classifier used is SVM (support vector machine) and the data used for the
experiments are in LibSVM format.

Datasets used here, are from mldata.org [15].
Table 1 gives us details of the datasets.

Table 1. Characteristics of benchmark datasets

Name Number of features Number of instances

Colon-cancer 2000 62
Colon-tumor 2000 60

A Parallelized Spark Based Version of mRMR 193

http://mldata.org

For our experiments we have used a cluster of 4 nodes then a cluster of 6nodes.
Each node has 8 cores and run at 2.60 GHz, with 56 GB memory and a 382 GB disk,
Each node run at the Linux-based HDInsight (Spark) cluster.

4.2 Performance Evaluation

In this part, we will first discuss the scalability of our solution then we will compare the
execution time of our proposal with the one of centralized mRMR.

Figures 1, 2 and 3 show respectively how the execution time varies according to
the number of nodes when we select 25%, 50% or 75% of the dataset.

Fig. 1. Scalability of SFS_mRMR and classical mRMR with 25%.

Fig. 2. Scalability of SFS_mRMR and classical mRMR with 50%.

194 R. M. N. Marone et al.

The concerned figures clearly show that the execution time of our proposal con-
siderably decreases when the number of nodes increases whereas the time taken by
classical mRMR remains constant.

We have used 4 then 6nodes for the scalability. And for every case we have run the
tests using the same environment.

For every dataset we first select 25% then 50% and after 75% of features.

• Colon-cancer

Figures 4 and 5 shows the time taken by our method comparatively to the one of
centralized mRMR for respectively 4 and 6nodes.

Fig. 3. Scalability of SFS_mRMR and classical mRMR with 75%.

Fig. 4. Time taken for colon-cancer with 4nodes

A Parallelized Spark Based Version of mRMR 195

As we can notice, the execution time of our method is at least 4 times shorter
compared to the one of centralized mRMR.

• Colon-Tumor

For colon-tumor the results obtained with 4nodes are the following ones given in
Fig. 6:

With a cluster of 6nodes the execution time is stated in Fig. 7.
As for the colon-cancer we can notice that the execution time of our method SFS-

mRMR is also 4 times shorter at least.
Therefore, we can conclude from these experiments that our solution outperforms

the centralized mRMR method in terms of execution time. Moreover, the more we
increase the number of nodes, the shorter the execution time becomes in our method
whereas the one of centralized mRMR remains constant.

Fig. 5. Time taken for colon-cancer with 6nodes

Fig. 6. Time taken for colon-tumor with 4nodes

196 R. M. N. Marone et al.

In our experiments we have used datasets limited to 2000 features, because beyond
that number, the centralized mRMR takes too much time to run. For example, for
certain datasets above 2000 mRMR can take days to run completely.

5 Conclusion

In this paper, we have proposed a parallel and scalable version of a centralized feature
selection method named mRMR that we developed with the Spark framework.

In our method, a score is given to each feature to evaluate its redundancy with the
others features of the dataset and its relevance relatively to the class label. Then the
features presenting the highest score are returned.

Performance evaluation of our method demonstrates that our parallel algorithm can
improve the accuracy of classification and reduce the time taken by instance selection. The
performance results also show that our method scale well and efficiently with big data.

In the future, we plan to compare our method with other parallelized methods in the
litterature.

Acknowledgment. In this work, Microsoft Azure has sponsored us and we would like to take
this occasion to express them our thanks.

Without their help we would not have been able to test our algorithms in a cluster and we
would not have reached our goals.

References

1. Ramırez-Gallego, S., et al.: An information theory-based feature selection framework for big
data under apache spark. J. Latex Class Files 13(9) (2014)

2. Chahar, V., Chhikara, R., Gigras, Y., Singh, L.: Significance of hybrid feature selection
technique for intrusion detection systems. Indian J. Sci. Technol. 9(48) (2016). https://doi.
org/10.17485/ijst/2016/v9i48/105827

Fig. 7. Time taken for colon-tumor with 6nodes

A Parallelized Spark Based Version of mRMR 197

http://dx.doi.org/10.17485/ijst/2016/v9i48/105827
http://dx.doi.org/10.17485/ijst/2016/v9i48/105827

3. Zhao, Z., Cox, J., Duling, D., Sarle,W.:Massively parallel feature selection: an approach based
on variance preservation. In: Flach, P.A., De Bie, T., Cristianini, N. (eds.) ECMLPKDD 2012.
LNCS (LNAI), vol. 7523, pp. 237–252. Springer, Heidelberg (2012). https://doi.org/10.1007/
978-3-642-33460-3_21

4. Singh, D., Reddy, C.K.: A survey on platforms for big data analytics. J. Big Data 2(1), 8
(2015)

5. Liu, C., Wang, W., Zhao, Q., Konan, M.: A new feature selection method based on a validity
index of feature subset. Pattern Recogn. Lett. 92(1), 1–8 (2017)

6. Wenyan, Z., Xuewen, L., Jingjing, W.: Feature selection for cancer classification using
microarray gene expression data. Biostat. Biom. Open Access J. 1(2), 555557 (2017)

7. Jaseena, K.U., David, J.M.: Issues, challenges, and solutions: big data mining. In: Sixth
International Conference on Networks & Communications. https://doi.org/10.5121/csit.
2014.41311

8. De Jay, N., Papillon, S., Olsen, C., El-Hachem, N., Bontempi, G., Haibe-Kains, B.: mRMRe:
an R package for parallelized mRMR ensemble feature selection. Bioinformatics 29(18),
2365–2368 (2013). https://doi.org/10.1093/bioinformatics/btt383

9. Zhang, Y., Ding, C., Li, T.: Gene selection algorithm by combining reliefF and mRMR.
BMC Genom. 9(Suppl 2), S27 (2008). https://doi.org/10.1186/1471-2164-9-S2-S27

10. Ramírez-Gallego, S., et al.: Fast-mRMR: fast minimum redundancy maximum relevance
algorithm for high-dimensional big data: fast-mRMR algorithm for big data. Int. J. Intell.
Syst. (2016). https://doi.org/10.1002/int.21833

11. Yang, Y., Li, H., Lin, X., Ming, D.: Recursive feature selection based on minimum
redundancy maximum relevancy. In: 2010 Third International Symposium on Parallel
Architectures, Algorithms and Programming (PAAP) (2010). https://doi.org/10.1109/paap.
2010.52

12. Mandal, M., Mukhopadhyay, A.: An improved minimum redundancy maximum relevance
approach for feature selection in gene expression data. IEEE/ACM Trans. Comput. Biol.
Bioinform. (2016)

13. Chang, Y.-W., Lin, C.-J.: Feature ranking using linear SVM. In: Proceedings of the
Workshop on the Causation and Prediction Challenge at WCCI 2008, PMLR, vol. 3, pp. 53–
64 (2008)

14. Mundra, P.A., Rajapakse, J.C.: SVM-RFE with MRMR filter for gene selection. IEEE Trans.
Nanobiosci. 9(1), 31–37 (2010)

15. http://mldata.org/repository/data/viewslug/ovarian-cancer-nci-pbsii-data/

198 R. M. N. Marone et al.

http://dx.doi.org/10.1007/978-3-642-33460-3_21
http://dx.doi.org/10.1007/978-3-642-33460-3_21
http://dx.doi.org/10.5121/csit.2014.41311
http://dx.doi.org/10.5121/csit.2014.41311
http://dx.doi.org/10.1093/bioinformatics/btt383
http://dx.doi.org/10.1186/1471-2164-9-S2-S27
http://dx.doi.org/10.1002/int.21833
http://dx.doi.org/10.1109/paap.2010.52
http://dx.doi.org/10.1109/paap.2010.52
http://mldata.org/repository/data/viewslug/ovarian-cancer-nci-pbsii-data/

	A Parallelized Spark Based Version of mRMR
	Abstract
	1 Problematic and Related Works
	1.1 Introduction
	1.2 Related Works
	1.3 Formulation

	2 Improvement of MRMR
	2.1 The Classical MRMR
	2.2 Our Proposal

	3 Our Method
	4 Experimental Setup and Results
	4.1 Data Description
	4.2 Performance Evaluation

	5 Conclusion
	Acknowledgment
	References

