
Optimizing Sliding Performance in iOS

Qin Zhao1,2, Qi Qi1,2(&), Lejian Zhang1,2, and Qiwei Shen1,2

1 State Key Laboratory of Networking and Switching Technology,
Beijing University of Posts and Telecommunications, Beijing 100876,

People’s Republic of China
zhaoqin192@gmail.com,

{qiqi,zhanglejian,shenqiwei}@ebupt.com
2 EBUPT Information Technology Co., Ltd, Beijing 100191,

People’s Republic of China

Abstract. How to improve iOS sliding performance has always been the focus
of iOS application optimization. This paper analyzes the principle of
AutoLayout and Frame view layout, the opportunity of network loading, CPU
and GPU performance consumption during sliding process. First, we provide the
appropriate solution to avoid using AutoLayout, and adjust the time of network
loading by preloading to reduce the waiting time dynamically. Pre-cache and
asynchronous rendering to reduce the main thread CPU consumption is
implemented to reduce the main thread CPU consumption, and at the same time,
GPU consumption is reduced by asynchronous rendering. Finally, verify the
feasibility and effectiveness of the optimization scheme by experiments. It is
verified that the percentage of the main thread CPU consumption decreases by
17.2% and FPS increases from 37 Hz to 60 Hz.

Keywords: Sliding performance � AutoLayout � Pre-cache
Asynchronous � FPS

1 Introduction

The operating systems of iOS provide many UI views for users to browse more
information via sliding up and down. In fact, developers can not request all resource
from the Internet. In this scenario, operating systems need to load latest data after
exploiting exhaustive search. Regardless of iOS or Android, network action is
expensive because it costs much resource such as time, network traffic, electricity and
so on. But the network situation of mobile phones is so bad in some cases that users
have to wait until application receives network response which causes terrible user
experience. On the other hand, after obtaining the resource from remote server, device
should visualize data on the hardware screen. The CPU and GPU would finish work
respectively to supply cache data for rendering on screen. The heavy load caused by
CPU and GPU could lead to frame loss and set a delay response after users touching
screen. There are many factors which affect the performance of CPU or GPU.
AutoLayout based on Cassowary makes iOS layout simple and quick [1], while the
improper way using AutoLayout or high load operation would drag the CPU. Blended
layers, misaligned images and off-screen rendering are the killer of GPU, where

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2018
P. H. J. Chong et al. (Eds.): SmartGIFT 2018, LNICST 245, pp. 111–121, 2018.
https://doi.org/10.1007/978-3-319-94965-9_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94965-9_12&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94965-9_12&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94965-9_12&domain=pdf

off-screen rendering affects dramatically because it wastes a lot of performance to
rendering off-screen images. That is to say, the tardiness of network and visualize data
would affect sliding performance in iOS and UE (user experience). It is important that
how to discover these key points and solve the knotty problems.

This paper is committed to optimizing sliding performance to improve user
experience. From discovering the issues of AutoLayout and off-screen rendering per-
formance, this paper proposes some method, such as pre-cache, asynchronous ren-
dering to reduce the heavy burdens of device. So that many layout and rendering sites
can be resolved, to improve the sliding performance of application. Due to the similar
the hardware system or foundation framework for iOS or Android platforms [2], some
optimization methods mentioned in this paper can be applied in other platforms.

2 Performance Optimization

The optimizing performance of application focuses on code structure optimizing and
operational performance optimizing. References of Method for Mobile User Interface
Design Patterns Creation for iOS Platform [3] gives guidelines for developers work in a
high level of usability quality purpose, which belongs to structure optimizing. While it
cannot promote performance when application is running. And References of
On-device Objective-C Application Optimization Framework for High Performance
Mobile Processors proposes a methodology to tailor a given Objective-C application
and its associated device-specific shared library codebase using on-device
post-compilation code optimization and transformation [4] that modified runtime
library of iOS to acquire a high performance. But it would lose many features of
runtime library, for example, the magic feature of using JavaScriptCore and runtime
replace some method when calling some object message. Maybe there are other
approach optimizing performance, and developer can avoid incorrect way that drag
CPU and GPU of mobile device.

2.1 Preloading

With the development of mobile communication and the wide coverage of WIFI,
mobile devices have better network services. However, network request is still an
expensive operation. On the one hand, it costs a good deal of traffic, and developers
need to take full advantage of the returned data as much as possible. On the other hand,
network response time is unpredictable, which may cause bad user experience because
of long waiting time. These two points are more obvious in iOS sliding. Initialization
request data should not be too much, because users will not browse related information
and waste a lot of traffic. So application should load the data according to the number
of pages. Usually, it is time to load when slide to the bottom of the list page with
showing a load animation and making network request. The drawback is that sliding
page will stop until the network responds to new data, which wastes time for users. As
a result, our primary goal is preloading, that is processing network request before
reaching the bottom of the list. In this way, application has obtained new data before
sliding to the bottom for display. Through predicting the users’ behavior, it could

112 Q. Zhao et al.

effectively save the traffic, and make user use application without waiting for network
requests. Developers can change the network load time despite they could not deter-
mine the network situation. In another word, the preloading method is not optimizing
network request but optimizing the opportunity for network requests.

After demonstrating the correctness of preloading, the timing of preloading should
be taken into account. Normally, setting the fixed threshold is a simply approach. For
example, we set 0.7 as a threshold, and it will process network request when sliding at
the 70% of the total height. The corresponding code is as follows (Fig. 1):

The code is very simple, but in fact it would not avoid the following problem: As
the number of pages increasing, the height of the list will continue growing. A fixed
threshold will lead to the growth of the height of unviewed page. In order to compare
the waste of network resources, we assume that each table cell has the same height.
Therefor the size of the data is able to reflect the height of the view. The threshold is
shown in Table 1.

Page represents the number of pages and TotalNum represents the total count of
data respectively. TimeNum indicates the data which has been viewed when
preloading. Diff shows the amount of data which has not been browsed. It is displayed
that the amount of data which has not yet been browsed will increase as the number of

Fig. 1. Fixed threshold

Table 1. The effect of fixed threshold.

Page TotalNum TimeNum Diff

1 10 7 3
2 20 14 6
3 30 21 9
4 40 28 12
5 50 35 15
6 60 42 18

Optimizing Sliding Performance in iOS 113

pages growing. The opportunity for preloading is kept in advance and leads to a lot of
data being loaded that users would not browse. Furthermore, it causes the waste of
application traffic.

To above issues, we design a new method to optimize the preloading: For each
page, it is specified that 70% of the amount of new data is set as the threshold. If the
sliding height exceeds this threshold, application will request new data and change the
threshold again. The code is depicted in Fig. 2.

With the growth of page amount, through adjusting the threshold, the amount of
data which is not viewed remains within a stable range, and as a result network
resources could be saved. Shown in Fig. 3, as the number of pages increasing, the
threshold will dynamically grow to delay the preloading time.

Fig. 2. Dynamical threshold

Fig. 3. The curve of dynamically threshold and fixed threshold

114 Q. Zhao et al.

2.2 The Bottleneck of AutoLayout Performance

AutoLayout [7] is the implementation of the UI layout program after iOS6, which can
easily solve the UI adaptation problem. Nevertheless, we should abandon this technical
program to get higher sliding performance. It is because that compared with the tra-
ditional Frame layout, AutoLayout makes the design of UI convenient, but it would
affect CPU performance when running application. The traditional Frame layout is to
specify the location of a UI view in the parent view, which must include the coordinates
of the axis x, y and the length and width of the view itself. AutoLayout is based on the
Cassowary algorithm that adds a lot of constraints to the view, such as the distance to
the left and top of the parent view and so on. All of these constraints are abstracted as a
set of linear equations or inequalities. Finally, the operating system get the x, y
coordinates and the width and height by solving the set of linear equations or
inequalities. However, the calculation of linear equations requires CPU to consume. If
there are a large number of views using AutoLayout, it will need CPU to solve multiple
sets of linear equations at the same time. The refresh rate of iOS is 60 Hz, which is vital
for optimizing sliding performance. If the CPU solves the layout for more than
16.67 ms (1/60 s = 16.67 ms), it will cause the data of this frame not to be prepared in
the buffer. When V-sync signal coming, it is inevitable that FPS [8] will be declined to
impress sliding performance if the required rendering data is not available when the
buffer data is read.

Figure 4 is obtained by randomly generating N views on iOS10.2.1 iPhone7 and
the layout modes are AutoLayout and Frame respectively. The abscissa in the graph
represents the number of render views, and the ordinate represents the time to render
the views.

From Fig. 2, Frame mode has better performance in all cases. For example, it takes
about 11.7 ms to render when the number of views is 100, and AutoLayout needs
32.0 ms at the same circumstance. The rising speed of the curve of AutoLayout is also
significantly greater than that of Frame. And according to iOS rendering frequency, we
can see that when the rendering time is greater than 16.67 ms, it will certainly generate
block. As seen from Fig. 3, it will produce the performance problem when generating

Fig. 4. AutoLayout vs. frame

Optimizing Sliding Performance in iOS 115

approximately 20 views on the experimental device under AutoLayout mode. Rela-
tively, Frame layout only consumes about 16 ms to generated about 500 views.

Therefore, if it needs to maintain a high FPS or high performance during the sliding
process, we should not select AutoLayout as technical proposal. While Frame layout is
more cumbersome, it can be compensated by efficient operation to provide better
sliding performance. Obliviously the first step in optimizing sliding performance is to
Frame layout.

2.3 Pre-cache

The widgets of UI Views (such as UITableView [9], UICollectionView [10]) in iOS
programming exist reuse mechanism [5], which only stores the current cell displayed
on the screen, regardless of all the list cell. The biggest advantage of this mechanism is
to save memory space. Assuming that every data generates a cell, the memory will
soon be exhausted if there are a large amount of data. However, there is a flaw in the
reuse mechanism that different data have different styles. The application needs to
recalculate the layout information in real time and then display it. In the process of
rapid sliding, a large number of calculation has a bad impact on the performance of the
main thread CPU. How to ease the pressure of the CPU during the sliding process is
very important for optimizing performance. This paper employs pre-cache to solve the
problem. Pre-cache is to calculate the view layout in advance and cache them.
Pre-cache creates asynchronous thread to parse the layout model after getting data from
network, and each model stores the information for displaying. The layout of the Cell is
uniquely determined by the contents of the model, so application will calculate the
layout information in advance based on the content of the model and store these data.

It will notify the main thread to refresh the UI after all data has been analyzed.
Although it is necessary to continually update the UI during the rapid sliding of the list,
pre-cache can reduce the operating load of the CPU during sliding because it can read
UI view data directly without recalculating.

2.4 Asynchronous Drawing

Via the pre-cache processing, it has been reduced the burden of CPU during sliding to a
great degree. However, we find that there are still some points to optimize after ana-
lyzing the performance loss of CPU during sliding process. The function drawInText of
UILabel is responsible for rendering text that is running on the main thread. It will be
not serious if the number of UILabel [11] is small, and has not become a major
constraint on the impact of sliding performance. If UILabel needs to display a lot of
text, it would make CPU performance degradation because it occupies a lot of
resources of the main thread. We use self-defined CALayer [12] layer to ease the
burden of main thread CPU by transferring the timing of rendering to asynchronous
thread, using CoreText [13] Framework and asynchronous thread to draw text. The
UILabel and AsyncLabel architecture of iOS is depicted in Fig. 5.

116 Q. Zhao et al.

Both AsyncLabel and UILabel are based on CoreText. And CoreText is also the
basic framework for all text and image widget in iOS programming. AsyncLabel keeps
the basic information of the NSAttributedString, and the NSTextStorage and NSLay-
outManager layer are greatly simplified. The biggest difference between UILabel and
AsyncTextContainer is the rendering time of AsyncTextContainer layer occurs on
asynchronous threads, which finally renders the picture in the main thread that described
by text information through the CTFrame [14], CTLine [15], CTRun [16]. Obviously,
asynchronous drawing can reduce the CPU load during the sliding process further.

2.5 Asynchronous Rendering

After pre-caching, we can find that the main thread of CPU usage is relieved, but it is
still not smooth during sliding. Then we turn our attention to easing the burden on
GPU. Detecting FPS by the Instruments, a fantastic tool for monitoring all performance
of iOS device, we find that the biggest factor which affects GPU performance is
off-screen rendering. Off-screen rendering composites a part of the layer tree into a new
buffer (which is off-screen, i.e. not on the screen), and then that buffer is rendered onto
the screen. Generally, we do our best to avoid off-screen rendering, because it costs too
much.

In the client of iOS, the business scene which can trigger off-screen rendering is to
set the users’ pictures as rounded corners. How to set the image circular efficiently is
one of the key factors to improve the sliding performance. The traditional way to set the
circular is to cover the CALayer, but it would cause off-screen rendering and consume
GPU performance. Of course, if the client can get the circular image from server
directly, there is no GPU rendering problem. For the same picture, different business
scenes need different shapes of pictures, for example, some places require a rectangle
and some place require rounded corners. So the fundamental solution is to instruct the
client to handle rounded pictures locally and the essence of the problem translates into
how to set the rounded image efficiently. The optimization scheme designed in this
paper is using asynchronous rendering. We import the original image resource to an
asynchronous thread and then use the underlying CoreGraphics in the asynchronous
thread for rounded corners or other effects. The processing here does not create rounded
corners by setting the CALayer, but it employs the Bezier curve to cut the original
picture as a new picture resource. Finally, the processed image is passed to the main
thread to display. In this case, it could improve the FPS through asynchronous ren-
dering to a large extent.

UILabel AsyncLabel

NSTextContainer AsyncTextContainer

NSTextStorage NSLayoutManager NSAttributedString

CoreText CoreText

Fig. 5. UILabel architecture diagram vs AsyncLabel architecture diagram

Optimizing Sliding Performance in iOS 117

3 Experiment and Validation

In the optimization function discussed above, the preload can prepare the data in
advance, which improves the smoothness of the sliding and do not need to wait for
network to respond [6]. The previous comparison has been concluded that AutoLayout
affects sliding performance dramatically. Ignoring the two factors that have been
identified to affect the sliding performance, we set two groups of layout to compare the
optimization effect in the pre-cache, asynchronous rendering, asynchronous loading.
The first set of data is not set the above optimization point, and the second set of data is
on the contrary. Test environment is macOS 10.12.2 system, XCode 8.2.1, iPhone 7,
iOS 10.2.1 system.

It can be seen from the above experimental data that in about 30 s of
time-consuming, depicted in Figs. 6 and 7. The percentage of the main thread CPU
consumption decreases by 17.2%, and at the same time, asynchronous thread CPU
time-consuming increases by 19.4%. The results are consistent with the expectations

Fig. 6. The analysis of unoptimized application CPU consumption

Fig. 7. The analysis of optimized application CPU consumption

118 Q. Zhao et al.

after optimization. And it is confirmed that the increasement in asynchronous thread
consumption is slightly greater than the reduced consumption in main thread because
the growth in the number of threads on the CPU also has a certain impact. Via
pre-caching and asynchronous rendering, the main thread of the work can move to the
asynchronous thread which reduces the main thread consumption.

On the other hand, we also compare the GPU performance before and after the
asynchronous rendering (from the perspective of FPS), shown in Figs. 8 and 9.
Asynchronous rendering mainly improves the performance of the GPU. Before opti-
mizing, FPS is around 37 Hz during fast sliding process, and after optimization, FPS
increases to 60 Hz. In the process of rapid sliding, it is very smooth in line with the
expected optimization.

4 Conclusions

Sliding performance optimization in iOS is the key to providing a good user experi-
ence, especially in the new application [18]. In this paper, we constantly adjust the
timing of requesting network data through dynamic preloading and get data without

Fig. 8. Unoptimized application of FPS data with GPU

Fig. 9. Optimized application of FPS data with GPU

Optimizing Sliding Performance in iOS 119

user awareness to save network resources, as well as reducing the sliding process to
wait for the network response time. And then from the performance of the CPU and
GPU, we use Frame layout, pre-cache, asynchronous rendering to reduce CPU per-
formance loss, and use asynchronous rendering to avoid GPU loss brought by
off-screen rendering. It is found that all of these measures make the usage rate of CPU
declining 30%, the usage rate of GPU declining 40%, FPS rise from 37 Hz to 60 Hz,
and achieve a very smooth sliding effect. In the future, the iOS performance can be
optimized by the popular machine learning mechanism [18–20].

Acknowledgement. This work was supported in part by the (1) National Natural Science
Foundation of China (No. 61671079, 61771068, 61471063) (2) Beijing Municipal Natural
Science Foundation (No. 4182041).

References

1. Badros, G.J., Borning, A., Stuckey, P.J.: The Cassowary linear arithmetic constraint solving
algorithm. ACM Trans. Comput.-Hum. Interact. 8(4), 267–306 (2001)

2. Novac, O.C., Novac, M., Gordan, C., Berczes, T.: Comparative study of Google Android,
Apple iOS and Microsoft Windows phone mobile operating systems. In: 2017 14th
International Conference on Engineering of Modern Electric Systems (EMES). Oradea,
Romania, pp. 154–159 (2017)

3. Wetchakorn, T., Prompoon, N.: Method for mobile user interface design patterns creation for
iOS platform. In: 2015 12th International Joint Conference on Computer Science and
Software Engineering (JCSSE), Songkhla, Thailand, pp. 150–155 (2015)

4. Bournoutian, G., Orailoglu, A.: On-device Objective-C application optimization framework
for high performance mobile processors. In: Design, Automation & Test in Europe
Conference & Exhibition (DATE), Dresden, Germany, pp. 1–6 (2014)

5. Ferreira, P.: Reclaiming storage in an object oriented platform supporting extended C++ and
Objective-C applications. In: Proceedings 1991 International Workshop on Object
Orientation in Operating Systems, Palo Alto, CA, USA, pp. 100–102 (1991)

6. Gutierrez, A., Dreslinski, R.G., Wenisch, T.F.: Full-system analysis and characterization of
interactive smartphone applications. In: 2011 IEEE International Symposium on Workload
Characterization (IISWC), Austin, TX, USA, pp. 81–90 (2011)

7. Develop Apple. https://developer.apple.com/library/content/documentation/UserExperience/
Conceptual/AutolayoutPG/index.html

8. WikiPedia. https://en.wikipedia.org/wiki/FPS
9. Develop Apple. https://developer.apple.com/documentation/uikit/uitableview
10. Develop Apple. https://developer.apple.com/documentation/uikit/uicollectionview
11. Develop Apple. https://developer.apple.com/documentation/uikit/uilabel
12. Develop Apple. https://developer.apple.com/reference/quartzcore/calayer
13. Develop Apple. https://developer.apple.com/documentation/coretext
14. Develop Apple. https://developer.apple.com/documentation/coretext/ctframe
15. Develop Apple. https://developer.apple.com/documentation/coretext/ctline
16. Develop Apple. https://developer.apple.com/documentation/coretext/ctrun-61n
17. Xu, P., Yin, Q., Huang, Y., Song, Y.-Z., Ma, Z., Wang, L., Xiang, T., Kleijn, W.B., Guo, J.:

Cross-modal subspace learning for fine-grained sketch-based image retrieval. Neurocom-
puting 278, 75–86 (2018)

120 Q. Zhao et al.

https://developer.apple.com/library/content/documentation/UserExperience/Conceptual/AutolayoutPG/index.html
https://developer.apple.com/library/content/documentation/UserExperience/Conceptual/AutolayoutPG/index.html
https://en.wikipedia.org/wiki/FPS
https://developer.apple.com/documentation/uikit/uitableview
https://developer.apple.com/documentation/uikit/uicollectionview
https://developer.apple.com/documentation/uikit/uilabel
https://developer.apple.com/reference/quartzcore/calayer
https://developer.apple.com/documentation/coretext
https://developer.apple.com/documentation/coretext/ctframe
https://developer.apple.com/documentation/coretext/ctline
https://developer.apple.com/documentation/coretext/ctrun-61n

18. Ma, Z., Xue, J.-H., Leijon, A., Tan, Z.-H., Yang, Z., Guo, J.: Decorrelation of neutral vector
variables: theory and applications. IEEE Trans. Neural Netw. Learn. Syst. 29(1), 129–143
(2018)

19. Liu, W., Cao, J., Yang, L., Xu, L., Qiu, X., Li, J.: AppBooster: boosting the performance of
interactive mobile applications with computation offloading and parameter tuning. IEEE
Trans. Parallel Distrib. Syst. 28(6), 1593–1606 (2017)

20. Ma, Z., Rana, P.K., Taghia, J., Flierl, M., Leijon, A.: Bayesian estimation of Dirichlet
mixture model with variational inference. Pattern Recogn. 47(9), 3143–3157 (2014)

Optimizing Sliding Performance in iOS 121

	Optimizing Sliding Performance in iOS
	Abstract
	1 Introduction
	2 Performance Optimization
	2.1 Preloading
	2.2 The Bottleneck of AutoLayout Performance
	2.3 Pre-cache
	2.4 Asynchronous Drawing
	2.5 Asynchronous Rendering

	3 Experiment and Validation
	4 Conclusions
	Acknowledgement
	References

