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Abstract. Big data is being generated from various sources such as Internet of
Things (IoT) and social media. Big data cannot be processed by traditional tools
and technologies due to their properties, volume, velocity, veracity, and variety.
Graphs are becoming increasingly popular to model real-world problems; the
problems are typically large and, hence, give rise to large graphs, which could
be analysed and solved using big data technologies. This paper explores the
performance of single source shortest path graph computations using the Apache
Spark big data platform. We use the United States road network data, modelled
as graphs, and calculate shortest paths between vertices. The experiments are
performed on the Aziz supercomputer (a Top500 machine). We solve problems
of varying graph sizes, i.e. various states of the US, and analyse Spark’s par-
allelization behavior. As expected, the speedup is dependent on both the size of
the data and the number of parallel nodes.
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1 Introduction

Graphs are becoming increasingly popular to model real-world problems [1]. Graph
analytics play an important role in information discovery and problem solving. A graph
can be any real-life application that can be used to find a relation, routing, and a path.
Graphs have many applications such as image analysis [2], social network analysis [3, 4],
smart cities [5, 6], scientific and high performance computing [7–9], transportation
systems [10], Web analyses [11], and biological analyses [12]. In these applications, a
large amount of data is being generated every second, known as big data. Big Data refers
to the emerging technologies that are designed to extract value from data having four Vs
characteristics; volume, variety, velocity and veracity [13, 14]. Volume defines the
generation and collection of the vast amount of data. Variety defines the type of the data
stored or generated. Types include structured, semi-structured and unstructured data.
Velocity describes the timeline related to the generation and processing of big data.
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Veracity refers to the challenges related to the lack of uncertainty in data. Big Data V’s
and Graphs have a close relationship. For example, volume could represent the number of
edges and nodes, and velocity could be considered as the graph’s streaming edges.
A graph could be uncertain (veracity) and has the variety characteristics because data
sources could vary.

The processing of graphs in a distributed environment is a great challenge due to
the size of the graph. Typically, a large graph is partitioned for processing. A graph can
be partitioned to balance the load on the various machine in a cluster. These partitions
are processed in a parallel distributed environment. For the computation of the graph
data on the distributed platform, there is a need for scalability and efficiency. These are
the two key elements to achieve the good performance. We also need to move our data
closer to computation to minimize the overhead of data transfer among the nodes in the
cluster. Load balancing and data locality plays a major role in achieving this purpose.
It can utilize the whole resource of the system during processing. Moreover, big data is
so huge that cannot be able to process by traditional tools and technologies. There are
many platforms for graph processing, but these platforms have many issues. Parallel
computation of large graphs is a common problem. Therefore, in this scenario parallel
distributed platforms are suitable for processing large graphs. In this work, we have
used the Graphx [15] for parallel distributed graph processing which is an attractive
framework for the graph processing.

In this work, we explore the performance of single source shortest path graph
computations using the Apache Spark big data platform. We use the United States road
network data, modelled as graphs, and calculate shortest paths between vertices. The
experiments are performed on the Aziz supercomputer (a Top500 machine). We solve
problems of varying graph sizes, i.e. various states of the US, and analyse Spark’s
parallelization behaviour. As expected, the speedup is dependent on both the size of the
data and the number of parallel nodes.

The rest of the paper is organized as follows. Section 2 gives background material
and literature review. Section 3 discusses design and methodology. Section 4 analyses
the result. The conclusions and future directions are given in Sect. 5.

2 Background Material and Literature Review

Graph computation has great importance for analysis in various applications. In this
section, we explored the state of the art work that already has been done for the graph
analysis.

Apache Spark [16] is an open source tool for processing the large data set. It is also
next generation of big data applications and alternate for Hadoop. To overcome the
issues like disk I/O and performance improvement of Hadoop they introduced the
spark. It has several features like memory computation that make it unique. It provides
facility like cashing the data in memory. Spark supports the several programming
languages, i.e., Python, Java, and Scala. Graphx [15] is an open source platform for the
processing graph data. It has various characteristics such as flexibility, speed, parallel
graph computation, extends the spark RDD. Hadoop [17] is an open source software to
process the big data. It has several characteristics scalability, reliability, fault tolerance,
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high availability, local processing & storage, distributed and parallel computing faster
and cost effective. Hadoop as many components but most important components are
MapReduce and HDFS.

Kajdanowicz et al. [18] analyzed three parallel large graph processing approaches
such as Bulk Synchronous Parallel (BSP) MapReduce and map-side join. These
strategies implemented for the calculation of single source shortest path (SSSP) and
relational influence propagation (RIP) of graph nodes for collective classification. They
find out that iterative graph processing performs well as compared to MapReduce using
the BSP. Liu et al. [19] have described graph partitioning is a major issue for parallel
large graph processing. These challenges are a replication of vertices, unbalanced
partitioning, and communication between partitions. To solve these problems, they
proposed a new graph partitioning framework for the parallel processing of a large
graph. The primary goal of this framework was to minimize the bandwidth, balance the
load and memory. It has three greedy graph partitioning algorithms. They run theses
algorithms using different dataset and find out these algorithms can solve the issue of
graph partitioning based on the specification and needs. Wang et al. [20] presented a
new approach for maximal clique and k-plex enumeration. It finds the dense subgraph
using the binary graph partitioning. It divides the graph in such a way that enables each
partition of a graph to process it parallel. It was implanted using the MapReduce. The
presented approach has smaller search space and more parallelizable. Braun et al. [21]
proposed a technique for the analysis social network using a knowledge based system.
The main goal of this approach was mine the interests of the social network represent as
graphs. It analyses the relationship between directed graphs and captures the mutual
friends using the undirected graph. To analyse the performance of the chosen approach,
they have used the Facebook and Twitter dataset.

Laboshin et al. [22] have presented a framework based on the MapReduce for the
analysis of web traffic. The primary objective of using this framework was to scale the
storage and computing resources for the extensive network. Liu et al. [23] have pre-
sented a clustering algorithm for the distributed density peaks to overcome the issue in
distance based algorithms. It also calculates the distance between all pairs of vertices.
Using this algorithm, the computational cost will be decreased. This algorithm is based
on the Apache GraphX [15]. Aridhi et al. [24] analysed various big graph mining
frameworks. The primary focus was on the pattern mining that consists of the dis-
covering useful and exciting information from the large graph using mining algorithms.
They did detailed analysis on the various mining approaches for the big graphs. Drosou
et al. [25] presented a new framework called enhanced Graph Analytical Platform
(GAP). It uses the top down approach for the mining the large volume of data. It gives
strength many other key features such as HR clustering. It works efficiently for the big
data acquiring useful insights. Zhao et al. [26] analysed of different graph processing
platforms. They compared these platforms regarding data parallel and graph parallel.
For the computation of graph and resource utilization graph platforms works well as
compared to data parallel. On the other hand, they find out that regarding size, data
parallel graph platforms are superior in performance.

Mohan et al. [27] did a comparison on the parallel graph processing big data
platforms. They compared features and performance of these platforms. Pollard et al. [28]
presented a new approach for the analysis of scalability and performance of the parallel
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graph processing platforms. They analysed the power consumption and performance of
the most commonly used algorithm (BFS, SSSP and Page Rank) on the graph processing
packages (Graph-Mat, Graph500 Graph Benchmark Suite, and PowerGraph) using dif-
ferent datasets. Suma et al. [29] have also done an important on smarter societies for
logistics and planning. They evaluated the proposed approach using parallel distributed
framework.Miller et al. [30] presented the graph analytics for query processing to find the
shortest path for specific patterns. They introduced the algorithmswhich show that vertex
centric and graph centric algorithms are easily parallelizable. They also argue that
MapReduce is not effective for the computation of iterative algorithms. Chakaravarthy
et al. [31] have presented a new algorithm that was originated from Delta-stepping and
Bellman-Ford algorithms. The main goal of this algorithms was to classify the edges,
reducing the inner node traffic and optimization of direction. They have used the SSSP for
unweighted graph find out the paths among all other nodes as destination.

Yinglong et al. [32] have described that big data analytics are important to discover
for such entities that can easily represent in the form of a graph. It is the primary
challenge for the processing of computation of graph-based patterns. They proposed a
new system that allows the user to organize the data for the architecture of parallel
computing. It also consists of visualization, graph storage, and analytics. They also
analyze the data locality regarding graph processing and its effects on the performance
of cache memory on a processor. Zhang et al. [33] proposed a new algorithm for the
fast graph search that it transforms the complex graphs into vectorial representations
based on the prototype in the database. After this, it also accelerates the query effi-
ciency in the Euclidean space by employing locality sensitive hashing. They evaluated
their approach against the real datasets, which achieves the high performance in
accuracy and efficiency.

Shao et al. [34] have proposed a new approach partitioning aware graph compu-
tation engine (PAGE). The benefit of this method is that it controls the online graph
partitioning statistics of under lying results of a graph. Second, it monitors the parallel
processing resources and enhances the computation resources. Third, it was also
designed to support the various graph partitioning qualities. For evaluation of chosen
schemes, they showed that it performs well under various partitioning approaches with
different qualities. Chen et al. [35] have proposed a new framework of graph parti-
tioning to enhance the performance of the network for graph partitioning itself, storage
of partitioned graph and vertex oriented processing of graph. They have developed all
these optimizations for the cloud network environments. They also have used the two
models such as partition sketch and machine graph. The basic purpose of using these
two graphs was to capture the features of graph partitioning process and network
performance. Zeng et al. [36] have proposed new parallel multi-level stepwise parti-
tioning algorithm. They divided this algorithm into two phases; one is an aggregate
phase and second is partition phase. In aggregate phase, it uses the multilevel weighted
label propagation for aggregation of the large graph into the small graph. But in a
second phase: It has the K-way balance-partitioning performs on the weighted based on
the stepwise mining RatioCut method. It reduces the RatioCut step by step. In each
step, sets of vertices are extracted by reducing the part of RatioCut, and these vertices
are removed from the graph. In this, they have obtained the k-way balanced
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partitioning by this algorithm. In experiments, they have made the comparison with
various other existing partitioning approaches using the dataset of a graph.

Lee et al. [37] have introduced vertex block (VBs) partitioner. It is a distributed
model for the data partitioner for the large-scale graphs in the cloud. It has three
features. First, It has the vertex bock (VBs), and it also extends the extended vertex
block (EVBs) as building blocks for the semantic large-scale graphs. Second, vertex
block partitioner uses vertex block grouping algorithm to place the high correlation in
the graph into the same partition. Third, the VB partitioner speed up the parallel
processing of graph pattern queries by minimizing the inter-partition query processing.
In results, they showed that proposed approach has higher query latency and scalability
over large-scale graphs. Xu et al. [38] have proposed a log based dynamic graph
partitioning method. This method uses the recodes and reuses the historical statistical
information to refine the partitioning result. It can be used as middleware and deployed
to many existing parallel graph-processing systems. It also uses the historical parti-
tioning results for the creation of a hyper graph, and it also uses a new hyper graph
streaming strategy to generate the better stream graph partitioning result. Moreover, it
also dynamically partitions the huge graph and also uses the system to optimize the
graph partitioning to enhance the performance. Yang et al. [39] proposed a new
approach called self-evolving distributed graph management environment (sedge). It
reduces the communication during the processing of the graph query on the multiple
machines. It also has two level of partitioning such as primary partition and dynamic
secondary partitioning. These two types of partitions can adapt any kind of real
environment. Results show that it enhances the distributed graph processing on the
commodity clusters.

3 Design and Methodology

In this section, we discuss the design methodology of our work. We have used three big
data tools Apache Hadoop [17], Apache Spark [16] and Apache Graphx [15]. We also
setup an Apache Spark cluster. The Hadoop HDFS is used for input and output storage.
We process the data using Apache Graphx on Spark cluster and store the output in
HDFS. We have also used the Apache Spark’s data locality and load balancing tech-
niques. Data locality is of great importance while processing Spark jobs. Computing the
jobs and data together have significant effects on performance processing. If the data and
code are not together, to improve the job performance we have to move them together.
Usually, the data size is greater than the code. Hence it is easy to move the code in
serialized form than data in the form of chunks. Spark has inbuilt scheduler for achieving
data locality. Data locality is all about how to place the data close to each other to
process faster. There are various types [40] of data locality in the spark. These are
Process Local, Node Local, No Pref, Rack local, and any. Spark prefers to schedule all
tasks at the best locality level, but this is not always possible. On the other hand, to
balance the load among all nodes in the cluster, there are two types [41] of partitioning
scheme in Apache GraphX. These are vertex-cut and edges-cut. However, GraphX only
uses vertex-cut scheme for graph partitioning. The vertex-cut scheme has different types
partition strategy, but in our work, we have used the “2D Edge Partitioning” technique.
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In Algorithm 1, we have developed a new approach for the computing the SSSP
using load balancing and maintaining data locality. In our technique, first, we set the
data locality either as the process level, node level or rack level. If any node needs the
task or data from another node, it will check the data initially in its process and then
check the node. Before requesting from the other node, it will wait for 3 s. If data or
task is not available on the node then it will check within the rack, similarly again it
will wait for 3 s.

For the Load balancing, we applied graph based partitioning scheme called the 2D
edges partitioning which equally partitioning the graph and distributes among all the
nodes in the cluster. Next step, we input the edges list and nodes list. It will be map into
edges RDDs and vertices RDDs, from these two RDDs we shall draw a graph. After
this, we shall input the source vertex to find the shortest path between all other vertices
from given vertex. Next step we shall apply Dijkstra algorithm to find shortest paths. In
the end, we shall print all the shortest path determined by the Dijkstra algorithm with
their total distance.

___________________________________________________________________ 
Algorithm 1: Single Source Shortest Path (SSSP) using GraphX 
___________________________________________________________________ 
Input: List of vertices, List of edges, source vertex 
Output: list of shortest paths 
  1: Function main (vertices, edges) 
 2: Locality (local execution, true) 
 3: Locality (locality wait for process, 3S) 
 4: Locality (locality wait for node, 3S) 
 5: locality (locality wait for rack, 3S) 
 6: Nodes List ← path for the input vertices file. 
 7: Edges List ← path for the input vertices file. 
 8: Vertices ← map nodes List  
 9: Edges ← map Edges List
10: Graph ← create graph from vertices and edges 
11: Graph Partition ← partition graph by partitioning strategy edge   
                   partitioning2D 
12: Finding the shortest distance formula from using shortest path algorithm 
13: Source Vertex: ← Vertex 
14: Computed Dijkstra Algorithms 
15: Prints the shortest paths 

3.1 The Road Network Dataset

In this section, we shall present the description of the dataset that we have for the
performance analysis of graph computations. We have used the DIMACS [42] dataset.
This dataset has whole USA road network in the form of graph data. We took the entire
USA and Five states of the USA, District of Columbia (DC), Rhode Island (RI),
Colorado (CO), Florida (FL), California (CA). The graph data that we have chosen is
undirected it has the billions of edges and vertices. Following Table 1. shows the no of
edges and vertices in different states and the complete USA.
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We also have visualized road network dataset using Gephi [43]. We have only
visualized the DC and RI state data set as shown in Figs. 1 and 2 respectively. We
could not visualize the other states data due to the large size which cannot be handled

Table 1. USA road network dataset

Name of road network Vertices Edges Type

District of Columbia (DC) 9559 14909 Undirected
Rhode Island (RI) 53658 69213 Undirected
Colorado (CO) 435,666 1,057,066 Undirected
Florida (FL) 1,070,376 2,712,798 Undirected
California (CA) 1,890,815 4,657,742 Undirected
USA (whole country) 23,947,347 58,333,344 Undirected

Fig. 1. District of Columbia road network

Fig. 2. Rhodes Island road network
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on a single PC. We have only visualized two states to perceive the structure of road
network datasets.

We have plotted the degree distribution and the histogram of vertex degrees of
different states and full USA road network dataset. The primary purpose of this plot
was to see the nature of dataset that we are using in the research. In Fig. 3(i), it shows
the DC road network dataset visualization and degree of distribution. However, has
four thousand vertices with degree 3, and Fig. 3(ii) forty-nine thousand vertices have
the degree 6 in FL. In CO road network dataset Fig. 3(iii) shows more no of vertices
with degree 6 and over thirteen thousand vertices have degree 4. On the other hand, in
Fig. 3(iv) whole USA road network dataset majority of vertices has degree 6.

Fig. 3. Visualization of (i) District of Columbia road network (ii) Florida road network
(iii) Colorado road network (iv) Whole USA road network
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3.2 Experimental Setup

For experimental setup, we have built the spark cluster setup using the Aziz super-
computer. In this configuration, we have used the different Aziz nodes, as it varies for
the same dataset for 1, 2, 4, 8 and 16 Aziz nodes. We have used Apache Hadoop HDFS
to store input and output data where as for the processing of the data we used the
Apache spark. Rest of software and hardware configuration is given below in Table 2.

4 Results and Analysis

We implemented the parallel and sequential code on the spark cluster using the Aziz
supercomputer. The difference between the results for the sequential version and for a
single node is that the single node provides a parallel Spark execution of the shortest
path algorithm using multiple cores. We have run the code sequentially on the Aziz
supercomputer for all different USA states DC, RI, CO, FL, CA and the whole USA.
We found that sequentially on Apache Spark it takes 4.07 s for DC road network and
5.05 s for RI road network. In CO road network it took 7.54 s, whereas 17.76 s taken
by FAL road network. In CA road network, it takes 37.92 s. These are all timing has
been shown in Fig. 4, which we run sequentially on Apache Spark. On the other hand,
we also run the whole USA road network sequentially that took 476.33 s for the
processing as shown in Fig. 5.

Similarly, we run the data for the 1, 2, 4, 8 and 16 Aziz nodes using the Apache
Spark cluster parallel using and note down the timing of each as shown in Fig. 4. For 1
Aziz node, it took 2.70,2.90, 6.67, 10.77 and 24.62 s for the processing of DC, RI, CO,
FL and CA states road network dataset respectively. Using 2 Aziz nodes, it also takes
2.42, 2.49, 4.70, 9.04 and 21.90 s for the processing of DC, RI, CO, FL and CA states
road network dataset using our approach respectively. Using our technique, the running
of 4 Aziz nodes, a processing time of different states as follows: 2.39, 2.41, 4.01, 8.89
and 19.49 s for DC, RI, CO, FL, and CA road network. For 8 Aziz nodes, it takes 2.30,
2.34, 3.90, 8.48 and 18.89 s for DC, RI, CO, FL, and CA road network. Again, we
double the Aziz nodes up to 16, run the code using our developed approach it takes
2.22, 2.28, 3.62, 7.99 and 16.18 s for DC, RI, CO, FL, and CA road network. In this
case, we can compare our results with 8 Aziz nodes, but there is not much speed up due
to a small dataset and transfer time. We also run the whole USA road network dataset
using our approach as we found that on 1, 2, 4, 8, 16 Aziz nodes it takes 155.63,

Table 2. Configuration environment

The node type Master Slave

Software and
Hardware
environment

Linux centOS, JDK 1.7, Processor
2.4 GHz, Apache Spark 2.0.2,
GraphX, 24 cores, Apache Hadoop
HDFS

Linux centOS, JDK 1.7,
Processor 2.4 GHz, 24 cores,
Apache Spark 2.0.1, GraphX
Apache Hadoop HDFS

Memory 94 G 94 G per slave
Quantity 1 Different slave as 1, 2, 4, 8 and 16
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Fig. 4. Performance comparison of different Aziz nodes using states of USA road network
dataset.

Fig. 5. Performance comparison of different Aziz nodes using entire USA road network dataset.
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121.46, 115.62, 111.36, and 100.10 s for processing of data parallel on Apache Spark
as shown in Fig. 5.

We have executed our code for a different number of USA states, as well as the
whole USA road network dataset. We have achieved a good speed up as given in
Figs. 4 and 5. In Fig. 4, there is a comparison of different USA states road network
dataset, each state has different size of the dataset. Smaller data affects the scale of
parallelism that can be achieved. Moreover, it is computationally expensive. However,
when we move from a small data set (i.e., DC to CA) to a higher size of dataset get
more speed up and consumes less time using different Aziz nodes. However, there is
also increase in the execution time when we shall use the more nodes in the cluster, and
our data is small. It happens due to the transfer of data among the nodes in the cluster.
Therefore, we can only get the parallelism with certain no of nodes, or we have to see
that how many numbers of nodes are needed to process the particular dataset to achieve
good speedup.

5 Conclusion and Future Work

Graph analytics plays an important role in discovering and understanding the useful
information. Graphs also have many applications such smart cities, social media,
biological networks, etc. these applications have a significant amount data that cannot
be processed on the traditional tools and technologies. So, parallel distributed platforms
are suitable for the processing of large size of data.

In this work, we processed parallel distributed graph based SSSP using GraphX and
Apache Spark cluster on Aziz. We applied the load balancing and data locality based
approach to compute the SSSP. We have used the DIMACS road network dataset for a
research experiment. This dataset contains different states of road network dataset and
whole USA road network. We found that our approach takes less time for the execution
and increase the speedup. However, we also find out that if data is small, there is speed
up but not much. On the other hand, it is observed that if the data is significant, we can
achieve high performance. However, there are certain constraints such as reduction in
speed when the number of nodes in a cluster increase. We obtain speed up and high
performance at a particular number of nodes. For future work, we shall apply this
approach our health care transport application for computation of SSSP.
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