
Secure Communication Protocol Between Two
Mobile Devices Over Short Distances

Muhammad Umair Khan1(&), Farhana Chowdhury2,
Zarmina Jahangir1, and Francis Ofougwuka3

1 Department of Computer Science, Riphah International University,
Lahore, Pakistan

umair@cs.queensu.ca, zarmina.jahangir@riphah.edu.pk
2 Department of Information and Communication Engineering Technology,

Centennial College, Toronto, ON, Canada
fchowdh3@my.centennialcollege.ca
3 Royal Bank of Canada, Toronto, ON, Canada

francid81@gmail.com

Abstract. The security of mobile devices has become a significant issue with
the increase in data and computing capacities. Such devices store security
critical data such as passwords to various online services. In the event of theft of
such devices, the user’s credentials are at the mercy of the attacker. A secondary
mobile device may be used to lock the primary mobile device if the distance
between the two is larger than a specified threshold. Such proximity-based
locking devices use Bluetooth and NFC technologies to communicate with the
primary devices. In this paper, we propose an authentication protocol that can be
used between two such mobile devices which use NFC and Bluetooth. The
protocol elaborates a number of possible scenarios and how they should be
implemented to maximize security of the mobile devices. The proposed protocol
has been implemented and tested on Android and iOS devices.

Keywords: Software security � Security � NFC � Bluetooth
Secure communications protocol

1 Introduction

Security considerations are an integral part of today’s mobile devices such as smart-
phones, notebooks, laptops, and tablets. The primary reason behind this consideration
is that these mobile devices now have the computing and data storage capacities that
were not even available on desktop computers up till recently. This computing prowess
has provided users with options to conduct social and business activities on their
mobile devices. However, if the data stored on the mobile devices (e.g., credentials,
passwords, and financial information) falls in wrong hands, the user’s confidentiality
and integrity may be compromised. Moreover, they may suffer emotional and financial
repercussions.

Many security mechanisms have been implemented by the mobile devices’ vendors
to circumvent and safeguard against security threats. Such mechanisms include biometric

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2018
R. Mehmood et al. (Eds.): SCITA 2017, LNICST 224, pp. 74–85, 2018.
https://doi.org/10.1007/978-3-319-94180-6_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94180-6_9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94180-6_9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94180-6_9&domain=pdf

authentication and remotely deleting data (e.g., Apple’s “Find Your Phone” [1]). A more
recent security model is to use a secondary mobile device to lock/unlock the primary one
based on its proximity to the secondary one. A similar idea has successfully been
implemented in high-end cars where the keys stay in the driver’s pocket and the vehicle
detects, based on the proximity, the presence of the key and enables functions of the car.
This same idea has already been implemented by Lynk from uConekt [2] for mobile
devices. The secondary mobile device does not have to be a mobile phone or tablet in
itself as only limited storage and processing capabilities are required for authentication
and locking purposes. The secondary device is small enough to fit in a key ring as a key
fob along with other keys. As most people use and keep keys (car, office, or home) close,
the secondary device will be in close range of the primary device most of the time. The
range of a Bluetooth device may range be from 0.1 m to 100 m depending. Most mobile
devices use Class 2 Bluetooth which has a typical range of 10 m. We consider this an
effective range to implement a proximity based authentication and locking mechanism.
This implies that if the secondary and primary devices are more than 10 m apart, the
primary device will lock.

Proximity-based mobile authentication [4] devices use Bluetooth and Near Field
Communication (NFC) technologies to communicate. These technologies are not
completely secure in their handling and transfer of data. Bluetooth and NFC have
various security issues such as leaking of information from the system to an unwanted
party resulting into confidentiality violation, unauthorized changes of information
during transmission leading to integrity violations, and resources blocked by malicious
attacker resulting in availability violations. Proximity-based authentication [4] devices
use NFC and Bluetooth to verify the primary device because of their short and
adjustable range. However, NFC and Bluetooth are prone to attacks because they do
not use a central server to authenticate and most of the time the data transferred is not
strongly encrypted. We, in this paper, propose an authentication and data handling
protocol that offers a secure way for these devices to communicate via Bluetooth and
NFC. We discuss various security related scenarios, especially when one device (pri-
mary or secondary) is taken beyond the proximity threshold either by the legitimate
user or by an attacker. We propose security safeguards that should be in implemented
to secure the primary device in the event of any of these scenarios.

The remainder of this paper is organized as follows. Section 2 presents the related
work in this area. Section 3 describes preliminaries. Section 4 provides the details of
the proposed protocol. Section 5 concludes the paper with future works and limitations.

2 Related Work

Extended usage of the mobile computing devices (e.g., smart phones) in our lives is
resulting in many security issues especially regarding device-to-device communication.
Numerous researchers have suggested techniques involving password based authenti-
cation, proxy based security protocols and Near Field Communications (NFC) which
would ensure a secure and reliable means of communication between the devices
without intervention by an unauthentic device/person.

Secure Communication Protocol Between Two Mobile Devices 75

Transport Layer Security (TLS) protocol [3] works on the transport layer which
provides end-to-end security. TLS is currently being used for internet communication
along with its predecessor Secure Sockets Layers (SSL) protocol. This paper proposes
that the advantages of TLS protocol are much more when implemented in mobile
devices domain. Implementing security protocols in mobile devices also increases
maintainability and extensibility. The major technique used in this paper is to hide
information from intruders using bouncy castle cryptographic packages. Object ori-
ented technique has also been used to enhance security. The implementation did not
include optional TLS specifications such as client authentication, session resumption
and compression.

Key agreement protocol [5] has been used to make device-to-device communica-
tion secure. This protocol activates two mobile devices to initiate a shared secret key
for both the devices. This approach specifically uses Diffie-Hellman key agreement
protocol [11]. The authors claim that the proposed technique is more effective and
incurs less computational cost while using device-to-device communication. This paper
presents an advance integration technique that allows previous methodologies to work
with the proposed method. This paper also discusses their technique with regards to a
cellular network using LTE dealing power control issues and Wi-Fi based Device-to-
Device communications [5]. Analysis of the technique indicates that the proposed key
agreement protocol enables two mobile users to securely set up a secret key with a
small computation cost and low authentication overhead. A similar approach is pre-
sented in [6] which establishes a secure key between two mobile devices.

WebBee [11, 12], another communications technique, provides a complete
framework that supports security sensitive applications used in mobile devices.
According to this paper, there are two possibilities in terms of time when devices are
compromised: the first possibility is when the user is informed about the system being
compromised. The second possibility is when the security keys are initialized. This
paper introduces a new technique called Challenge Response System (CRS) that
supports the WebBee system to provide overall security in the worst situation. The
proposed methodology also provides support to integrate existing methodologies to
minimize the impact on infrastructure by using WebBee system. One of the main
constraints in the CRS is that it deals with limited numbers applications.

The authors in [10] present different mobile settings that support and provide
guidance on setting up a password. Results have been compiled after comparing the
strength and usability of passwords that are generated on desktops, laptops and mobile
devices. The proposed methodology shows that the passwords created on mobile
devices are more error prone, longer, frustrating, and weaker. It is observed that
password policies vary in both mobile and desktop environments and it also suggests
an easy way to enter passwords in mobile devices.

Passwords can be breached with different methods like brute force and dictionary
attacks. Strings of alphanumeric characters are also more difficult to remember,
Graphical passwords have been used to make passwords more easy and reliable for
users. In this technique user can select different images as passwords rather than
entering different alphanumeric values and characters. However, such passwords are
more prone to shoulder surfing attacks. An alternative method has been proposed for
authentication purposes by using graphical passwords along with alphanumeric

76 M. U. Khan et al.

characters [9]. It is a combination of recognition and recall based system that is more
reliable and more secure than the older systems. The presented technique is also more
robust and reliable against the shoulder surfing attacks on graphical passwords.
Moreover, the proposed methodology is more convenient and suitable for the mobile
devices.

The authors in [3] discuss the security issues of wearable gadgets and software
agents. They propose two separate protocols for each of these: a separate protocol for
device-to-proxy communication and another one for proxy-to-proxy communication.
Using two different protocols enables us to use less computation capacity of devices.
Another advantage of separate protocols is the provision of reasonable authentication in
communication on more strong devices. This paper gives details on lightweight
wireless devices that have been used for device-to-proxy protocol and also elaborated
on simple public key infrastructure and simple distributed security infrastructure for
proxy-to-proxy protocols. The authors have also developed a prototype for secure and
efficient access to networks and mobile devices. A qualitative analysis was performed
on this prototype whose results favor proxy based security protocols in mobile devices.

3 Preliminaries

Near Field Communication (NFC) [8] is an emerging technology in wireless short
range communication. It is based on different existing standards like Radio Frequency
Identification (RFID) infrastructure. NFC provides support for contactless transactions
that is used in different intuitive application scenarios such as over-the-air ticketing
system and mobile payment system [7].

Bluetooth is a point-to-point or point-to-multipoint radio frequency technology for
data exchange requiring minimal power. For a range of ten meters, the power usage is
2.5 mW. The typical range of a Bluetooth device is 10 to 100 m. Bluetooth is also
being used in to internet of things (IoT) devices in a secure manner [17].

Security is an important concern in today’s software systems as security failures
may lead to financial losses or physical injuries [13]. Security vulnerabilities, the root
of security failures, may be introduced in requirement specification, design, or
implementation phases [14–16]. While communicating between two mobile devices,
the security threats increase due to the use of the wireless medium.

4 Proximity-Based Authentication and Communication
Protocol

We have identified a total of ten possible scenarios where the security of the primary
device may be threatened. In the following paragraphs we describe these scenarios and
how the server, primary device and secondary device should communicate to safeguard
against threats. We represent this communication exchange using sequence diagrams.
In these diagrams, S represents the server, M1 represents the primary device, M2

represents the secondary device, Spr represents the server’s private key,M1pr represents
the primary device’s private key, M2pr represents the secondary device’s private key,

Secure Communication Protocol Between Two Mobile Devices 77

Spu represents the server’s public key, M1pu represents for the primary device’s public
key, M2pu represents for the secondary device’s public key, X represents a random
number sent as a message, and K1 and K2 are keys generated by the server during the
synchronization process. The private and public keys can be generated by any
appropriate asymmetric key algorithm. The remainder of this section is organized as
follows. Sections 4.1 through 4.7 describe different scenarios that the devices may
come across. Section 4.8 proposes an added layer of security in the form of a local
password for the primary device. Section 4.9 presents the options for storing data
securely. Section 4.10 concludes the protocol by presenting the details of an experi-
ment conducted on iOS and Android mobile devices.

4.1 Synchronizing Primary and Secondary Devices

The primary and secondary devices have to be paired to each other at the beginning.
This pairing is performed by exchanging and synchronizing keys. After synchroniza-
tion, the two devices keep in constant contact. However, there will be many instances
when the two devices are not in contact such as when the two devices are out of range,
when the devices are turned off or run out of power, or when the SIM cards are
changed. In such an event, the synchronization process has to be initiated to authen-
ticate that the two devices are legitimate ones. This process is performed every seven
days, even in the absence of any of the aforementioned scenarios. During this process
the primary and secondary devices come to a close range of 0.0 m. Connection to the
server is mandatory for this process therefore internet connection is essential for the
success of the process.

The synchronization process is initiated by M1. It sends the sync command (which
also reduces the power of both the devices).M1 sends the profile password to the server
encrypted using the server’s public key Spu. The server S generates two new keys K1

and K2 and sends them to M1 using M1pu. M1 will decrypt the keys by using M1pr. M1

will then re-encrypt K2 by using the same algorithm only it will use the public keyM2pu

of M2 and then send it to M2. This is done to add another layer of security. K1 will be
the new private key of M1 and K2 will be the new private key of M2. The method
SyncS() sends the username and password in an encrypted format to the server. The
method SyncM2() verifies whether the distance between M1 and M2 is zero. This
scenario is depicted in Fig. 1 in the form of a sequence diagram.

4.2 SIM Change and Device Switched ON/OFF

With the assumption that M1 is a mobile device, SIM change is when the user removes
the SIM to swap with another SIM or have the same SIM reinstated. The device has to
be synchronised (sync) according to the steps defined in Sect. 4.1. Similarly, whenever
the primary or secondary device is turned ON/OFF, the sync process defined in
Sect. 4.1 has to be performed before the user can access the data in the primary device

78 M. U. Khan et al.

4.3 M1 and M2 are Within the Defined Proximity of Each Other

To ensure a device within range is the correct device, we need a means of authenti-
cating the two devices as part of the same pair. After every 30 s, M1 generates a
random value X and sends it to M2. We use the M2pu to encrypt the X resulting in M1x

before it is sent. M2 decrypts the M1x using the M2pr and overwrites the X in M2 with
the new X. M2 responds to M1 message by sending the X to M1 using the M1pu to
encrypt X resulting inM2x.M1 validates the message by decrypting theM2x and checks
if it matches with the initial X that was sent. If M1 detects a discrepancy between the
sent and received X, it locks M1 deducing that the M2 is fake or has been tampered
with. When both the devices have X, then they can recognize each other as legitimate
as only M1 will have its private key. This scenario is represented in Fig. 2. If a fake or
tampered device is detected, a sync process is required which involves communicating
with the server S.

K1=Mr1(Mu1(K1))

K2= Mr2(Mu2(K2))

Mu1(K2)

Mu1(K1)

Mu2(K2)

K2=Mr1(Mu1(K2))

SyncM2()
SyncS()

S M1 M2

Fig. 1. Synchronizing primary and secondary.

M1 M2
M2pu(generate(x)) M2pr (M2pu (generate x))) = x

M1pu(x)X = M1pr(M1pu(x))

Fig. 2. Verifying proximity between M1 and M2.

Secure Communication Protocol Between Two Mobile Devices 79

4.4 M1 and M2 are Outside of the Defined Proximity of Each Other

This scenario occurs when M1 and M2 are not close to each other (within the pre-
defined proximity). When this situation occurs, M1 sends an encrypted X to M2 and
does not receive a valid response (X) from M2. M1 waits for 30 s (or any other time
interval set by the user) before resending a new X to M2. After 3 attempts without any
response from M2, M1 locks itself. We do not distinguish whether M1 or M2 were
stolen by an attacker or M1 or M2 were misplaced by the legitimate user. This scenario
is described in Fig. 3.

4.5 Unlocking M1

Once the device M1 is locked because of M2 being out of range, the unlock process has
to be carried out. This process, to be successful, requires M1 and M2 to be present in
close proximity with each other (zero meters to use NFC) and with access to the
internet to allow connection to S. This scenario is represented in Fig. 4. Using the
provided software application, the user logs in to the server by using the ServerID and
password set up during the initial registration. The communication in this process has
to be encrypted using the private and public key of S and M1 (not shown in the figure).

Upon successful login, the server instructs M1 to request from M2 the last message
X which is stored in its. This is required to ensure that the M2 has not been swapped
with another device since each distinctM2 will have different X store in its memory.M2

responds by sending the X value to M1. All communication is carried out in encrypted
form. M1 validates the X sent by M2 and when it does match with the stored X in M1,
then the sync process is initiated (Scenario I described in Sect. 4.1) with successful
unlocking of M1. If the X sent by M2 does not match with the X stored in M1, then the

If (response == FALSE) Lock()

If (response == FALSE && time == 30)
Send (M2pu(X2))

Send (M2pu(X1))

M1 M2

If (response == FALSE && time == 30)
Send (M2pu(X3))

Fig. 3. Lock M1 if proximity between M1 and M2 is not verified.

80 M. U. Khan et al.

data stored in M1 is erased because this situation indicates that M2 has been tampered
with and someone is trying to deceive M1.

4.6 Internet Connection not Available

There could be a scenario that the user has no internet connection and the server cannot
be reached. We propose to use a session token which has been proven effective in many
other applications and protocols. We propose that a token should remain valid for only
one hour after the internet connection is lost. After the passage of one hour, M1 should
be locked. To unlock M1 we need to perform the sync process defined in Sect. 4.1.

There are multiple rationales behind this lock and sync. First, consider that the
legitimate user loses both M1 andM2. He/she may need to send an erase data command
to safeguard his data. However, if M1 not connected to the internet, it should lock itself
as the erase command will not reach it. This does create a usability issue as the
legitimate user will not be able to use his device in the absence of internet. However,
the user can setup the time after the device locks itself.

4.7 M1 and M2 have been Stolen

In the unlikely case where both the devices are lost together, there are the following
two possibilities:

• User is aware: When a user knows the devices are gone, he/she can login to the
application server and send an erase command to M1. If the device M1 is still

Request (last X)

Unlock Request

Su (Server ID and password)

Unlock M1

Send (last X)

If Xm1 == Xm2

Then Sync ()
Else Erase Data

S M1 M2

Fig. 4. Unlocking M1.

Secure Communication Protocol Between Two Mobile Devices 81

connected to the internet, the command will be successful and all data on the device
will be erased. This scenario is presented in Fig. 5.

• User is not aware: When a user has no knowledge of the devices been stolen, and
both the devices are in close proximity, M1 will not lock itself. However, to resolve
this, an added layer of protection can be provided in which the software application
installed on the device M1 asks for a password after a specified interval of time and
locks itself if that password is not entered. This scenario is described in detail in
Sect. 4.8.

4.8 Local Password

No matter if M1 is connected to Server or M2 or not, in all cases M1 will ask for a local
password which will be different from the server password. The password will be at
least 10 characters long. This password will work as a screen lock and will be enabled
after 30 s of inactivity. The user will have only three chances to enter the right pass-
word. If the local password is not entered correctly, M1 will let the user enter it two
more times and after three incorrect attempts, M1 will be locked and user has to go
through the unlock procedure via the server. This scenario is represented in the
sequence diagram in Fig. 6.

4.9 Data Storage

There are two places where data can be stored: on the cloud/server and on the device
M1. Each of them requires a process to make sure data is not compromised

• On the Cloud/Server: In this process, we synchronize M1 with the cloud/server. M1

only has the last values of X on it while the remaining data is on the cloud/server.
M1 encrypts the data using Spu and sends it to the server S. Server decrypts the data
using Spr. The server then stores the data and sends “delete data” command to M1.
M1 deletes all data and sends confirmation to the server. IfM1 requests any data, the
server encrypts data using M1pu and sends it. M1 then decrypts the data using M1pr.

• On M1: For this process, all the data is stored in M1. When M1 needs to save any
data, it requests an EKey from the server. The server encrypts the EKey with M1pu

and sends it to M1. M1 decrypts the key using M1pr and encrypts the data using that

User S M1

Log in

Erase Data ()

Erase Data

Fig. 5. Erase data.

82 M. U. Khan et al.

key. M1 then deletes the EKey from its memory. When M1 needs to access the data
on it, it requests the DKey from the server. Server encrypts the DKey using M1pu

and sends that toM1. M1 decrypts the DKey using M1pr and uses this key to decrypt
the data. This decrypted data is only viewable and is not saved at any time in M1.
The keys are always stored in the server. This will help to mitigate the risk of the
key or data been discovered when the device is lost.

4.10 Experimental Implementation

The above-mentioned communication protocol was implemented in two separate
Android and iOS based primary devices. The secondary device was an embedded
system in the form of a key fob. For the primary devices, JAVA was used to develop an
App. This app was responsible for authentication of the user using a password, com-
municating with the server to verify keys and accessing user information, and locking
the primary device when the secondary device was out of range.

The code for the embedded device was written in C due to space and computational
restrictions. The secondary device was first registered with the server. This registered
secondary device was then paired with a primary device and the pairing information
was added to the user database in the server. Once the pairing was complete, the
secondary device was locked to the primary one and it could not be paired with any
other primary device with making changes to the secondary device database in the
server.

The server was installed in the cloud and was used to host client credentials and
generate keys. All of the described scenarios were tested multiple times. The results

Prompt for right password

Re-enter password

Prompt for right password

Re-enter password

Print (unlock phone via
server)

Enter password If Password==true, unlock phone

Else

Else

If Password==true, unlock phone

If Password==true, unlock phone

Else, lock M1

M1User

Fig. 6. Local password.

Secure Communication Protocol Between Two Mobile Devices 83

indicate that based on the discussed scenarios, the primary device was locked whenever
it was out of range of the secondary device.

5 Conclusions and Future Work

With the extensive use of mobile devices in our everyday lives, security of data stored
on these devices is becoming of paramount importance. Lost mobile devices may not
only represent the cost of the device itself. The data stored in such devices, such as
banking information, social websites’ credentials, and mailboxes, maybe used to
exploit the user financially, politically, socially, and emotionally.

Usually the security features available in mobile devices are not sufficient if the
device is not connected to the internet (e.g., erase data remotely). We propose a
communication protocol in this paper which uses a secondary device as an authenti-
cator. A similar idea has been successfully implemented in other domains such as the
automobile industry. We consider multiple scenarios which the mobile device may
encounter. The proposed protocol was implemented on Android and iOS devices and
tested.

The only limitation observed in the protocol is the time interval between losing
both the devices and the user defined time to lock the device. As a future work, this
communication protocol can also be used for internet of things (IoT) devices however it
may require some modification because of their distributed nature. Moreover, this
protocol has to be modified and tested for devices which cannot reasonably store data
on the cloud and completely depend on storing the data within itself. This will be the
case when the amount of data to be protected is too large.

References

1. iCloud - Find my iPhone. https://www.apple.com/ca/icloud/find-my-iphone/. Accessed July
2017

2. uConekt. http://uconekt.com/lynk/. Accessed July 2017
3. Kayayurt, B., Tuglular, T.: End-to-end security implementation for mobile devices using

TLS protocol. J. Comput. Virol. 2(1), 87–97 (2006)
4. Burnside, M., Clarke, D., Mills, T., Devadas, S., Rivest, R.: Proxy-based security protocols

in networked mobile devices. In: Symposium on Applied Computing (SAC 2002), pp. 265–
272 (2002)

5. Shen, W., et al.: Secure key establishment for device-to-device communications. In: IEEE
Global Communications Conference (GLOBECOM), pp. 336–340 (2014)

6. Aldosari, W., El Taeib, T.: Secure key establishment for device to device communications
among mobile devices. Int. J. Eng. Res. Rev. 3(2), 43–47 (2015)

7. Siira, E., Tuikka, T., Tormanen, V.: Location-based mobile wiki using NFC tag
infrastructure. In: 1st International Workshop on Near Field Communication (NFC 2009),
pp. 56–60 (2009)

84 M. U. Khan et al.

https://www.apple.com/ca/icloud/find-my-iphone/
http://uconekt.com/lynk/

8. Burkard, S.: Near field communication in smartphones, Department of Computer
Engineering, Berlin Institute of Technology, Germany, Technical report. https://www.snet.
tu-berlin.de/fileadmin/fg220/courses/WS1112/snet-project/nfc-in-smartphones_burkard.pdf.
Accessed July 2017

9. Routi, S., Andersen, J., Seamons, K.: Strengthening password-based authentication. In:
Symposium on Usable Privacy and Security (SOUPS) (2016)

10. Khan, W.Z., Aalsalem, M.Y., Xiang, Y.: A graphical password bases authentication based
system for mobile devices. Int. J. Comput. Sci. Issues (IJCS) 8(5)-2, 145–154 (2011)

11. Yang, B.S., Dreijer, S., Jamin, S., Mukherjee, S., Wang, L.: Secure communication
framework for mobile devices. Technical report, University of Michigan at Ann Arbor, MI,
USA, CSE-TR-543-08 (2008). https://www.cse.umich.edu/techreports/cse/2008/CSE-TR-
543-08.pdf. Accessed July 2017

12. Upatkoon, K., Wang, W., Jamin, S.: WebBee: an architecture for web accessibility for
mobile devices. In: 10th IFIP International Conference on Personal Wireless Communica-
tions, Colmar, France (2005)

13. Khan, M.U.A., Zulkernine, M.: Developing components with embedded security monitors.
In: 2nd International ACM SIGSOFT Symposium on Architecting Critical Systems
(ISARCS 2011), pp. 133–142 (2011)

14. Khan, M.U.A., Zulkernine, M.: Quantifying security in secure software development phases.
In: 2nd IEEE International Workshop on Secure Software Engineering (IWSSE 2008),
pp. 955–960 (2008)

15. Khan, M.U.A., Zulkernine, M.: On selecting appropriate development processes and
requirement engineering methods for secure software. In: 4th IEEE International Workshop
on Security, Trust, and Privacy for Software Applications (STPSA 2009), pp. 353–358
(2009)

16. Khan, M.U.A., Zulkernine, M.: Activity and artifact views of a secure software development
process. In: International Workshop on Software Security Process (SSP 2009), pp. 399–404
(2009)

17. Hussain, S.R., Mehnaz, S., Nirjon, S., Bertino, E.: Secure seamless bluetooth low energy |
connection migration for unmodified IoT devices. IEEE Trans. Mob. Comput. PP(99), 17
(2017)

Secure Communication Protocol Between Two Mobile Devices 85

https://www.snet.tu-berlin.de/fileadmin/fg220/courses/WS1112/snet-project/nfc-in-smartphones_burkard.pdf
https://www.snet.tu-berlin.de/fileadmin/fg220/courses/WS1112/snet-project/nfc-in-smartphones_burkard.pdf
https://www.cse.umich.edu/techreports/cse/2008/CSE-TR-543-08.pdf
https://www.cse.umich.edu/techreports/cse/2008/CSE-TR-543-08.pdf

	Secure Communication Protocol Between Two Mobile Devices Over Short Distances
	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Proximity-Based Authentication and Communication Protocol
	4.1 Synchronizing Primary and Secondary Devices
	4.2 SIM Change and Device Switched ON/OFF
	4.3 M1 and M2 are Within the Defined Proximity of Each Other
	4.4 M1 and M2 are Outside of the Defined Proximity of Each Other
	4.5 Unlocking M1
	4.6 Internet Connection not Available
	4.7 M1 and M2 have been Stolen
	4.8 Local Password
	4.9 Data Storage
	4.10 Experimental Implementation

	5 Conclusions and Future Work
	References

