
Synchronized Video and Motion Capture
Dataset and Quantitative Evaluation of Vision
Based Skeleton Tracking Methods for Robotic

Action Imitation

Selamawet Atnafu1(&) and Conci Nicola2

1 Bahir Dar Institute of Technology, Bahir Dar, Ethiopia
wselame7@gmail.com

2 University of Trento, Trento, Italy
conci@disi.unitn.it

Abstract. Marker-less skeleton tracking methods are being widely used for
applications such as computer animation, human action recognition, human robot
collaboration and humanoid robot motion control. Regarding robot motion con-
trol, using the humanoid’s 3D camera and a robust and accurate tracking algo-
rithm, vision based tracking could be a wise solution. In this paper we quanti-
tatively evaluate two vision based marker-less skeleton tracking algorithms (the
first, Igalia’s Skeltrack skeleton tracking and the second, an adaptable and cus-
tomizable method which combines color and depth information from the Kinect.)
and perform comparative analysis on upper body tracking results. We have gen-
erated a common dataset of human motions by synchronizing an XSENS 3D
MotionCapture System,which is used as a ground truth data and a video recording
from a 3D sensor device. The dataset, could also be used to evaluate other full body
skeleton tracking algorithms. In addition, sets of evaluation metrics are presented.
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1 Introduction

The intention of making humanoid robots perform human like motions, which needs
the development of easy and simple motion control approaches, has attracted the
attention of many researchers [5]. Rather than using very complicated motion planning
techniques, learning by demonstration, which combines motion capture and control
systems, has being considered as an efficient and intuitive way to control the motion of
humanoid robots and to teach them how to perform human like motions [5]. The first
task in the process of learning by imitation is to have a robust and accurate motion
capture system. Even if a number of marker-less skeleton tracking algorithms, which
are convenient for this purpose, have been being proposed for years, there needs a way
to quantitatively evaluate the performance of each method. Most of the evaluation
schemas provide qualitative results due to lack of a common human motion dataset
with a ground truth data [11]. The earliest efforts to collect synchronized motion
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capture and ground truth data have been used to analyze only 2D tracking methods
[14]. Others also have tried to provide their synchronized dataset available to the public
but some lack joint level ground truth information [15] and others do not provide
calibration information [16]. HumanEva is the most recent and complete dataset which
is made available to the public [11]. Since the subjects wore natural closing, on to
which markers are attached, the accuracy of the ground truth data is reduced due to the
movement of the markers [11]. In this work, two marker-less skeleton tracking methods
are evaluated quantitatively. The two methods are chosen because they showed good
tracking performances and are open sources which make them accessible for investi-
gation. Both algorithms take input data from a 3D camera. RGB-D is a vision based
method that takes depth and color information from the camera and outputs 3D location
of human skeleton without requiring unnatural initialization poses [2]. It has two
iterations, each one performing pixel-wise labeling, body part proposal and kinematic
tree search steps. It doesn’t involve any pre-processing of the input data [2]. While
Skeltrack takes a buffer containing the depth image. From the depth image in the buffer
a search for extreme points is performed [4]. Starting from those points the position for
other joints is computed using heuristics and mathematics [4].

Skeltrack is implemented to track only upper body joints while, RGB-D has full
body skeleton extraction ability [2, 4]. In this paper we are focused only on the upper
body skeleton tracking. A common dataset of human motions is generated which is used
as a ground truth data. Evaluation metrics and comparative results are presented here.

2 Related Works

Motion capture has been considered as a way for imitation learning of a robot from
humans doing some motion in human-robot interaction/collaboration applications [5].

Marker based solutions, which are the most available real-time motion tracking
methods in the market, are being used for most motion capture applications. In the
work of Ott [6] and Shon [7] markers are attached to the body to get the measure of
body position which is used by the tracking algorithm. Even though marker based
systems provide a good tracking results, they are expensive and need the user to wear
such a suit or a marker every time a person interacts with a robot which makes it
inconvenient to use and difficult to maintain.

Also, the accuracy of joint positions depends on the precise placement of the
markers [13]. Marker-less, Vision based methods on the other hand, are usually simple
and do not need additional arrangements [13]. The research about this approach, would
lead to one big step towards autonomous on line learning movements [8]. Before the
introduction of low cost depth cameras, image based techniques have been used
widely. But generally they have a drawback of segmenting foreground from back-
ground. Due to this they are effective for stationary camera and static backgrounds [2].

The advent of low cost depth sensors has initiated the study of depth-based methods
to be considered as the latest tracking solutions. Real time and reliable pose estimation
results, which are also robust to occlusions, have been found from tracking systems
using multiple depth sensors [9]. But since our task is to use the data collected by the
depth sensor on the robot’s head, they are not very much convenient. Monocular kinect
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based approaches by Shotton [1], OPenNI/Nite and Microsoft Solutions Microsoft
Kinect SDK and Microsoft Kinect for windows are the recent and mostly used skeleton
tracking solutions. Even though they show good performances, the source code is
closed and do not let us do further researching and modifications.

In this study the most recent motion tracking solutions [2, 4] are explored to
discover opportunities that push the performance of these methods towards accurate,
stable and robust enough, with regard to joint position and joint angle calculations, to
be used for robotic motion imitation applications.

3 Experimental Method

After exploring the two algorithms in detail, comparative experiment is done to see the
performances quantitatively. Since a common dataset of human motions is required, we
have recorded data from both the camera and from the sensor suit, which is considered
as a ground truth data, by synchronizing the recordings in time. A small Asus Pro Live
Xtion depth sensor is used to record a video data. The ground truth data is captured
using the MVN motion capture suit. It consists of inertial sensors which are used to
measure translation and orientation of body segments [12]. Although in our analysis we
have only consider upper body motions, a full body tracking configuration is chosen to
make the dataset useful for other researches. Then we have tested both on a common
set of actions by extracting joint positions and joint angles.

The 3D camera was placed at a height of 1.8 m at a distance of one up to two and
half meters from the subjects. Two subjects are participated to collect the motion
dataset. It was necessary to take body measurements for the calibration of the MVN
Moven Motion capture system. Table 1 shows the body segment dimension measures
taken for each subject.

We have implemented a Motion Sensor Suit Receiver which uses a UDP network
streaming protocol. We have also implemented a software synchronization to start and
stop both recordings simultaneously. Every recording has a length of 30–40 s. Both
recordings from the camera and the suit are compressed as binary files and dumped on
to the Hard Disk which helps to reduce the size of the files and save memory space.
A synchronized play back code is also implemented here.

Table 1. Body dimensions for the two subjects

Body segment Body segment
measure (cm)
Subject 1 Subject 2

Body height 150 172
Shoe size 23 27
Arm span 142 161
Knee height 40 51
Hip height 70 82
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3.1 Synchronized Video and Motion Capture Dataset

In our dataset we have tried to include a wide variety of poses to show the perfor-
mances of the algorithms in different cases. HumanEvaII provides a complex sequence
of action, walking along an elliptical path, jogging and body balancing, which involve
a full body motion [11]. Instead in our dataset even though complex sequence of
actions is included, we have mainly focused on simple upper body motions which
involve hand movements. We started from simple set of upper body motions that
involve hand and head movements. Hands stretched to the sides, hands up, hands close
to the body, waving one hand and both hands are some of the cases to mention. We
took captures of poses with the subjects facing the camera from the side and turning to
the back to evaluate the performances of the methods in unusual body positions. We
have also included complex motions, such as walking, rotating the whole upper body
part to the left and to the right with legs fixed, one hand pointing up and the other down
and others. Each pose is repeated two times to insure that a backup is taken. In total we
have collected 120 different sets of motion captures.

3.2 Data Processing

The two algorithms are made to run on the recorded binary data, which contains 3D
information and camera intrinsic parameters for the calibration purpose, and the outputs
are saved as text files. The files contain the 3D locations, given as x, y, z position, of
each upper body joint. The data is then imported into Matlab for further processing and
analysis. The joint positions are given relative to the global coordinate system of the
Xtion sensor. While for the suit, during the calibration step, the global coordinate frame
is fixed at the right heel point of the subject (Fig. 1).

Fig. 1. A snapshot from point cloud play back and reconstructed skeleton from the recorded
motion capture data
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All the segment positions are computed with respect to this reference frame. Due to
the different coordinate systems we did the comparison of the skeleton outputs based
on the joint angle measures. From the 3D position of each joint, we have calculated
joint angles using Matlab functions. Tracking of elbow and shoulder angles for both
right and left side are computed and are plotted with respect to time.

h ¼ atan2 norm cross vec1; vec2ð Þð Þ; dot vec1; vec2ð Þð Þ ð1Þ

3.3 Evaluation Metrics

Robustness of each method is calculated as the rate of detection of a joint or a body part
over all frames of a recorded stream. We have used an L − 1 norm distance metric to
compute joint angle errors and we presented joint angle error plots with respect to time.
A list of average joint errors is also included to determine the accuracy of the methods
with respect to joint angles we got from the suit. We did a statistical analysis on the
joint angle error distribution and precision values are used to explain the tracking
ability. Standard error of the mean is used as a way to measure the precision of each set
of motions. This parameter measures how close the angle errors are distributed to the
average joint angle error. The tracking ability is represented as precision values. It is
calculated as:

SEM ¼ SD
ffiffiffiffi

N
p ð2Þ

Where, SD is the standard deviation which is computed as

SD2 ¼ 1
N � 1

XN

i¼1
Xi � Xmeanð Þ2 ð3Þ

Where, N is the total number of frames.

4 Results and Discussion

Elbow and Shoulder joint angles for both hands are plotted with respect to time. In each
of the plots below, elbow and shoulder joint angles together with angle deviations from
the ground truth are listed. For both methods, Shoulder joint angles are better estimated
than elbow angles. In addition, the plots illustrate the results in detail to give quanti-
tative explanations. The tables list average joint angle errors for each joint for a video
stream with 30–40 s length (Figs. 3, 4, 6 and 7).

In Fig. 2 joint angles are plotted for the subject performing two hands waving
motion. This is the pose where the two methods show better performances and give
slightly smaller joint angle errors. The reason for this is that for the skeltrack the pose
allows detecting all the extreme points (the head and the two hands) and if so, all the
rest joints can be determined correctly. For RGB-D also small body parts, hands and
elbow points which have lesser chance of being detected, are further from the larger
body part (the torso) and hence are detected correctly.
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Fig. 3. Joint angle plot for waving the two hands

Fig. 4. A sequence of motions, Y pose, hands down, T pose, hands up, hands down

Fig. 5. Joint angle plot for a sequence of motions; Y pose, hands down, T pose, hands up, hands
down

Fig. 6. Sequence of motions while turning to the back

Fig. 2. Figure showing waving the two hands motion
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In the second sequence of actions, Fig. 5, due to hands down and hands up poses,
joint angle errors are increased for both methods.

The Tables 2 and 3, show that RGB-D gives lesser joint angle error and hence it is
a more accurate tracking algorithm than Igalia’s Skeltrack. But this works for the
subject performing actions facing to the camera. For un-natural poses like, turning to
the back and to the sides, RGB-D fails to estimate the pose. Here Skeltrack perfor-
mance is better. This can be shown from Table 4.

In all the cases precision values for Skeltrack are lower than RGB-D. This clearly
indicates that Skeltrack has better tracking ability. In the source codes RGB-D has no
tracking implemented in to it. Each new frame is detected and the pose is estimated
without the prior information from the previous frame.

Fig. 7. Joint angle plot while turning to the back

Table 2. Joint angle estimation for two hands waving motion

Joint Average angle
error

Precision

RGB-D Skeltrack RGB-D Skeltrack

Left elbow 13.1 18.08 1.99 1.18
Right elbow 18.85 20.63 1.84 1.61
Left shoulder 14.65 18.31 0.45 0.41
Right shoulder 19.29 26.42 0.8 0.54

Table 3. Joint angle estimation for a subject performing a sequence of actions; Y pose, hands
down, T pose, hands up, hands down

Joint Average angle
error

Precision

RGB-D Skeltrack RGB-D Skeltrack

Left elbow 14.52 18.48 1.17 0.79
Right elbow 10.42 21.26 1.2 0.81
Left shoulder 15.25 20.15 0.81 0.35
Right shoulder 15.75 15.42 2.04 0.52
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5 Conclusion

In this paper we have generated a human motion dataset which can be used to quan-
titatively evaluate skeleton tracking methods. A 3D Asus Xtion camera to record the
video and MVN sensor suit to collect the ground truth data are involved in the
experiment. A quantitative evaluation scheme is also introduced. Finally two open
source tracking algorithms are tested for the application of upper body robot action
imitation task. The results demonstrate, RGB-D gives better angle estimations for a
variety of poses but for those where the body is facing the camera. We observed a total
failure of detection and pose estimation for unusual poses like turning to the side and to
the back.

Regarding the tracking ability, skeltrack gives better results than RGB-D producing
smooth and stable joint angles.

On average both have shown an angle error of 10–20° which make them hard to
use directly for the robot motion control application. By incorporating a tracking
algorithm in to the RGB-D method and by compensating the angle error, good results
would be found. In the case of Skeltrack, incorporating markers (Inertial Sensors) at the
extreme points would improve the accuracy and hence would produce good tracking
results.
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