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Abstract. Numerous important scientific and engineering applications rely on
and are hindered by, the intensive computational and storage requirements of
sparse matrix-vector multiplication (SpMV) operation. SpMV also forms an
important part of many (stationary and non-stationary) iterative methods for
solving linear equation systems. Its performance is affected by factors including
the storage format used to store the sparse matrix, the specific computational
algorithm and its implementation. While SpMV performance has been studied
extensively on conventional CPU architectures, research on its performance on
emerging architectures, such as Intel Many Integrated Core (MIC) Architecture,
is still in its infancy. In this paper, we provide a performance analysis of the
parallel implementation of SpMV on the first-generation of Intel Xeon Phi
Coprocessor, Intel MIC, named Knights Corner (KNC). We use the offload
programming model to offload the SpMV computations to MIC using OpenMP.
We measure the performance in terms of the execution time, offloading time and
memory usage. We achieve speedups of up to 11.63x on execution times and
3.62x on offloading times using up to 240 threads compared to the sequential
implementation. The memory usage varies depending on the size of the sparse
matrix and the number of non-zero elements in the matrix.

Keywords: SpMV � Intel Many Integrated Core Architecture (MIC)
KNC � OpenMP � CSR � Xeon Phi

1 Introduction

Numerous important scientific, engineering and smart city applications require com-
putations of sparse matrix-vector multiplication (SpMV) [1–5]. The SpMV operation is
also an important part of many iterative solvers of linear equation systems, both sta-
tionary (e.g. Jacobi method) and non-stationary (e.g., Conjugate Gradient (CG)) [6].
The performance of SpMV is affected by factors including the storage format used to
store the sparse matrix, the specific computation algorithm and its implementation.
SpMV is considered a bottleneck due to its intensive computational and storage needs.
Sparse matrices that arise from real life problems typically are large but consist of a

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2018
R. Mehmood et al. (Eds.): SCITA 2017, LNICST 224, pp. 306–322, 2018.
https://doi.org/10.1007/978-3-319-94180-6_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94180-6_29&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94180-6_29&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94180-6_29&amp;domain=pdf


relatively small number of nonzero elements. Efficient storage formats are required to
store only the nonzero elements such that the use of memory is minimized while
providing flexible and fast access to the matrix nonzero elements. Many sparse storage
formats have been proposed over the years, well-known of these include, among others,
the Coordinate format (COO), Compressed Sparse Row (CSR) format, Modified
Sparse Row (MSR), Modified MTBDD format, and the Diagonal format [7–9].

The design of the current systems brings new challenges and opportunities.
Compared to systems over the last years, today’s systems show that while the number
of cores increases the performance get better [10]. The multicore, many-core and
storage capabilities allow developers to optimize their algorithms and benefit from
those technologies. Many Integrated Core (MIC) architecture is a highly parallel engine
and efficient processor architecture that achieve high performance through utilization of
large of number of cores like vector register and high bandwidth on package memory.
Intel Knights Corner (KNC) is the name of the first generation based on MIC archi-
tecture. The second generation of Intel Xeon Phi will be based on Intel Knights
Landing (KNL) [11] chip and it will be available as stand-alone processor in addition to
coprocessor.

In this paper, we provide a performance analysis of parallel implementation of
SpMV on the first-generation of Intel Xeon Phi Coprocessor named Knights Corner
(KNC). We used the offload programming model to offload the SpMV to MIC.
OpenMP directive constructs was used for parallelization. The well-known Com-
pressed Row Storage (CSR) format was chosen to store the sparse matrix efficiently. To
measure the performance, we have calculated the execution time, offloading time and
memory usage. The experimental results show that the performance of the parallel
implementation achieved up to 11.63x performance gain on execution time and 3.62x
on offloading time compared to the sequential implementation. The memory usage
varies depending on the size of the sparse matrix and the number of non-zero elements
in the matrix.

The rest of the paper is organized as follows: In Sect. 2, background on the SpMV
computation and Intel MIC architecture is presented. Section 3 reviews the literature
related to parallel implementation of SpMV. Section 4 explains the methodology used
in this paper. Section 5 discusses the results and gives performance analysis of the
SpMV. Section 6 concludes the paper.

2 Background

2.1 Sparse Matrix Vector Multiplication (SpMV)

The sparse matrix vector multiplication kernel is shown in Eq. (1) where A is a square
sparse matrix N � N, x and y are vectors of length N. The matrix A is multiplied by
vector x and added to vector y

y ¼ y þ Ax ð1Þ
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Due to the irregular pattern of the non-zero values in the sparse matrix A, the
SpMV considered to be one of the most time-consuming kernel. As result, the per-
formance of the SpMV is poor. The compressed row storage format CSR is one of the
solution to efficiently store the sparse matrices and reduce the memory overhead. CSR
store the sparse matrices as follow: it has three arrays, val[nnz] array of size nnz where
nnz is the number of non-zero elements in matrix A. val[nnz] array is used to store the
value of non-zero elements. Col_in[nnz] is an array of size nnz and it stores the column
indices of non-zeros. Row_ptr[n + 1] is an array of size n + 1 and it stores non-zeros in
each row [8].

2.2 Intel Many Integrated Core Architecture (MIC)

The Intel Many Integrated Core Architecture is an architecture developed by Intel
company. The key feature of this architecture is that in one chip, there are many intel®
processor cores. Another advantage of this architecture is that it supports many pro-
gramming languages such as the standard C, Fortran, and C++. The flexibility of
compiling and running the code in any of Intel® Xeon® processors is also an important
feature. In addition, it supports the most widely used parallel programming models such
as OpenMP and MPI [12]. The Intel products that based on this architecture are more
likely used in the high-performance computing applications as well as in supercom-
puters [13].

Intel Xeon Phi coprocessor is based on Intel MIC architecture. It supports up to 61
small x86 cores that works together. It has 8 memory controllers and support up to
16 GDDR channels. It has a transfer speed of 5.5GT/s in theory. Intel Xeon Phi has two
level of cache memory. The instruction level cache with size of 32 KB and the data
cache with size of 32 KB [14]. Figure 1 shows an overview of Intel MIC architecture.

Fig. 1. Overview of Intel MIC architecture [6]
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Xeon Phi has two execution modes: offload execution and native (coprocessor)
execution [15]. In the offload mode, the host send part of the code to xeon phi and the
output data is sent back from the coprocessor to xeon. Whereas, in the native mode, the
code is run natively in the coprocessor. Figures 2 and 3 shows the two modes.

Fig. 2. Offloading mode in Xeon Phi

Fig. 3. Native mode in Xeon Phi
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3 Related Work

Numerous studies have been done in the SpMV computation as it is used in many
scientific and engineering applications. Ye et al. [9] report an implementation of SpMV
computations on Intel MIC architecture using OpenMP, MPI, and hybrid MPI/OpenMP
models. Their study shows that the hybrid model performs well on Intel MIC archi-
tecture. In [15], the authors implemented the SpMV on CPU, MIC, and GPU clusters
and evaluate the performance of each cluster. They show that MIC outperform other
accelerators using small number of MPI processes. However, the performance goes
down when the number of MPI process increases due to communication overhead. Saule
et al. [16] studies the performance of Intel Xeon Phi coprocessor for SpMV and focuses
on the memory bandwidth. Their results show that Xeon Phi couldn’t reach its peak
performance due to the memory latency not the bandwidth. Xing et al. [17] presented a
parallel implementation of SpMV on Intel MIC architecture using specialized
ELLPACK-based storage format and three proposed load balancer. Their implemen-
tation has better performance than the best available implementation of SpMV on GPU.

In [18], the authors designed a new data structure for general sparse matrix storage
to improve the performance of Sparse Matrix-Vector Multiplication (SpVM) on
modern hardware. The authors implemented the SpVM using standard storage format
CSR and their scheme on different architectures such as general CPUs, Intel Xeon Phi
and GPGPU. The results show that their scheme outperforms the CSR on Intel Xeon
Phi on most of the tested matrices. In [19], Maeda and Takahashi evaluated the per-
formance of parallel Sparse Matrix-Vector Multiplication (SpVM) on different archi-
tectures such as CPU, Intel MIC, and GPU clusters. They used CSR storage format to
store the sparse matrices. The result shows that the performance of parallel SpVM
using CPU cluster in comparison to single process is increased by 42.57. In some
matrices the performance is low due to load imbalance and communication overheads.
The performance of parallel SpVM on accelerators is higher than on CPU cluster in the
matrices that have large amount of non-zero or when using small number of MPI
processes. However, when the number of MPI processes become large, the perfor-
mance of parallel SpVM on MIC is low due to communication overhead. To overcome,
the authors proposed to apply the Segmented Scan (SS) method to MIC cluster to
improve the parallel SpVM. As a result, the performance of imbalanced matrices with
64 MPI processes is increased. In [20], the authors analyzed and evaluated the per-
formance of Sparse Matrix Vector Multiplication (SpVM) and Krylov methods on
GPUs. They considered different methods for solving sparse linear systems with
symmetric and non-symmetric matrices. They applied different storage format and
show their impact on the performance of the iterative solvers.

4 Methodology

We collected the matrices from the University of Florida online matrix collection [21].
We collected square matrices only and ignore other matrices. The SpMV is based on
the off-diagonal matrices only because we are implementing the Jacobi iterative method
for future work. The sparse matrices are form different application domains such as
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optimization problem, directed graph, undirected random graph, circuit simulation
problem, undirected graph, directed weighted graph, undirected multigraph, compu-
tational fluid dynamics problems, structural problem, and electromagnetics problem.
Table 1 shows the application and their abbreviation. For simplicity, we will use
abbreviation in the remaining parts of the paper. The details of the matrices are given in
Table 2. We mention the dimension, the non-zero elements, the non-zero elements per
row, the non-zero elements off diagonal, and the application domain. Figures 4, 5, 6,
and 7 plots sparsity structure of some matrices from the collection.

Table 1. Applications name and their abbreviation

Application name Abbreviation

Optimization problem OP
Directed graph DG
Undirected random graph URG
Circuit simulation problem CSP
Undirected graph UG
Directed weighted graph DWG
Undirected multigraph UMG
Computational fluid dynamics problem CFDP
Structural problem SP
Electromagnetics problem EMP
Model reduction problem MRP

Table 2. Sparse matrices properties

Name Size nnz nnz/row Off diagonal nnz Application

nlpkkt240 28.0 M 401.2 M 14.33 373.2 M OP
arabic-2005 22.7 M 640.0 M 28.14 420.8 M DG
rgg_n_2_24_s0 16.8 M 132.6 M 7.90 88.4 M URG
circuit5 M 16.8 M 50.3 M 10.71 33.6 M CSP
delaunay_n24 16.8 M 50.3 M 3.00 33.6 M UG
nlpkkt200 16.2 M 232.2 M 14.30 216.0 M OP
wb-edu 9.8 M 57.2 M 5.81 38.0 M DG
nlpkkt160 8.3 M 118.9 M 14.25 110.6 M OP
indochina-2004 7.4 M 194.1 M 26.18 127.7 M DG
ljournal-2008 5.4 M 79.0 M 14.73 51.9 M DG
cage15 5.2 M 99.2 M 19.24 94.0 M DWG
soc-LiveJournal1 4.8 M 69.0 M 14.23 45.7 M DG
channel-500x100x100-b050 4.8 M 42.7 M 8.89 28.5 M UG
kron_g500-logn21 2.1 M 91.0 M 43.41 14.1 M UMG
HV15R 2.0 M 283.1 M 140.33 281.1 M CFDP
wikipedia-20051105 1.6 M 19.8 M 12.08 13.2 M DG

(continued)
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We have a total of 32 sparse matrices all of them are in the Matrix Market format.
We convert them to CSR and apply parallel SpMV computation. The parallelization
process works as follow: the instruction is divided among the threads. Each thread will
do the calculation and bring the results back. This process continue until the loop is
finished. The number of threads used are 1, 4, 16, 32, 64, 128, and 240. Figure 8 shows
the workflow.

Table 2. (continued)

Name Size nnz nnz/row Off diagonal nnz Application

G3_circuit 1.6 M 4.6 M 2.92 3.0 M CSP
Flan_1565 1.6 M 59.5 M 38.01 57.9 M SP
af_shell10 1.5 M 27.1 M 17.96 25.6 M SP
cage14 1.5 M 27.1 M 18.02 25.6 M DWG
Hook_1498 1.5 M 31.2 M 20.83 29.7 M SP
StocF-1465 1.5 M 11.2 M 7.67 9.8 M CFDP
Geo_1438 1.4 M 32.3 M 22.46 29.7 M SP
Serena 1.4 M 33.0 M 23.69 31.6 M SP
in-2004 1.4 M 16.9 M 12.23 11.0 M DG
atmosmodd 1.3 M 8.8 M 6.94 7.5 M CFDP
hollywood-2009 1.1 M 57.5 M 50.46 38.0 M UG
dielFilterV3real 1.1 M 45.2 M 40.99 44.1 M EMP
bone010 986.7 K 36.3 M 36.82 35.3 M MRP
ldoor 952.2 K 23.7 M 24.93 22.8 M SP
audikw_1 943.7 K 39.3 M 41.64 38.4 M SP
RM07R 381.7 K 37.5 M 98.16 37.1 M CFDP

Fig. 4. Sparsity of matrix Cage15 Fig. 5. Sparsity of matrix G3_circuit
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Algorithm 1 shows the pseudocode of the parallel SpMV. In line 2, an OpenMP
pragma is added to the outer loop so, each thread will do the computation separately
until they reach the end of the loop. The outer loop will begin with zero until it reaches
the size of Matrix A which is n in this case. The inner loop will start from the first row
that contains non-zero elements and end at last row that contains non-zero. Line 6
shows the main operation. Each row will be multiplied by the values of vector x and
then will be added to vector y. When the outer loop finishes the result will be returned

Fig. 6. Sparsity of matrix af_shell10 Fig. 7. Sparsity of matrix Flan_1565

Fig. 8. Workflow
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and sent back to the CPU. Figure 9 shows the parallelization process of SpMV com-
putation where y1, y2, and yn represents the y vector, colored boxes represents the
sparse matrix non-zero elements, x1, x2, and xn represents the x vector, and thread 0,
thread 1, and thread th_n represents the thread number. As shown in the figure, each
thread multiplies a row with whole vector x. At the end, the summation of y vector is
performed.

Fig. 9. Parallelization of SpMV
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5 Results and Analysis

5.1 Environmental Setup

For experiments, we use Aziz supercomputer which is a high-performance computer
located in King Abdul-Aziz University, Jeddah. It is one of the top 500 supercomputers
in the world and one of the top 10 supercomputers in Kingdom of Saudi Arabia [22].
Table 3 shows the specification of tools used in the experiments.

5.2 Experimental Results

To implement the parallel SpMV efficiently on Intel MIC architecture we have fol-
lowed three steps. Firstly, we read the sparse matrix in CSR format since the down-
loaded matrices are in the Matrix Market (MM) format. This is done using the CPU as
it is having large memory compared to MIC. Secondly, when the matrix and vector is
ready, we offloaded the part of the code that has the SpMV computation to MIC. After
the SpMV offloaded to MIC, we use OpenMP pragmas to parallelize the “for” loops.
Finally, the results are sent from the coprocessor to the host and the host will print the
results and the execution time. We calculate the execution time and offloading time
using different number of threads 1, 4, 8, 16, 32, 64, 128, and 240. In addition, we
calculate amount of memory used by each matrix. Note that the execution time is the
time taken to execute the SpMV computation and offloading time is the time taken to
offload the SpMV computation to MIC and that includes the execution time. For
simplicity, we divided the matrices into four groups according to their sizes, Groups 1,
2, 3, and 4, each group have eight matrices. The details of these matrices have been
given earlier in Sect. 4.

Figures 10, 11, 12, and 13 show the execution time against the number of threads
for Groups 1, 2, 3, and 4, respectively. It can be clearly seen in Fig. 10 that using 240
threads gives the best execution time among others. On average, the execution time of
parallel implementation with 240 threads is 4.59x faster than the serial one. Group No.2
has exactly the same behavior as the first one except the last three matrices. The best
execution time can be found in 16 threads for matrix named kron_g500-logn21 and 128
threads for matrices HV15R and wikipedia-20051105. Group No.3 and 4 are different,
the execution time varies from one matrix to another but still the parallel execution is
better than the serial one.

Figures 14, 15, 16, and 17 show the offloading time against the number of threads
to group 1, 2, 3, and 4. For offloading time, all four groups have the same behavior of
execution time. The best offloading time in Fig. 14 is when using 240 threads. The

Table 3. Specification of tools used

Tools/Library Version

OS Linux 2.6.32-358.23.2.el6.x86_64
OpenMP OpenMP 17.0.2
C Compiler Intel C Compiler (icc) 17.0.2
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Fig. 10. Execution time against number of threads Group No. 1

Fig. 11. Execution time against number of threads Group No. 2

316 H. Alyahya et al.



second group is the same except the las three matrices which has best offloading time
when using 16 and 128 threads. Although, the offloading time in GroupNo. 3 and 4 varies
from one matrix to the another, the parallel implementation still better than serial one.

Finally, Fig. 18 shows the memory usage against the number of off diagonal non-
zeros. It can be clearly seen that the off diagonal non-zero has a strong effect in the
memory. The larger the off diagonal non-zeros are the larger memory is needed.
However, that doesn’t apply to some matrices which may be affected by other factors
rather than the off diagonal non-zeros.

To summarize, the execution time of the parallel implementation is 4.89x faster
than the sequential implementation. The offloading time of the parallel implementation
is 1.65x faster than the sequential one. The memory usage depends on the off diagonal
non-zeros and some other factors.

Fig. 12. Execution time against number of threads Group No. 3
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Fig. 13. Execution time against number of threads Group No. 4

Fig. 14. Offloading time against number of threads Group No. 1
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Fig. 15. Offloading time against number of threads Group No. 2

Fig. 16. Offloading time against number of threads Group No. 3
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Fig. 17. Offloading time against number of threads Group No. 4

Fig. 18. Memory usage against off diagonal non-zeros
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6 Conclusion

In this paper, we presented a parallel implementation of SpMV computation using
Intel MIC architecture. The standard storage format CSR used to store the sparse
matrices. To measure the performance, we use execution time, offloading time, and
memory usage. The performance of the parallel SpMV achieved up to 11.63x on the
Intel Xeon Phi coprocessor. In addition, the offloading time was improved by up to 3.62
times with parallel implementation. The memory usage varies depending on the off
diagonal non-zero elements but in most cases the larger is the number of non-zeros the
larger memory is needed.

Acknowledgments. The experiments reported in this paper were performed on the Aziz
supercomputer at King AbdulAziz University, Jeddah, Saudi Arabia.
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