
Improving Software Automation Testing
Using Jenkins, and Machine Learning

Under Big Data

Ali Stouky(&), Btissam Jaoujane, Rachid Daoudi, and Habiba Chaoui

Laboratoire Génie Des Système, L’équipe ADSI, ENSA de Kénitra,
Kenitra, Morocco

ali.stouky@gmail.com, btissam.jaoujane@gmail.com,

rachiddaoudi17@gmail.com, mejhed90@gmail.com

Abstract. Software testing is an essential phase of software development life
cycle that ensures quality of the software by fixing bugs which can be done with
automated testing to reduce human intervention and to save time and effort
consumed in the manual testing. The entire process of testing can be automated
easily with the help of automated testing tools. This paper provides a feasibility
study for the most commonly used testing tools, we conducted a comparative
study of five open source tools to determine their usability and effectiveness.
Another point discussed in our paper is the use of machine learning under big
data in order to make the system intelligent so that tests lend themselves to
automation. We will show how can the combination of all these mentioned
technologies can help users to decide which strategy to go for to save both cost
and time during testing phases.

Keywords: Big data � Machine learning � Test automation
Software testing tools � Functional testing

1 Introduction

Software testing is the process of evaluating a system to check that it satisfies the
specific requirements and identify the differences between expected and actual out-
comes. The objective behind software testing process is to identify all the defects
existing in a software product [1]. Software testing can be done manually or auto-
matically, manual testing is error prone and a time-consuming process it become a
bottleneck in the enterprise field when multiple tests are executed daily [2].

For that firms needs to speed up the testing time, cut costs and reduce data
maintenance effort by automating the software testing. Automation Testing is a term
that refers to the use of testing tools to cut the need of manual or human intervention,
repetitive or redundant tasks, and discover defects manual testing cannot expose.

In software development, developers are very good at delivering code that performs
the client’s needs and within the agreed timeframe. But that often comes at a cost, the
code quality is not in the required standard because tests are not conducted as they have
to be, some use cases are missing or sometimes there are software regressions caused

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2018
J. J. Jung et al. (Eds.): BDTA 2017, LNICST 248, pp. 87–96, 2018.
https://doi.org/10.1007/978-3-319-98752-1_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98752-1_10&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98752-1_10&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98752-1_10&domain=pdf
https://doi.org/10.1007/978-3-319-98752-1_10

by files overwritten accidentally by another developer when there’s a team of devel-
opers involved. Testing is a task that developers take lightly, they rely on others to do it
for them and notify them in case there is a bug. Every time a version of the software is
delivered, the project manager is not really sure about what to expect.

And here where automated testing comes to picture. In this paper, we will also
show how Big Data and machine learning can help us achieve better results.

1.1 Need of Automated Testing in Big Data

The technological developments in big data infrastructure, analytics, and services allow
firms to transform themselves into data-driven organizations. Moreover, Big Data helps
companies to achieve higher performance like faster problem-solving issues that used
to take years to be solved are now taking less time, hence saving the company various
dollars and man-hours.

Imagine if we have ten teams in our company each consists of ten developers and
each developer works on 10 features per day and runs their test scenarios and generate
their reports. In that case we will have 100 scenarios per team and 1000 per day for the
whole company, these data are therefore large and the use of big data will allow us to
save data processing time.

For that companies of all sizes need a strategy for big data and a plan of how to
collect, use, and protect it, every firm needs to build capabilities to leverage big data in
order to stay competitive.

2 Machine Learning (ML) Under Big Data

ML is a core research area of artificial intelligence, whose theme is to emulate human
learning activities [3]. It studies methods of identifying current and acquiring new
knowledge and improving qualities to realize self-perfection.

Machine Learning Under Big Data Can Help Overcome the Challenges in How Can
the Workflow Be Automated by Adopting a Developing Trend Described as Follows:

Transfer Learning: The ability of knowledge transferring and transforming between
different scenarios is called transfer learning [3]. The traditional machine learning
algorithms usually just solve isolated problems. Transfer learning is based on storing
knowledge gained while solving one problem and applying it to a different but related
problem to improve the learning performance.

As we can see in the Fig. 1 above, traditional machine learning techniques try to
learn each task from scratch, while transfer learning techniques try to transfer the
knowledge from some previous tasks to a target task when the latter has fewer high-
quality training data [4].

In our case, developers usually run their tests scenarios from scratch every time a
build was done, which can be time and effort consuming of course. Thus, by adopting
this trend the system will be intelligent and if a developer runs a test it will transfer the
results and the scenarios to other nodes making them able to profit from those results
and to learn from them.

88 A. Stouky et al.

3 Literature Review

Thousands of developers usually work on a local version of the software on their own
machines to avoid any problems that can affect other’s work, so they add their mod-
ifications and the new features repeatedly, and then merge their new changes with the
latest build of the project that is ready to be deployed.

For any version there exists multiple in home local builds of that same version of
code at each developer’s site and while many developers are coding in the same time, it
makes it hard to test every local version that a developer has modified or added, and as
we know if the team works daily and most of the time nightly at home or weekly, we
are going to have builds that are impossible to test adequately. And thus the question
that comes to mind is what framework should we use, or how can we decide which
solution is better for the company.

In the past 10 years a lot of researches have been done in this scope, Ramler et al. in
[5] discussed the benefits extracted from the automated testing. They presented test
automation as one solution to reduce testing costs and proposed a cost based model, to
decide on automation strategy.

Kasurinen et al. in [6] examined the industrial applications of the automated testing.
Theydeduced that approximately 26% of the test cases are automated in industry, the
adoption of such approach is a demanding step in software industry and most of the
time test automation is used for quality control and quality assurance.

In [8]: Vahid Garousi et al. presented a multi-vocal review on test automation
defining when to automate and what to automate. They gave in details the background
of test automation.

And lately Mohamed Monier, Mahmoud Mohamed El-mahdy, focused on the
evaluation of automated web testing tools Computer. They provided a feasibility study
for some few commercial and open source web testing tools.

In [9] Divya Kumar et al. have tried to identify and classify the tools in which the
test automation success depends on the three critical software dimensions of time, cost
and quality. The statistics and result of their experiments clearly show the positive
effects of test automation on cost, quality and time to market of the software.

While in [1], Yogesh Kumar presented a comparative study on testing tools in order
to do the selection of right automated software testing tool, they have discussed four

Fig. 1. Difference between Traditional Machine Learning and Transfer Learning

Improving Software Automation Testing 89

tools that fit into their case study: According to their research Selenium can reduce the
cost as it is open source but the efforts involved in scripting for selenium increased by
about 15% than other tools. The same for S. Rajeevan that discussed automation testing
tools comparing Selenium to Quick Test. As for In [10] Satish have implemented an
automation testing framework for testing web applications using selenium WebDriver
tool and mentioned that it is useful for dynamically changing web applications.

Another researches [11–13] also have chosen to work with Selenium and that
shows that it is commonly used for Functional Testing. To sum up, they mentioned
Selenium as it is the most popular open-source tool for Web UI automation testing.

And lastly Sinno Jialin Pan and Qiang Yang in [4] have presented a survey on
transfer learning. Beginning from its history, to the relationship between traditional
Machine Learning and various transfer learning settings, to its application domains and
technologies. They defined what to test how to test it and when in details.

A lot more researches have been done in this context witch highlight on the benefits
and the value of test automation. However no work, to the best our knowledge, has
been done to show the difference between the tools who exists nowadays that we can
use for continuous integration including all test phases and how can we use them and to
reduce the cost what are the tools that are open source and can provide a user based
model to run functional testing and managing the use of ML under Big data as we
discussed earlier.

4 Evaluation of the Study

Automated testing tools can improve the testing effort if requirements are well defined
and managed, and the right tool that matches the needs is selected and most important
thing is that tests should lend themselves to automation.

In this section we are going to present five test automation tools which are the most
used in the past few years, and in the next section we are going to do a detailed
comparison between two of these five tools in order to present the tools that are
adequate for our approach.

In our case study we analysed the Integrated Development Environment of two of
these tools and performed functional testing of a web application developed with PHP5
using Laravel: the PHP Framework for web artisans and both database management
systems: MySQL and MongoDB, also for versions management tool we used Bit-
bucket a web-based hosting service that is similar to GitHub witch primarily uses GIT
and it has three deployment models: Cloud, Bitbucket Server and Data Center.

4.1 Apache Jmeter: Load and Performance Tester

It is an Apache Open source load testing tool, written in Java 6+ and supports all
platforms. Recently, Apache released the stable version of Jmeter “v2.11” that sup-
ports all platforms. Basically, Jmeter is used for load testing and to analysing and
measuring the performance of system/application. It is capable to check the perfor-
mance of the SOAP, LDAP, Message-oriented middleware (MOM) via JMS,

90 A. Stouky et al.

Mail (SMTP(S), POP3(S) and IMAP(S)), Mongo DB (NoSQL), and Native commands
or shell scripts. Its strong GUI design helps in fast building of Test Plan and debugging
process.

4.2 Citrus Integration Testing

Automated integration tests for message protocols and data formats! HTTP REST,
JMS, TCP/IP, SOAP, FTP, SSH, XML, JSON…Citrus is a testing tool that enables the
test team to define whole use case tests to be executed fully automated. Incoming and
outgoing messages are predefined in the test case. The tester defines a message flow as
it is designed for a use case. All surrounding interface partners are simulated regardless
their transport protocols (Http, JMS, TCP/IP, SOAP, and many more).

4.3 Selenium

Selenium suite is comprised of four basic components; Selenium IDE, Selenium RC,
WebDriver, Selenium Grid. Selenium IDE is Firefox add-on for record-and-playback
web application tests. WebDriver directly communicates with the web browser and
uses its native compatibility to automate. It is implemented as a Firefox extension, and
allows you to record, edit, and debug tests.

4.4 Codeception

Codeception collects and shares best practices and solutions for testing PHP web
applications. With a flexible set of included modules tests are easy to write, easy to use
and easy to maintain. Codeception encourages developers and QA engineers to con-
centrate on testing and not on building test suite. Codeception supports major frame-
works: Symfony, Silex, Phalcon, Yii, Zend Framework, Lumen, and Laravel.

4.5 Jenkins

An open source automation tool written in Java with plugins built for Continuous
Integration purpose. Jenkins triggers a build for every change made in the source code
repository for example Git repository. Once the code is built it deploys it on the test
server for testing. Concerned teams are constantly notified about build and test re-sults.
Finally, Jenkins deploys the build application on the production server.

With Jenkins, organizations can accelerate the software development process
through automation (Table 1).

Improving Software Automation Testing 91

5 Analysis of Study

Even if it is known by its Ease of use Jmeter doesn’t work well when you have frequent
components that you reuse across tests or having different modular tests chained
together to form a bigger load tests. It gets harder to do so as you progress with more
tests or more levels of testing. The lazy way most beginners would deal with reuse is
copy & paste from one area to another or one file to another witch can affect the
efficiency of the work.

Table 1. Comparison of open source automated testing tools

Features Tools
Selenium JMeter Citrus Codeception Jenkins

Operating
System/Platform

ALL ALL ALL ALL ALL

Browser
Support

ALL Browsers Google
Chrome, IE,
Mozilla
Firefox,
Opera

Google
Chrome,
IE, Mozilla
Firefox,
Opera

ALL
Browsers

ALL Browsers

Language and
Frameworks
Support

Php, java, C#,
javascript,
perl, python,
Ruby

Java,
NodeJS,
PHP, ASP
.NET

Java, Xml Php, Ruby,
Python,
Java,
.Net,
Appium,
NodeJS,
Javascript,
Robot
Framework

Python, Ruby,
Java, Android,
C/C++

Ease Of Use Needs a quite
Expertise

No coding
is necessary
at the basic
level

Experience
needed

Experience
needed

Very easy to
use

Software Cost Open Source Licence
Apache

Licence
Apache

Open
Source

Open Source

Type Tests Unit,
functional

Performance Automated
integration
tests

Acceptance,
functional,
unit

Unit,
Automated
integration tests

Script Creation
Time

Low High High High Low

Report
Generation

Integration
with jenkins
can give good
reporting &
dashbord
capabilitie

Graphic,
spline,
assertion
result, tree,
statistics

test plan
and
document
test
coverage

Several
information
is provided:
execution
time,
statistics

Checkstyle,
PHPMD,
PHPCPD,
HTMLReport…

92 A. Stouky et al.

As for Citrus, it is an integration testing platform for testing live applications deployed
in a target environment. In our case we aim to do functional testing as long as continuous
integration which cannot be done with Citrus. Also based on the benchmark table and
what have been said previously we decided to analyse three of the proposed tools:

5.1 Codeception

First of all, Codeception combine all testing levels. Out of the box you have tools for
writing unit, functional, and acceptance tests in a unified framework. Perfect for REST
and SOAP API testing and tests can be written in BDD format with Gherkin also it
allows multi-request functional tests. In the Table 2 below we present in details its pros
and cons for each testing phase.

5.2 Jenkins

Jenkins can automate the building of software regularly, and trigger tests pulling in the
results and failing based on defined criteria. Failing early through build failure lowers
the costs, increases confidence in the software produced, and has the potential to morph
subjective processes into an aggressive metrics-based process that the de-velopment
team feels is unbiased (Table 3).

Table 2. Codeception: pros and cons of functional testing phase

Pros Cons

Functional
test

• Can be run on any website
• Can provide more detailed reports
• You can still show this code to managers
and clients

• Stable enough: only major code changes,
or moving to other framework, can break
them

• JavaScript and AJAX can’t be
tested

• By emulating the browser you
might get more false-positive
results

• Requires a Framework
• Fewer checks can lead to false
positive results

Table 3. Comparison between “Before and After Jenkins”

Before Jenkins After Jenkins

The entire source code was built and then
tested. Locating and fixing bugs in the event
of build and test failure was difficult and time
consuming, which in turn slows the software
delivery process

Every commit made in the source code is
built and tested. So, instead of checking the
entire source code developers only need to
focus on a particular commit. This leads to
frequent new software releases

Developers have to wait for test results Developers know the test result of every
commit made in the source code on the run

The whole process is manual You only need to commit changes to the
source code and Jenkins will automate the
rest of the process for you

Improving Software Automation Testing 93

5.3 Selenium

Because of its many advantages, Selenium finds wide usage for UI, regression, unit and
acceptance testing. But even selenium is the most popular tool it stills not a complete,
comprehensive solution to fully automating the testing of web applications. It requires
third-party frameworks, language bindings and another configuration to be truly
effective.

6 Proposed Solution

It is obvious from the above stated cons and issues that not only the software delivery
process became slow but the quality of software also went down. This leads to cus-
tomer dissatisfaction and no tool will manage the whole process of Testing along with
continuous integration and continuous deployment. So to overcome such a chaos there
was a drastic need for a system to exist where developers can continuously trigger a
build and test for every change made in the source code.

On top of Jenkins is an open source technology, so the code is open to review and
has no licensing costs. And it is a master slave topology that distributes the build and
testing effort over slave servers with the results automatically accumulated on the
master. This topology ensures a scalable, responsive, and stable environment.

Jenkins is the most mature CI tool available and in the following diagram we are
going to illustrate how Continuous Integration with Jenkins overcame the above
shortcomings along with the use of Selenium framework to guarantee perfection
needed in the entire workflow (Fig. 2).

• First, when a developer commits the code to the source code repository the Jenkins
server checks the repository at regular intervals for changes.

• Soon after a commit occurs, the Jenkins server detects the changes that have
occurred in the source code repository. Jenkins will pull those changes and will start
preparing a new build, If the build fails, then the concerned team will be notified
else If built is successful, then Jenkins deploys the built in the test server (Selenium)
to run tests and generate reports properly.

Fig. 2. Generic flow diagram of Continuous Integration with Jenkins

94 A. Stouky et al.

• After testing phase, Jenkins generates a feedback and then notifies the developers
about the build and test results. It will continue to check the source code repository
for changes made in the source code and the whole process keeps on repeating.

The other important key point as we discussed earlier is the combination of this
approach of testing with the use of Big data to have a solid architecture so that machine
learning can have a basic source of information or outcomes to use them as incomes,
and hence to learn from experiences, findings and mistakes of those tests who have
previously been passed.

The Learning process from those results transforms the system to become intelli-
gent so the testing phases work fluently and in a predictive way too. Machine Learning
needs to develop and progress to change big data into actionable insight. On one side,
big data provides rich information for Machine Learning algorithms to pick up
underlying patterns and to build predictive models; and on the other, traditional
Machine Learning algorithms face crucial challenges like scalability to release the true
value of big data.

7 Conclusion

Software testing tool can be selected based on Application needed to be tested, budget,
usage and the efficiency required. Our comparative study is helping to select the
suitable tools based on multiple criterion. It presents each tool with features that are in
the same and different degree with other tools mentioned and how each one behaves
against others tools’ characteristics.

Producing quality requires a great attention to details. Jenkins can pay attention to
many of the details and shout loudly when violations occur.

In this paper, we have also shown how the adoption of big data can help a company
to achieve better results and high performance in order to reduce time and cost and how
firms nowadays must go for big data technologies, moreover optimizing tests execution
time and effort by using Machine learning algorithms to automate the whole process
and to make the system intelligent. Our future work will encounter more tools and more
technologies also that will help in building a user based smart-model.

References

1. Kumar, Y.: Comparative study of automated testing tools : selenium, SoapUI, HP unified
functional testing and test complete. 2(9), 42–48 (2015)

2. De Castro, A.M.F.V., Macedo, G.A., Dias-neto, A.C.: Extension of Selenium RC Tool to
Perform Automated Testing with Databases in Web Applications, pp. 125–131 (2013)

3. Shi, C., Wu, C., Han, X., Xie, Y., Li, Z.: Machine learning under Big Data, no. Emim,
pp. 301–305 (2016)

4. Pan, S.J., Fellow, Q.Y.: A survey on transfer learning, pp. 1–15 (2009)
5. Ramler, R., Wolfmaier, K.: Economic perspectives in test automation: balancing automated

and manual testing with opportunity cost, pp. 85–91 (2006)

Improving Software Automation Testing 95

6. Kasurinen, J., Taipale, O., Smolander, K.: Software test automation in practice : empirical
observations, vol. 2010 (2010)

7. Amannejad, Y., Garousi, V., Irving, R., Sahaf, Z.: A Search-based Approach for Cost-
Effective Software Test Automation Decision Support and an Industrial Case Study (2014)

8. Garousi, V., Mäntylä, M.V.: When and what to automate in software testing ? A multi-vocal
literature review, vol. 76, 92–117 (2016)

9. Kumar, D., Mishra, K.K.: The Impacts of test automation on software’ s cost, quality and
time to market. Procedia Comput. Sci. 79, 8–15 (2016)

10. Gojare, S., Joshi, R., Gaigaware, D.: Analysis and design of selenium webdriver automation
testing framework. Procedia Comput. Sci. 50, 341–346 (2015)

11. Rajeevan, S., Sathiyan, B.: Comparative study of automated testing tools : selenium and
quick test professional, 3(7), 7354–7357 (2014)

12. Angmo, M.R., Sharma, M.: International Journal of Emerging Technologies in Computa-
tional and Applied Sciences (IJETCAS) Selenium Tool : a web based automation testing
framework, pp. 351–355 (2014)

13. Singla, S.: Selenium keyword driven automation testing framework, 4(6), 125–129 (2014)

96 A. Stouky et al.

	Improving Software Automation Testing Using Jenkins, and Machine Learning Under Big Data
	Abstract
	1 Introduction
	1.1 Need of Automated Testing in Big Data

	2 Machine Learning (ML) Under Big Data
	3 Literature Review
	4 Evaluation of the Study
	4.1 Apache Jmeter: Load and Performance Tester
	4.2 Citrus Integration Testing
	4.3 Selenium
	4.4 Codeception
	4.5 Jenkins

	5 Analysis of Study
	5.1 Codeception
	5.2 Jenkins
	5.3 Selenium

	6 Proposed Solution
	7 Conclusion
	References

