
A Framework for Faster Porting
of Scientific Applications Between

Heterogeneous Clouds

Waseem Ahmed1, Mohsin Khan2(B), Adeel Ahmed Khan2, Rashid Mehmood3,
Abdullah Algarni1, Aiiad Albeshri1, and Iyad Katib1

1 Faculty of Computing and Information Technology, King Abdulaziz University,
Jeddah, Kingdom of Saudi Arabia

waseem.pace@gmail.com,
{amsalgarni,aaalbeshri,iakatib}@kau.edu.sa

2 Department of Computer Science and Engineering, HKBK College of Engineering,
Visvesvaraya Technological University, Bangalore, India

mohsin1510@gmail.com, khan.aak004@gmail.com
3 High Performance Computing Center, King Abdulaziz University,

Jeddah, Kingdom of Saudi Arabia
rmehmood@kau.edu.sa

Abstract. The emergence of pay-as-you-use compute clouds has
enabled scientists to experiment with the latest processor architectures
and accelerators. However, the lack of standardization in cloud comput-
ing, more specifically in the interoperability context, makes the task of
portability of applications between clouds challenging. Two main tasks
that users of multi-vendor clouds will need to perform are porting cost
analysis and faster source-to-source translation. Cost analysis is essential
to help evaluate the feasibility and cost of portability. And any automa-
tion of the source-to-source translation step will help developers per-
form the translation faster while taking advantage of platform-specific
features. This paper presents a framework that assists a developer in
performing these two tasks. The first task is achieved using the Main-
tainability Analyzer module which generates unique funnel shaped pat-
terns that give an insight about the maintainability of an application
and its potential for porting. Different scientific applications from various
domains, that were developed using different programming paradigms,
were evaluated using this module. For the second task, a set of mod-
ules use a knowledge repository to perform source-to-source translations
while ensuring the maintainability of the generated code. The framework
has been tested with different architecture and library combinations with
promising results.

Keywords: Maintainability · Code transformation
Source-to-source translation · Portability · Heterogeneous architecture

c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2018

R. Mehmood et al. (Eds.): SCITA 2017, LNICST 224, pp. 27–43, 2018.

https://doi.org/10.1007/978-3-319-94180-6_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94180-6_5&domain=pdf


28 W. Ahmed et al.

1 Introduction

Proliferation of the pay-as-you-use offering by compute cloud vendors has pro-
vided a new opportunity and a financially viable alternative for researchers
in the high performance computing (HPC) community looking for bigger and
faster computational resources. Future offerings by cloud vendors are expected
to include widely heterogeneous architectures with different processor and accel-
erator combinations, possibly from multiple processor and accelerator vendors.
Although few challenges have prevented large scale deployment of scientific appli-
cations on the cloud, the HPC-on-the-cloud community is expected to grow.

One such challenge is to enable faster portability of applications from one
cloud vendor to another. While live portability of scientific applications between
different cloud vendors will enable researchers to experiment with different archi-
tecture combinations, a lot of challenges will have to be overcome for this to
become a practical reality. Additionally, despite the many groups working on
developing comprehensive standards, the progress in the cloud interoperability
context, has been slow [1]. This lack of standardization in cloud computing has
made the task of switching cloud providers more challenging for the end users.

An obvious solution is to design for portability. However, portability,
although a desirable characteristic in generic software applications, neither is
desirable nor an aim in the design of scientific applications. In scientific appli-
cations, kernels and libraries are highly optimized for specific platforms with
device-specific optimizations performed to enable them to execute most effi-
ciently on that particular architecture. Portability, thus, is neither an important
need nor objective in scientific computing. This places scientific applications in
a different niche in the cloud computing world.

Portability of scientific applications in some form from one platform to
another, on the other hand, is more common. The process of porting and opti-
mizing programs and libraries is repeated whenever system architecture, tools
or requirements change [2]. Considering the large lifetime of scientific applica-
tions, and the change of architectures and system tools over this period, porting
and optimizations become a natural and required part of scientific application
maintenance.

From the portability perspective, this poses two main challenges. Firstly,
the application will have to be correctly translated to the new architecture while
maximizing the utilization of the underlying computing resources. Secondly, this
may need to be done more frequently to take advantage of the newer and faster
computing resources that a cloud vendor may introduce; regular scaling and
upgradation of their systems is important to cloud vendors to attract more
customers and for market survival.

Manual translation of serial code into its correct parallel equivalent is a
lengthy and complex process that involves programmer creativity, domain exper-
tise, large solution space exploration and intricate knowledge of both the com-
puter architecture and the programming paradigm. The last few decades have
seen a lot of work in the form of experience reports, case studies and real exam-
ples on the subject of manual parallelization. Although there has been a lot



Framework for Faster Porting 29

of research over the past few decades on automating this task, manual paral-
lelization continues to outperform automatic parallelization tools, in the general
case. Indeed, manual parallelization continues to dominate in the GPGPU com-
munity [3]. This trend can be expected to continue as the performance gap in
terms of efficiency and computing resource utilization between automatic and
manual parallelization continues to widen as newer and hybrid architectures are
introduced into the market [3]. Also, the varying architectural spectrum of sci-
entific computing being witnessed in HPC will necessitate a radical change in
compiler design. Traditionally, compilers have focused on homogeneous archi-
tectures; code was either compiled for the host processor(s) or a cross compiler
was used to compile for a target(s) processor. As heterogeneous architectures on
the HPC horizon will employ a mix of multi-vendor processors, GPUs, FPGA
and other accelerators, compiling code for these heterogeneous architectures will
definitely become a prerequisite for compiler development.

Until recently, porting had to be performed by researchers only when newer
computer resources were made available to them. This porting process, in most
cases, lasted a few months. The ratio (Rt) of period-of-ownership of the new
platform to time-to-translate was sufficiently large to justify the cost of porting.
But with scientific applications starting to move to the cloud, the portability
process will have to be placed in a different perspective.

To address these challenges, research on developing sophisticated automatic
parallelization environments and frameworks to help improve developer produc-
tivity will be needed as they will have an important role to play in inter-cloud
application porting. Also, the need to focus on maintainability and modularity
during scientific application development will become more essential to facilitate
easier portability between different architectural platforms.

This paper aims to address a few of the aforementioned challenges. More
specifically, three main contributions of this work are as follows

1. A mechanism to qualitatively evaluate the feasibility of porting scientific
applications between heterogeneous platforms

2. A source-to-source transformation process based on a knowledge repository
to facilitate portability between widely disparate architectures

3. Approach to improve maintainability of scientific application by kernel extrac-
tion into blocks and the use of wrappers around them. While the concept of
using wrappers to address interoperability problems is not new, this is the
first attempt to use it to address cloud interoperability issues in HPC

The rest of the paper is organized as follows. The next section gives a background
of the porting process from the perspective of scientific application development.
Section 3 formally describes the relationship of the cost with other design param-
eters. Section 4 describes the working of the framework followed by its evaluation
in Sect. 5. Section 6 places the work presented in this paper against similar work
present in literature. This is followed by conclusion and future work.



30 W. Ahmed et al.

2 Background

2.1 Maintenance of Scientific Applications

Unlike conventional software, requirements of scientific applications do not
exhibit drastic change over time. As these applications are developed to study
specific and well defined scientific phenomena which the scientists can clearly
articulate and formally express, the requirements of these applications are rela-
tively stable even over a period of time. Main changes made to software during
its evolution fall in the following categories

1. When a newer environment is available (faster processors, interconnect, accel-
erators, programming paradigms, etc.) or if the existing platform is scaled

2. When the new environment offers faster execution and larger memory, scien-
tists are provided with an opportunity to study larger problems, work at a
finer granularity on the same problem or obtain results with a lesser degree
of error, things which were not possible on the earlier platform. This scal-
ing of the problem to take advantage of the new environment features may
necessitate changes in software

3. When a more efficient algorithm or library for the application is available.

Reference to change or maintenance in the rest of the paper refers specifically
to the changes listed above unless specified otherwise.

2.2 Porting Process

Consider an application that needs to be migrated from one heterogeneous plat-
form (Ps) on a cloud to another (Pt). Consider an application, shown in Fig. 1
(a), that has been initially developed in CUDA on a GPU and uses the cublas-
Dgemm function call from the CUBLAS library. If this code were to be migrated
to a platform that uses an Intel MIC (Xeon Phi) and the Intel MKL, many
changes to code will be needed even for a small and a simple application like
dense matrix-matrix multiplication. Direct porting of code from Ps to Pt in such
cases, although possible, is very challenging and prone to errors as the two rep-
resentations are very different and do not have a one-to-one mapping as shown
in Fig. 1. A better option would be to introduce an additional step in the trans-
lation process, i.e. translate the application to its equivalent representation on
an intermediate reference platform (Pr) and then translate it from Pr to Pt. The
primary advantage in using an intermediate platform for translation is that it
reduces the number of mapping combinations required from m2 to 2m (derived
from [4]), where m is the number of platform options available.

In general, a translation from Ps to its intermediate representation on Pr

would have a lot of platform specific code clipped or removed. For example, if
the source is in CUDA, CUDA specific initializations and memory allocation
routines will be eliminated in the first translation as can be seen in Fig. 1(a) and
(b). Likewise, the pre-processor directives in OpenMP and OpenACC will be



Framework for Faster Porting 31

10 #include<cuda runtime.h>
11 #include<cublas v2.h>
12 #include<helper cuda.h>

...
20 cublasHandle t hndl;

...
30 findCudaDevice(..);
40 status = cublasCreate(&hndl);

...
50 cudaMalloc(..);
60 cublasSetVector(n2,..);

...
70 cublasDgemm(hndl,rowmjr,...);

...
80 cublasGetVector(..);

...
90 cudaFree(..);

10 #include <mkl.h>
...
...

30 cblas dgemm(rowmjr, ...);
...

(a) Source platform (CUDA on a GPU) (b) Reference platform
10 #include <mkl.h>
20 #include <omp.h>

...
30 declspec(target(mic))
40 void gemm(char rowmjr,...) {
60 cblas dgemm(rowmjr,...);
70 }

...
80 ...//Align = 64
90 #pragma offload target(mic)

100 in(A[0:M*K]:align(Align))
110 in(B[0:K*N]:align(Align))
120 inout(C[0:M*N]:align(Align)) {
140 gemm(transa,...);
150 }

(c) Target platform (OpenMP on an Intel MIC Xeon Phi)

Fig. 1. Application porting between heterogeneous architectures

removed. Platform specific library calls need to be mapped to their equivalent
on the reference platform.

In the second step of the translation, i.e. from Pr to Pt, code that performs
platform-specific initializations and memory allocations needs to be inserted at
appropriate places. Also, generic library calls will have to be mapped to their
equivalent calls on the target platform. Device-specific optimizations may need
to be inserted where necessary. For example, 512-bit registers for MIC requires
a 64-byte alignment and should thus, be specified in the code (Fig. 1(c)). This
knowledge is absent in Ps’s code.

Also, in cases where Ps has specialized extensions to standard library func-
tions and equivalent functions are not available on either Pr or Pt, intelligent
decisions based on the knowledge of the platform need to be taken. Moreover,
if either Ps or Pt have multiple accelerators with static load distribution, the
translation process will have to be more intelligently done as will be elaborated
later in Sect. 3.3. Thus, the presence of an external knowledge repository in such
a framework is very essential when platform-specific decisions and platform-
specific optimizations need to be taken and made, respectively.



32 W. Ahmed et al.

3 Cost of Porting

Before porting an application to another platform, it is important to assess
whether it is economically more feasible to migrate the application or develop it
from scratch. This section describes factors that influence porting cost.

3.1 Maintainability Related Costs

The design and maintainability of an application has a direct effect on its porting
cost. An application that is poorly designed will have high maintenance; porting
this application to another platform will thus involve a larger effort. Qualitatively
or quantitatively determining the maintainability of an application is thus, an
important step.

To determine the maintainability of an application, a Maintainability Visual-
izer has been developed as part of the framework. As described later in Sect. 4.2,
the tool, besides providing a graphical summary of maintenance performed on a
given application over its lifetime, helps a scientist or a developer to qualitatively
evaluate the design of the architecture of the system and its potential for faster
portability. The output of the module is a funnel-shaped pattern described in
later sections and shown in Fig. 3.

From these funnel-shaped patterns, the maintainability cost (Cmain) can be
formally described as follows

Cmain ∝
nf∑

i=1

δi − wcnf (1)

where δi gives the magnitude of the total changes performed on source file i,
wc gives the width of the channel and nf is the number of source files in the
application. The value of wc is user-defined and is an indicator of tolerance to
change desired. A higher value of wc indicates a higher tolerance level. In the
plots shown in Fig. 3, wc has been chosen as 0.1 (10%)

Additionally, a well designed architecture should be modular with low cou-
pling between the components. Low coupling prevents change ripples [5] spread-
ing to other parts of the code. This also makes the code more maintainable.
Thus,

Cmain ∝
nc∑

i,j=1

g(ci → cj)∀i �= j (2)

where g(ci → cj) gives the degree of coupling (uni-directional) of component ci
with cj .

3.2 Platform Related Costs

Besides costs related to maintainability, the source-and-target platform combi-
nation greatly influences the cost of porting. The choice of a platform to use as



Framework for Faster Porting 33

reference and as an intermediate representation is thus, an important decision.
It should be chosen such that it is be easy to produce and easy to translate from
and to different platforms. In this research, a system with a single node, single
socket, single core, single thread, with no accelerator and using Intel MKL where
needed is used as a reference platform (Pr).

With reference to Pr, if the cost required to develop a new application from
scratch for a platform, Pi is denoted as ci, then, an upper-bound for the porting
cost from Pi to another platform, Pj or vice versa can be represented by (ci+cj).
Cost (ci) is a function of the number and type of bottlenecks (kernels) present in
the application, the number and type of library calls used in the application, and
the maturity of the system tools and libraries available for Pi. For example, to
convert a single dgemm call from a system with an Intel MIC using Intel MKL
library to a system using an Nvidia K40 using cublas, CUDA code needs to be
added for device-to-host and host-to-device data transfers, library initialization,
device-specific memory allocation/deallocation and error checking while being
placed correctly in the code and in the proper order. Also, the dgemm call needs
to be replaced with its equivalent cublas call plus the additional parameters. For
the reverse case, all corresponding CUDA code needs to be deleted. Thus,

Cplat ∝
m∑

i=1

(clib)i +
n∑

j=1

(cb)j (3)

where, clib and cb are platform-specific and relate to the cost of translation of
a particular library call and bottleneck respectively. It can be seen from Eq. 3,
that more bottlenecks or library calls an application uses, the higher will be is
its associated porting cost.

From Eqs. 1, 2 and 3 we get

Cmig ∝ F(Cmain, Cplat) (4)

This implies that a system with low maintainability will have a higher cost
of maintenance and hence a higher porting cost. Similarly, a platform that has
a relatively more complex representation will be more costly to migrate.

The next section further explains how platform heterogeneity can have an
increasing influence on Cplat.

3.3 Mapping to Heterogeneous platforms

A large portion of the scientific computing community has been porting code to
accelerators to speed up their applications. In most of the early research using
accelerators like GPUs, all parallelizable portions of serial code were offloaded
and executed on the GPU. Significant speedups have been reported in these cases
with code being craftily moved to utilize the GPU architecture. Many source-to-
source translators that converted OpenMP code to CUDA [6] were introduced
to ease the GPGPU application programmer’s burden. However, the host CPU
remained unutilized in most of these cases; a hybrid approach where the load
was balanced between the CPU and GPU was not considered.



34 W. Ahmed et al.

Recently, many researchers have attempted to manually overlap CPU and
GPU computations by adopting a hybrid approach [7–9]. By attempting to uti-
lize all the available computational units, the speedup obtained in these cases
was much higher than with just utilizing the computational units on the GPU.
But as expected, the effort (Cplat) involved in obtaining the load-balanced par-
allelized version was also much higher.

Consider a computation being performed on a computer with n number of
processors (or general purpose cores) and m number of coprocessors. Also, con-
sider that the code can be separated into a serial (cser) and parallel (cpar) por-
tion. The total time to compute is given by the following

ttot = tser + max(tproc1 , ..., tprocn , tacc1 , ...taccm) + tcom (5)

where tser is the time taken to execute cser, tproci and taccj represent time taken
to execute code on the processor (proci ) and accelerator (accj) respectively, and
tcom is the total time for data transfers between computational units.

The following also holds true for the parallel portion of the code.

cpar = cproc1 + . . . + cprocn + cacc1 + . . . + caccm (6)

where cproci and cacc1 represent the portion of the parallel code executed on the
host processor and accelerator respectively.

In heterogeneous computing, the objective is to minimize ttot and to increase
the portion of cpar in the provided code. For the former, while it is obvious
that tser and tcom need to be minimized, the relationship between tproc and tacc
and its effect on ttot, and the behavior of the ratio cacc/(cproc + cacc) may vary
between different platforms. All these factors have an influence on Cplat in Eq. 3.
Determining the exact relationship between these values for various platform
combinations is beyond the scope of this paper.

4 Description of Framework

This section gives an overview of the framework developed for help in application
portability and describes portions of the framework presented in this paper.

4.1 Overview

Figure 2 shows the block diagram of the framework. It comprises of four modules
and one data repository. The Maintainability Visualizer analyzes the history of
changes made to application code over its lifetime and summarizes this infor-
mation into a graphical pattern. The Knowledge Repo serves as a repository
that contains descriptions about (1) specific accelerators and libraries and their
mappings to and from the reference platform (Pr) and (2) patterns of commonly
occurring kernels (or dwarfs) in scientific applications. The Profiler identifies
and ranks the blocks or segments of code that appear as bottlenecks when exe-
cuted on Pr. The Block Extractor extracts the blocks identified by the Profiler



Framework for Faster Porting 35

Fig. 2. Porting framework

into functions (similar to Function extraction in refactoring [10]) that also serves
as a generic wrapper for the block. The main objective of the Block Extractor
is to reduce the value of δi and g(ci → cj) in Eqs. 1 and 2. The Code Trans-
former consists of three complementary modules, Clipper, Injector and Mapper.
The first two modules transform the application code from the source platform
to its equivalent representation in Pr and from its representation in Pr to its
equivalent on the target platform, respectively. The Mapper is responsible for
code modifications on kernel patterns and library calls present in the Knowledge
Repo.

The framework takes three inputs from the user. First is the application
source which may be given as a single file, a source directory or a zipped archive.
The second input provides descriptions of the existing platform - details regard-
ing the processors, accelerators and libraries used. The third input provides
similar descriptions about the target platform. The focus of this paper is on the
Maintainability Visualizer, Block Extractor and a few functionalities of the Code
Transformer.

4.2 Maintainability Visualizer

The primary function of this module is to provide an insight to the user about
the maintainability of the application and, subsequently, aid him in taking a
decision about platform porting. A higher degree of maintainability implies an
easier portability. If the code base shows poor maintainability, rewriting the code
for the target platform may be more cost effective.

The module uses a locally cloned Git repository for analysis. The history of
each file, which includes commits, insertions, deletions, dates of commits, etc., is
analyzed. Files are arranged in descending order of the number of changes made
to them over their lifetime and associated with their corresponding magnitude
of change. This generates an interesting funnel-shaped pattern which provides



36 W. Ahmed et al.

insights into the quality of software architecture and maintainability of the appli-
cation. As will be seen later, these funnel patterns provide a good insight into
the design of applications and their potential for portability.

A funnel with a relatively large mouth and a narrow rapidly tapering stem
depicts an application that has been well designed, with a robust architecture
where modifications over time have been restricted to a few files. For scientific
applications, a funnel of this type may indicate that kernels (architecture specific
code) were confined to a few files and only these files had to be changed when
the application was migrated to a newer platform.

In contrast, a funnel with its mouth tapering slowly into a relatively thick
stem indicates a poorly designed architecture. The cost of porting these systems
to newer platforms would be more expensive. A funnel of this type would suggest
rewriting of the application from scratch or a major restructuring or refactoring
[10] of the application to improve its maintainability.

4.3 Knowledge Repo

The Knowledge Repo serves as one of the main constituents contributing to the
intelligence of the framework. It is primarily used in decision making during code
transformation.

Knowledge is stored in a two-level, dictionary-based scalable tree partitioned
into sections. The following are a few types of knowledge that can be built in to
the repository

– Mapping of standard scientific library functions from various platforms to Pr

and vice versa. This includes function names, details about number, type and
relative order of parameters and other specifics.

– Platform-specific device initialization calls, calls for memory alloca-
tion/deallocation and data transfers

– Platform-specific optimizations
– Patterns of commonly occurring kernels in scientific computation
– Information about platform-specific preprocessor directives

The efficiency of the framework is based on the maturity and comprehensiveness
of this repository. Populating this repository with correct and pertinent knowl-
edge about various platforms is, thus, an important pre-requisite for the efficacy
of the framework.

4.4 Block Extractor

The main objective of this code is block extraction. It takes a block-annotated
file from the Profiler as input and extracts this block into a separate function.
This rearrangement of code, which has a positive influence on g(ci → cj) and also
implicitly impacts

∑nf

i=1 δi, is referred to as Function Extraction in refactoring
[10]. The block is embedded into a function with a generic signature which serves
as a wrapper to facilitate easier code replacement in future by minimizing code
ripples during code changes.



Framework for Faster Porting 37

While the concept of using wrappers to address interoperability problems
is not new [11–13], this is the first attempt of using them to address cloud
interoperability issues in scientific computing.

4.5 Code Transformation

Although the basic translation of code to a newer architecture to obtain a cor-
rect functional executable is not difficult and can be performed in a reasonably
short time, optimization of the ported code to take advantage of the features
of the newer architecture requires a much longer time. Additionally, if the code
has evolved over different architecture generations, identifying the (sometimes
retained) previous platform-specific optimizations and correctly replacing them
with the newer platform-specific optimizations or removing them altogether is
also an intense task that requires skill. This module attempts to automate these
transformation steps where possible.

Code transformation is done in three overlapping stages by the Clipper, Injec-
tor and Mapper sub-modules which constitute the Code Transformer.

The Clipper is responsible for deannotating, clipping or cleaning out
platform-specific code from Ps’s representation. For example, CUDA-specific
calls (cudamalloc) or OpenMP-specific pre-processor directives (#pragma
offload) are identified based on inputs from the Knowledge Repo and truncated
from the source representation. For a few statements, relevant information from
the statement is extracted into a temporary dictionary (Dicttemp) prior to clip-
ping. If Ps’s representation indicates the use of static load balancing between its
heterogeneous computing units (described earlier in Sect. 3.3), pertinent func-
tion calls have to be intelligently identified and fused into a single call. Likewise
with data.

The Injector module basically reverses the steps of the Clipper but the
translation is from Pr’s representation to the equivalent representation of Pt.
Input from the Profiler, Dicttemp and the Knowledge Repo is used to appro-
priately place OpenACC-specific preprocessor directives or CUDA-based calls
(cudasetvector, cudafree), for example, where needed. Additionally, two intelli-
gent decisions need to be taken if Pt has a heterogeneous architecture. Firstly,
for every bottleneck, a decision about where to execute the kernel is to be taken;
for example, some kernels may execute faster on the host itself, for some data-
parallel type of kernels, it would be more profitable to execute it on the accel-
erator and for some, the fastest implementation might involve a combination of
both. Secondly, if the choice of the first decision is a mixed implementation, the
kernel (bottleneck) may need to be split into its equivalent call on each of the
heterogeneous devices, if required. But only a skeleton for this set of functions
can be generated as a proper load distribution between the devices will require
adaptive refinement techniques on these devices to determine the best setting as
described in Sect. 3.3.

The responsibility of the Mapper module is to search for every replaceable
function or library call between the Pr and Pt representations based on data
from the Knowledge Repo. If found, pertinent code in Pr needs to be replaced



38 W. Ahmed et al.

Fig. 3. Funnels for a few scientific applications generated by the Maintainability Visu-
alizer

with its corresponding representation in Pt using information from Dicttemp,
if needed. If an irreplaceable function or library call (a few iterative solvers in
Intel’s MKL do not have equivalent definitions in the CUDA standard libraries)
is found, appropriate messages need to be provided to the user.

5 Evaluation of Framework

Development on the framework was largely done in Python 2.7 on the Linux
platform.

The Maintainability Visualizer module was used to analyze a few popular
scientific applications maintained on GitHub. The Git repository was cloned
locally and provided as input to the module. Details about the applications
are given in Table 1. The Funnel patterns generated by the module for these
applications are shown in Fig. 3.

In case of ChanGA and OpenAtom, the Funnel has a relatively broad mouth
and a very narrow tapering stem. As implied by the funnel, only a few files in
these applications subsumed most changes over the years. Porting applications
with such funnels to newer platforms should be easier. An important observation
made was that these applications have been developed in Charm++, which
is a machine independent parallel programming system which allows programs
written using this system to run unchanged on different architectures [14]. The
generated funnel pattern for these two applications very well substantiates this
claim and our reasoning about the portability.

QuTiP, developed in Python, has a typical funnel shape with a large mouth
slowly tapering into a narrow stem. OpenMD, on the other hand, has an inter-
esting funnel with a very narrow mouth tapering into a stem. Considering its
lifetime of 12 years, the funnel implies that the application has been designed
with good foresight and an architecture robust to change. Porting this applica-
tion to a newer platform will also be easy.



Framework for Faster Porting 39

Table 1. Application details

Name Domain Language Years of dev. Last commit

ChaNGa [15] N-body Gravity solver Charm++ 13 Nov 2015

khmer [16] Nucleotide Sequence k-mer
counting

Python 5 Nov 2015

OpenAtom [17] Atomic and molecular system
simulation based on quantum
chemical principles

Charm++ 10 Dec 2015

OpenMD [18] Molecular Dynamics C++ 12 Jan 2016

QuTiP [19] Simulation of dynamics of
closed and open quantum
systems

Python 5 Jan 2016

SeisSol [20] Numerical Simulation of
Seismic wave phenomenon
and earth quake dynamics

C++ 1 Jan 2016

SiesSol is a relatively new application in the set with development started a
little more than a year back. However, the extremely large mouth of the funnel
and a thick neck made it stand out among the funnels generated. On further
study of the source files of the application, it was observed that many of the
files were auto-generated. These appear to be code for commonly occurring ker-
nels used in Scientific applications. Porting these kind of application to newer
platforms will have a high cost as changes are not confined to a limited set of
files.

The framework’s applicability was studied with synthetic benchmark appli-
cations using a small set of frequently occurring kernels in scientific computing.
Porting of these applications between different architecture combinations (no
accelerator, single accelerator, multiple accelerators) and different implementa-
tions (textbook code, OpenBLAS, Intel’s MKL BLAS and Nvidia’s CUBLAS)
were contrasted.

6 Related Work

The emergence of compute clouds while opening up new frontiers for the HPC
community has brought with it many challenges. One main challenge is appli-
cation portability. For general applications, close to live application porting is
already offered by many cloud vendors. For example, for multi-cloud deploy-
ment, applications packaged as Docker images [21] can just be dropped on any
of the cloud vendors supporting Docker containers regardless of the underlying
architecture, operating system or libraries. Other approaches like [22] offer solu-
tions for multiple-cloud deployment which require the adoption of their design
process from the application’s inception.



40 W. Ahmed et al.

In case of scientific applications, this may not be currently possible or desired.
For example, when porting a scientific application to a newer platform or when
a cloud provider decides to upgrade to a newer architecture, the scientist will
want the application to take full advantage of the underlying platform’s special
characteristics. If the newer platform is not offering any significant advantage
over the existing platform, the portability will not be justified and thus, not
needed. Also, if the cost of porting exceeds the cost of new development, porting
should not be an option.

Source-to-source translators and auto-parallelizing environments play an
important role in portability. There has been a lot of research in developing
source-to-source compilers for scientific applications in the last few decades. A
few of them have met with mixed success [23–26] and have no active develop-
ment in the recent past. Among the recent ones, some [24,27,28] use standard
C or annotated C (OpenMP/ OpenACC/ OpenCL) representation as input to
generate an equivalent representation for a single or a very small set of parallel
architectures. Others [2,14,29] have introduced a new implicitly parallel input
representation paradigm, the use of which is largely confined to a small set of
researchers. Also, most of the source-to-source transformers generate generic
code that may not be optimized for a particular architecture; device-specific
optimizations have not been not considered. For example, particular grid com-
binations may result in faster CUDA kernel execution on some GPUs and not
in others.

[30] most closely resembles the approach presented in this paper. Like a
few other approaches, it uses code in which parallel portions have already been
identified using OpenMP/OpenACC syntax. Similar to [27], it identifies kernels
based on pre-defined patterns. These and other library calls are then mapped to
a target platform. But, like many other approaches, targets a single platform.

The main impediment in applying these and other source-to-source compilers
to application porting is that they are all uni-directional; i.e. translation of code
is from a reference platform to a target platform but not vice versa. For applica-
tion portability it is important that the translation works both ways. Moreover,
considering the increasing adoption of accelerators in the scientific community,
represented by increasing heterogeneity of architectural choices available, this
becomes more important.

Also, to the best of our knowledge, there is no existing work that qualitatively
or quantitatively evaluates the feasibility of scientific application portability or
gives an indicator to its cost.

7 Conclusion and Future Work

Porting of scientific applications typically involves a few man years of devel-
opment and is a large and expensive exercise. In the past, this typically hap-
pened once or twice in the lifetime of an application when large grants were
procured every few years for a faster and newer system. But the pay-as-you-use
philosophy of the compute cloud is expected to dramatically alter this equa-
tion with larger and newer systems being made more frequently available by



Framework for Faster Porting 41

the cloud vendors. The emergence of compute clouds has provided new avenues
for researchers; scientists will have an opportunity of experimenting with differ-
ent accelerator and platform combinations. But for this to become a practical
reality in scientific computing, a domain which is characterized by heavily opti-
mized platform-specific kernels and libraries, two tasks need to be automated.
First is portability analysis to assess the feasibility of portability and second is
source-to-source translation.

This paper presented a framework that addresses these challenges. A prelim-
inary evaluation of the proposed framework on a set of architecture and library
combinations have shown encouraging results. Future work will focus on develop-
ing a comprehensive and mature Knowledge Repo in order to properly evaluate
all the modules. A thorough qualitative analysis of the framework’s efficacy and
its influence on programmer productivity during application portability over a
wider range of platform combinations would also be performed.

Acknowledgements. The work on this paper was supported by the HPC Center at
the King Abdulaziz University, Jeddah, Saudi Arabia.

References

1. Ortiz Jr., S.: The problem with cloud-computing standardization. IEEE Comput.
7, 13–16 (2011)

2. Ansel, J.: Autotuning programs with algorithmic choice. Ph.D. thesis, Mas-
sachusetts Institute of Technology (2014)

3. Garcia, S., Jeon, D., Louie, C., Taylor, M.B.: The Kremlin oracle for sequential
code parallelization. IEEE Micro 32, 42–53 (2012)

4. Lam, M., Sethi, R., Ullman, J., Aho, A.: Compilers: Principles, Techniques and
Tools (2006)

5. Madhavji, N.H., Fernandez-Ramil, J.C., Perry, D.E.: Software Evolution and Feed-
back: Theory and Practice. John Wiley & Sons Ltd., New York (2006)

6. Lee, S., Min, S.-J., Eigenmann, R.: Openmp to GPGPU: a compiler framework for
automatic translation and optimization. ACM Sigplan Not. 44(4), 101–110 (2009)

7. Tomov, S., Dongarra, J., Baboulin, M.: Towards dense linear algebra for hybrid
GPU accelerated manycore systems. Parallel Comput. 36(5), 232–240 (2010)

8. Vömel, C., Tomov, S., Dongarra, J.: Divide and conquer on hybrid GPU-
accelerated multicore systems. SIAM J. Sci. Comput. 34(2), C70–C82 (2012)

9. Vetter, J.S., Glassbrook, R., Dongarra, J., Schwan, K., Loftis, B., McNally, S.,
Meredith, J., Rogers, J., Roth, P., Spafford, K., Yalamanchili, S.: Keeneland: bring-
ing heterogeneous GPU computing to the computational science community. Com-
put. Sci. Eng. (2011)

10. Fowler, M., Beck, K., Brant, J., Opdyke, W., Roberts, D.: Refactoring: Improving
the Design of Existing Programs. Addison-Wesley, Reading (1999)

11. Ahmed, W., Myers, D.: Concept-based partitioning for large multidomain
multifunctional embedded systems. ACM Trans. Des. Autom. Electron. Syst.
(TODAES) 15(3), 22 (2010)

12. Braun, F., Lockwood, J., Waldvogel, M.: Protocol wrappers for layered network
packet processing in reconfigurable hardware. IEEE Micro 22, 66–74 (2002)



42 W. Ahmed et al.

13. Gharsali, F., Meftali, S., Rousseau, F., Jerraya, A.A.: Automatic generation of
embedded memory wrapper for multiprocessor SoC. In: Proceedings of the Design
Automation Conference (DAC 2002) (2002)

14. Acun, B., Gupta, A., Jain, N., Langer, A., Menon, H., Mikida, E., Ni, X., Rob-
son, M., Sun, Y., Totoni, E., Wesolowski, L., Kale, L.: Parallel programming with
migratable objects: Charm++ in practice. In: SC (2014)

15. Jetley, P., Gioachin, F., Mendes, C., Kale, L.V., Quinn, T.: Massively parallel
cosmological simulations with ChaNGa. In: IEEE International Symposium on
Parallel and Distributed Processing, IPDPS 2008, pp. 1–12. IEEE (2008)

16. Crusoe, M.R., Alameldin, H.F., Awad, S., Boucher, E., Caldwell, A., Cartwright,
R., Charbonneau, A., Constantinides, B., Edvenson, G., Fay, S., et al.: The khmer
software package: enabling efficient nucleotide sequence analysis. F1000Res. 4
(2015)

17. Bohm, E., Bhatele, A., Kale, L.V., Tuckerman, M.E., Kumar, S., Gunnels, J.A.,
Martyna, G.J.: Fine-grained parallelization of the Car-parrinello ab initio molecu-
lar dynamics method on the IBM blue gene/L supercomputer. IBM J. Res. Dev.
52(1.2), 159–175 (2008). OpenAtom

18. Meineke, M.A., Vardeman, C.F., Lin, T., Fennell, C.J., Gezelter, J.D.: Oopse:
an object-oriented parallel simulation engine for molecular dynamics. J. Comput.
Chem. 26(3), 252–271 (2005). OpenMD 1

19. Johansson, J., Nation, P., Nori, F.: Qutip: an open-source python framework for the
dynamics of open quantum systems. Comput. Phys. Commun. 183(8), 1760–1772
(2012). QuTiP

20. Breuer, A., Heinecke, A., Rettenberger, S., Bader, M., Gabriel, A.-A., Pelties, C.:
Sustained petascale performance of seismic simulations with SeisSol on SuperMUC.
In: Kunkel, J.M., Ludwig, T., Meuer, H.W. (eds.) ISC 2014. LNCS, vol. 8488, pp.
1–18. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07518-1 1

21. Docker (2015). https://www.docker.com/. Accessed Jan 2015
22. Ardagna, D., Di Nitto, E., Casale, G., Petcu, D., Mohagheghi, P., Mosser, S.,

Matthews, P., Gericke, A., Ballagny, C., D’Andria, F., et al.: Modaclouds: a model-
driven approach for the design and execution of applications on multiple clouds.
In: Proceedings of the 4th International Workshop on Modeling in Software Engi-
neering, pp. 50–56. IEEE Press (2012)

23. Liao, S.-W.: Suif Explorer: An Interactive and Interprocedural Parallelizer. Ph.D.
thesis, Stanford (2000)

24. Dave, C., Bae, H., Min, S.-J., Lee, S., Eigenmann, R., Midkiff, S.: Cetus: a source-
to-source compiler infrastructure for multicores. IEEE Comput. (2009)

25. Blume, B., Eigenmann, R., Faigin, K., Grout, J., Hoeflinger, J., Padua, D.,
Petersen, P., Pottenger, B., Rauchwerger, L., Tu, P., Weatherford, S.: Polaris: the
next generation in parallelizing compilers (1994)

26. Wilson, R.P., French, R.S., Wilson, C.S., Amarasinghe, S.P., Anderson, J.M.,
Tjiang, S.W.K., Liao, S.-W., Tseng, C.-W., Hall, M.W., Lam, M.S., Hennessy,
J.L.: Suif: an infrastructure for research on parallelizing and optimizing compilers
(1994)

27. Nugteren, C., Corporaal, H.: Bones: an automatic skeleton-based C-to-CUDA com-
piler for GPUs. ACM Trans. Architect. Code Optim. (TACO) 11(4), 35 (2014)

28. Bondhugula, U., Hartono, A., Ramanujam, J., Sadayappan, P.: Pluto: a practi-
cal and fully automatic polyhedral program optimization system. In: Proceedings
of the ACM SIGPLAN 2008 Conference on Programming Language Design and
Implementation (PLDI 2008), Tucson, AZ, June 2008. Citeseer (2008)

https://doi.org/10.1007/978-3-319-07518-1_1
https://www.docker.com/


Framework for Faster Porting 43

29. Ansel, J.: Petabricks: a language and compiler for algorithmic choice. Master’s
thesis, MIT (2009)

30. Tan, W.J., Tang, W.T., Goh, R.S.M., Turner, S., Wong, W.-F.: A code generation
framework for targeting optimized library calls for multiple platforms. IEEE Trans.
Parallel Distrib. Syst. 26(7) (2015)


	A Framework for Faster Porting of Scientific Applications Between Heterogeneous Clouds
	1 Introduction
	2 Background
	2.1 Maintenance of Scientific Applications
	2.2 Porting Process

	3 Cost of Porting
	3.1 Maintainability Related Costs
	3.2 Platform Related Costs
	3.3 Mapping to Heterogeneous platforms

	4 Description of Framework
	4.1 Overview
	4.2 Maintainability Visualizer
	4.3 Knowledge Repo
	4.4 Block Extractor
	4.5 Code Transformation

	5 Evaluation of Framework
	6 Related Work
	7 Conclusion and Future Work
	References




