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Abstract. In Medical Imaging (MI), various technologies can be used to
monitor the human body for diagnosing, monitoring or treating disease. Each
type of technology provides different information about the body area that is
being investigated or treated for a possible illness, injury or effectiveness of a
medical treatment. Routine screening has identified malfunction detection in
many otherwise asymptomatic patient images such as computed tomography or
magnetic resonance. Studies have shown that, compared to patients whose
disease was symptomatic (i.e., self-recognizing), screen-detected diseases may
have more favorable clinicopathological features, leading to better prognosis
and better outcome. This paper aims to assess the issue of health care wait
screening. It deviates from a decision support system that evaluates the waiting
times in diagnostic MI based on operational data from various information
systems. Last but not least, one’s assumptions may have an important impact in
determining the usefulness of routine laboratory testing at admission.
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1 Introduction

The characterization of health activities in terms of time-screening theory is a very
recent trend in the field of research, i.e., a progressive learning experience, compen-
sated by the occasional satisfaction of discovery. In fact, time-screening has often been
defined, with meanings ranging from “not easy” to “persistent.” On the other hand,
technological advances are rapidly increasing interoperability, i.e., the ability to
communicate and integrate information from heterogeneous sources or services. In fact,
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a variety of imaging techniques can be used to diagnose or treat diseases such as
X-rays, Computed Tomography (CT), Magnetic Resonance Imaging, Positron Emis-
sion Tomography, Nuclear Medicine. Thus, a large data set extracted from various
information systems such as the Radiology Information System, the Image Archiving
and Communication System and the Electronic Medical Record is acquired and pro-
cessed [1–3]. It is undeniable that a proactive strategy is needed to solve such a
problem delay, which must take all of these factors into account. It is from this point of
view that the problem is addressed. The basis of integrated care is to be understood as a
patient interacting with a prepared, proactive and multidisciplinary setting. In this
work, the approach focuses on estimating the waiting time in a Case Based Reasoning
(CBR) approach to problem solving [4–6].

2 Knowledge Representation and Reasoning (KRR)

One aims at the understanding of the information’s complexity and the associated
inference mechanisms. Indeed, automated reasoning capabilities enables a system to fill
in the blanks when one is dealing with incomplete information, where data gaps are
common. In this study, a data item is to be understood as find something smaller inside
when taking anything apart, i.e., it is mostly formed from different elements, namely
the Interval Ends where their values may be situated, the Quality-of-Information (QoI)
they carry, and the Degree-of-Confidence (DoC) put on the fact that their values are
inside the intervals just referred to above. These are just three of over an endless
element’s number. Undeniably, one can make virtually anything one may think of by
joining different elements together or, in other words, viz.

• What happens when one splits a data item? The broken pieces become data item for
another element, a process that may be endless; and

• Can a data item be broken down? Basically, it is the smallest possible part of an
element that still remains the element.

Therefore, the proposed approach to this issue, put in terms of the logical programs
that elicit the universe of discourse, will be set as productions of the type, viz

predicate1� i� n �
\

1� j�m

clausej Ax1 ;Bx1½ � QoIx1 ;DoCx1ð Þð Þ; � � �ð

� � � ; Axm ;Bxm½ � QoIxm ;DoCxmð Þð ÞÞ :: QoIj :: DoCj

where n, \ , m and Axm , Bxm stand for the cardinality of the predicates’ set, conjunction,
predicate’s extension, and the interval ends where the predicates attributes values may
be situated, respectively. The metrics ½Axm ; Bxm ], QoI and DoC show the way to data
item dissection, i.e., a data item is to be understood as the data’s atomic structure. It
consists of identifying not only all the sub items that are thought to make up an data
item, but also to investigate the rules that oversee them, i.e., how Axm ;Bxm½ �, QoIxm , and
DoCxm are kept together and how much added value is created [7–14].
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3 Case Study

A database was set to create an intelligent system for the planning process of Waiting
Time Screening in Healthcare. The knowledge database is composed by a set of
predicate’s extensions (Fig. 1). Some incomplete or default data are present under this
scenario (for instance, the type in case 1 is unknown, and symbolized as ⊥).

The table has several columns such as Gender, Modality and Priority of Waiting
Time Screening. The table rows have been inserted with one (1) or 0 (zero) standing
for, respectively, Male/Female, CT/MRI and Urgent/Routine.

It is now possible to define the predicate waiting time screening (wts) whose exten-
sion stands for the objective function with respect to the problem under analysis, viz.

wts : Age;Gender;Date;Modality; Type;Priority;OrderingSpecialty ! 0; 1f g

in which the truth values true and false are expressed by 1 (one) and 0 (zero),
respectively. Considering the feature vector (Age = 44, Gender = 1, Date = [30, 45],
Modality = 0, Type = 69, Priority = 1, Ordering Specialty = ⊥), one may have, viz.

Fig. 1. Healthcare table or relation.
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4 Case Based Reasoning (CBR)

The CBR cycle used in this work was proposed by Neves et al., [12, 15] (Fig. 2), with
the ability to deal with incomplete or unknown information. Artificial Neural Networks
(ANNs) [16] were used in the optimization stage. The value ranges boundaries of the
attribute, the DoCs and QoIs, are the inputs of the ANN. The output not only provides
the case assessment, but also a confidence measure that deals with such a categorization
(Fig. 3).

When faced with a new case, for example the one that presents feature vector
Age = 56, Gender = 0, Date = 21, Modality = ⊥, Type = 42, Priority = 0, Order-

ing Specialty = 112, one may have, viz.

wtsnewcase 0:5; 0:5ð Þ 1; 1ð Þð Þ; � � � ; 0:58; 0:58ð Þ 1; 1ð Þð Þð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
attribute0s values ranges once normalized

and respective QoI and DoC values

:: 1 :: 0:85

leading to a retrieving of 42 cases [17], viz.

Fig. 2. An extended view of the canonical CBR cycle [12, 15].
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retrievedcase1 0:43; 0:43ð Þ 1; 1ð Þð Þ; � � �ð ; 0:86; 0:86ð Þ 1; 1ð Þð ÞÞ :: 1 :: 0:83

..

.

retrievedcase42 0:51; 0:51ð Þ 1; 1ð Þð Þ;ðð � � � ; 0:57; 0:57ð Þ 1; 1ð Þð ÞÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
normalized cases that make the retrieved cluster

:: 1 :: 0:84

The new case and the retrieved ones are compared using a similarity function, sim.
This function is set as follows, viz.

simDoC
newcase!1 ¼ 1� 1� 1k kþ � � � þ 1� 1k k

7
¼ 1� 0:18 ¼ 0:82

where simDoC
newcase!1 stands for the similarity with respect to DoC, between the new case

and the retrieved ones (in this example retrieved case1). A similar process was con-
sidered in order to evaluate the similarity, in terms of QoI, between the new case and
the retrieved case1, returning simQoI

newcase!1 ¼ 1. The general similarity, simQoI;DoC
newcase!1, is

the product of the above metrics above, viz.

simQoI;DoC
newcase!1 ¼ 1� 0:82 ¼ 0:82

This method was extended to all the remaining cases leading to the most similar
case, i.e., the potential problem solutions. The coincidence matrix for the CBR model is
shown in Table 1. It shows that the CBR model classifies properly 133 of a total of 149
cases, being the model accuracy 89.2%. In terms of the well known statistical metrics
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Fig. 3. The ANNs approach to case optimization.
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such as sensitivity and specificity, the results were 90.2%, and 87.2% respectively. The
ROC curve is shown in Fig. 4. The area under the curve is 0.89. The performance
metrics [18, 19] are close to 90% and suggest that the model has a good performance in
predicting the waiting time in healthcare.

5 Conclusions

This work begins with the development of an intelligent system for assessing the
latency in providing diagnostic medical services, based on a formal framework based
on Logic Programming for knowledge representation and reclaiming the CBR
approach to problem solving. The knowledge presentation and enforcement apparatus
presented above is very versatile and able to cover all possible data types, namely
incomplete, unknown or even self-contradictory data or information. Future work
should include data from various healthcare facilities (public, semi-public and private)
from different regions of Portugal. On the other hand, different string similarity

Table 1. The coincidence matrix

Output Model output
True (1) False (0)

True (1) 92 10
False (0) 6 41

1

0.5

0

Se
ns

iti
vi

ty

10.50
1 – Specificity

Fig. 4. The ROC curve.
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strategies will be considered, and their analysis complexity enumerated. On the other
hand, given the cost of this relatively low score, these results have important impli-
cations for the doctor’s office and cost-benefit analyzes that will be further evaluated to
better determine the current benefit of routine laboratory testing on admission.
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