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Abstract. One of the common and pressing challenges in solving real-world
problems in various domains, such as in smart cities, involves solving large
sparse systems of linear equations. Jacobi iterative method is used to solve such
systems in case if they are diagonally dominant. This research focuses on the
parallel implementation of the Jacobi method to solve large systems of diago-
nally dominant linear equations on conventional CPUs and Intel Xeon Phi co-
processor. The performance is reported on the two architectures with a com-
parison in terms of the execution times.
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1 Introduction

Many applications in the field of Mathematics and Sciences involve solving linear
equation systems. For instance, Markov modelling of smart city applications and
systems give rise to very large linear equation systems, a problem referred to as the
curse of dimensionality, see, for instance, [1–5]. There are many types of linear
equation systems, which can be represented and solved using various methods. One
category of such system of linear equations is Diagonally Dominant System of Linear
Equations (DDSLE). DDSLEs are represented in the form Ax = B where A is a square
matrix formed with coefficients in a system of linear equations. A system of equations
is said to be diagonally dominant if nth coefficient of nth equation is higher than sum of
all other absolute coefficients irrespective of the sign it might have. For example, if we
have n linear equations with n unknowns. Then first coefficient of first equation should
be larger than the sum of other coefficients and the second coefficient of second
equation should be larger than sum of other coefficients and so on. It should be noted
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that we only consider absolute value of the coefficient; the sign carried by the coeffi-
cient either positive or negative is ignored. Besides being diagonally dominant, these
systems also tend to be sparse. Since they are sparse in nature, only very less pro-
portionate of the values carry a value, rest of the values is zero.

In this paper, we have implemented Compressed Sparse Row (CSR) method for
storing values of matrix during computation. This not only reduces the memory
footprint of the application but improves performance of the application since iterations
does not include zero-valued elements.

The objective of this research is to evaluate the performance of Intel many Inte-
grated Core (MIC) Architecture, the Intel Xeon Phi co-processor, in solving large
diagonally dominant system of linear equations. We are comparing the performance of
the code on traditional Intel Xeon CPUs with Intel Xeon Phi co-processors.

2 Background

With the advent of technology in almost all domains, many applications depend on
mathematical equations to solve variety of problems. These applications range from
financial and trading software, navigation control systems, healthcare systems, astro-
nomical systems, military applications, etc. For these to work efficiently and timely
manner, solving mathematical equations in least possible time is crucial.

The Jacobi iterative method will be used to solve large diagonally dominant sparse
matrices. Since these systems are sparse in nature, we have implemented compressed
sparse row format to process the matrices. Since CSRs use comparatively smaller
memory to store the sparse matrix as well as benefit performance of the application by
eliminating iterations involved in processing zero-value based elements of the matrix.
Jacobi’s algorithm is implemented using OpenMP takes advantage of shared-memory
systems to launch multiple threads, which run in parallel. Using OpenMP has another
benefit; it runs on Intel MIC Architecture seamlessly. This enables us to execute the
same code on Intel CPU and Intel Xeon Phi co-processor without any modification to
the actual code except directives to run the code on Intel MIC architecture.

2.1 System of Linear Equations

System of linear equations is collection of equations with same solution or same set of
values for its variables. We are using matrices to represent these equations and these
matrices are diagonally dominant.

Following equation denotes a system of n linear equations of the form Ax = d

A ¼
a11 a12 . . . a1n
a21 a22 � � � a2n
..
. ..

. . .
. ..

.
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Matrix A is diagonally dominant if it satisfies following equation. The location of
the element in the matrix is represented as values of i and j.

aiij j �
X
i6¼j

aij
�� �� ð2Þ

2.2 Sparse Matrix

Sparse matrices have a higher proportion of zero-valued elements compared to non-zero
elements. Since compute applications allocate same amount of memory for all the
elements in an array irrespective of the value, this increases memory footprint of the
application [6, 7]. There are many methods to overcome this problem and use the system
memory efficiently, one such format is coordinate format (COO) [8]. But COO is not
efficient in practice. We have implemented Compressed Sparse Row (CSR) format to
store and retrieve matrices efficiently. This format uses one array to store values of the
matrix whose value is non-zero and two arrays as look up table using, which we can
retrieve, position of any element in the original sparse matrix. Several other formats to
store sparse matrices exist, see [9, 10], and the references therein.

Since we are using CSR format to store the values of the matrix, we have changed
the iteration method to process only non-zero values of the matrix. This reduces
execution time of the application as the system does not process zero-valued elements,
which resulted in reduction in complexity of the algorithm to Eq. (4).

Complexity of traditional algorithm is as follows, where n is dimension of square
matrix

O ¼ n2
� �

Complexity of algorithm using CSR format. M is number of non-zero elements in a
matrix where M � n2 since the matrices are sparse

O ¼ Mð Þ

2.3 Jacobi Method and JOR Iterative Methods

Jacobi method is one of the prominently used methods to solve diagonally dominant
linear equation. This is one of stationary iterative method to solve set of linear equa-
tions. This method is of the form x(k) = Fx(k−1) + c, in this equation both F and c do not
depend on k where x(k) is an approximate value tending towards the solution of the
linear equations. These equations are in the form Ax = b where A is a square matrix
and x, b ε Rn. Computations performed by Jacobi’s equation can be described in the
following equation where M is the iteration count.
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x Mð Þ
i ¼ a�1

ii ðdi �
X
i6¼j

aijx
m�1ð Þ
j Þ ð3Þ

In the above equation, I and j represents row and column index of an element in the

matrix and a denotes the element itself. xðMÞ
i and xðM�1Þ

j represents the ith coefficient of
iteration numbered M and M� 1 respectively. Following is matrix notation of the
above given equation.

x Mð Þ ¼ 1
D

Uþ Lð Þx M�1ð Þ þ b
h i

ð4Þ

Where D, L and U are partitions of square matrix A into its diagonal, upper
triangular part and lower triangular part respectively.

There are many possible cases where Jacobi method does not converge, in such
cases an under-relaxation parameter is introduced. This parameter can also be used as a
catalyst to improve the convergence rate of Jacobi method. Using under-relaxation in
Jacobi method is known as Jacobi over relaxation (JOR). Which can be represented in
Eq. (5)

x Mð Þ
i ¼ abxðMÞ

i þ 1� að Þx M�1ð Þ
i ð5Þ

In the above equation x ̑ denotes one Jacobi iteration as show in Eq. (3) and
0 < a < 2 is the relaxation parameter. i varies from 0 to n where n is number of rows in
square matrix A. if a < 1 then the method is known as under-relaxed method and if a is
>1 then it is over-relaxed method. If a = 1 then it would be called Jacobi method
without relaxation. Both Jacobi and JOR equations exhibit very slow convergence rate
as discussed in [10]. In Jacobi and JOR methods old approximation of the vector is a
dependency in calculating new approximation, hence these iterative methods exhibit
embarrassingly parallel behavior.

2.4 Intel Xeon Phi Coprocessor (Intel MIC)

Many Integrated Core (MIC) architecture is PCIe-based coprocessors which is added to
traditional hardware to enhance the performance of the system. These coprocessors add
an additional 60+ usable cores with each core supporting 4-way simultaneous multi-
threading to existing system. The MIC coprocessor are based on x86 ISA with 64-bit
and 512-bit wide SIMD vector instructions and registers. These cores have similar
architecture as traditional Intel Xeon processor which enables standard programming
language techniques such as OpenMP to be used on the accelerator card.

2.5 Programming Model

Though Intel Xeon Phi has similar architecture as traditional Intel Xeon processors, it’s
programming model is little different since it is connected to the host system through
the PCIe bus. These devices are designed such that applications can leverage full
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potential of vector processors, memory bandwidth and cache. Through existing parallel
programming APIs like OpenMP and MPI are supported in Intel MIC architecture,
application developer should restructure the code such that it run on Intel MIC effi-
ciently. Intel MIC supports three programming modes.

Native Mode. To enable this mode, dedicated network must be configured on Intel
Xeon Phi coprocessor with dedicated IP address and host name. Once network is
configured, users can login or execute code directly on Intel MIC like any other Unix
system since Intel Xeon Phi runs embedded Linux operating system. Since this envi-
ronment is like any other Unix environment, users can execute their application directly
by copying it to coprocessor or from a shared storage.

Offload Execution Mode. In this mode, the program initially starts executing on the
host processor and then offloads the tasks to the MIC to execute a block of instructions.
The process running on the host controls the exchange of data between host and device.
While MIC is executing part of the program, host may or may not participate to work in
parallel. Figure 1 show an overview of offload mode.

Symmetric Execution Mode. In this mode, the application processes execute on host
and device. This may involve multiple hosts and device combinations. In modern
application, the communication between processes takes place thorough Message
Passing Interface (MPI). This mode is combination of traditional MPI programming
model and Native mode execution of Intel MIC coprocessors since this model treats
MIC as a node in a heterogeneous cluster.

Fig. 1. Offload execution mode of Intel Xeon Phi
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3 Literature Review

Sparse matrix-vector multiplication (SpMV) is used in wide range of applications like
signal processing, engineering, electronic circuit design, military, etc. Optimizing
performance of applications solving sparse matrix-vector multiplication was topic of
interest to various research communities and individuals.

In [11], they have implemented an extensive evaluation of SpMV kernel for both
serial and parallel versions on diverse modern architectures. They have proposed
number of optimization guidelines based on their study.

In [12], the authors have investigated optimization techniques to improve memory
efficiency in SpMVs. Based on their study, they suggested to use register level opti-
mization techniques if the size of the matrix is small. For larger matrices, which do not
fit into registers available in the system, cache level optimization is recommended.

Vuduc [13] shows that the major challenge in developing highly optimized imple-
mentations of SpMV is selecting storage models and algorithm that take advantage of
the properties of the matrix is unknown until execution. As per their observations,
conventional implementations of SpMV can use only 10% or less CPU peak machine
performance on cache-based superscalar architectures. While their implementations of
SpMV, tuned using a methodology based on the empirical search, can, by contrast,
reach up to 31% of peak machine speed and can be up to 4 times faster.

Design and implementation of SpMV on several important chip multiprocessor
systems (CMP) is discussed in [14]. Since there are many available designs of CMP,
selecting a design best suitable for solving SpMV along with selecting algorithms
based on SpMV type was the challenge. Substantially, their results show that matrix
and platform reliant on the tuning of SpMV for multicore.

A new strategy for improving the performance of SpMV is suggested in [15]. This
solution involves using a loop transformation know as unroll-and-jam. Using this
method improves performance by 11% which is a factor of 2.3. however; this approach
is suitable only for sparse matrices that have dimensions of small number of predictable
lengths.

One of the widely method used for SpMV application optimization is Blocking.
There are two methods of Blocking, the first method exploits memory allocation at
several levels like register [15, 16], L1 and L2 cache [12, 17] and storage buffers [17].
In second method indexing of elements is optimized to remove overhead which
enhances memory bandwidth utilization [16, 18].

Intel Math Kernel Library (MKL) was used to optimize implementations of SpMV
in paper [19]. As per their experiments, they could achieve 80% performance
improvement with dense matrices. However; performance of sparse matrices was
variable and the results out performed CPU in most cases.

In [20] they describe the factors that limit the SpMV performance Intel MIC
architecture. The three factors are: low SIMD efficiency because of sparsity, the
overhead caused by unstructured memory access and ununiform load balance caused
due to uneven matrix dimensions. To overcome these problems, a new matrix format
with name ELLPACK Sparse Block (ESB) was designed. This new matrix format was
implemented on Knights Corner (KNC) which is latest generation of Intel Xeon Phi
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coprocessor, which has wider SIMD and other advanced features. To solve load
imbalance problem, the authors proposed three load balancers.

The [21] improve the ELLPACK format to produce sliced ELLPACK with the use
of SIMD vectorization on General Purpose Graphics Processing Units (GPGPUs). The
SELL-C-ơ (sliced ELLPACK) show its appropriateness on different hardware plat-
forms. The authors aimed to find a format to process unified sparse matrix data effi-
ciently on traditional CPUs. There are lot of improvement areas to achieve higher
performance, these methods need to be explored.

Implementation of Compressed Sparse Row 5 (CSR5) to solve sparse matrices is
discussed in [6]. The results of the experiments conclude that the performance
improvement is average.

Fourth-order Runge-kitta method was implemented to solve sparse matrices in [22].
They used CSR format to store matrices and Intel MKL routes to solve the equations.
They were able to achieve good performance improvement on CPU and Intel MIC

The work in [22, 23] aims to shorten the computation time for the transition
matrices that arising from Markovian models of complicated systems on Intel Xeon
Phi. They used CSR format as used in work [24], and HYB format is similar as in work
[20]. Their method takes advantage of the thread-level parallelism and vectorization for
the SpMV implementation. The numerical experiments result of CTMCs executed on
Intel Xeon Phi coprocessors using offload mode show that HYB format delivers higher
performance rate than data stored in CSR format.

4 Research Design and Methodology

First step in the experiment was to parallelize Jacobi algorithm. We have implemented
serial version of the algorithm and tested the functionality, then we have parallelized
the row operations such that each row operation will be processed by a separate thread
on a processor such that n rowed matrix will spawn n processes. Once we have made
sure that the results of serial version and parallel version is consistent, we have
implemented Compressed Row Format (CSR) to store and retrieve sparse matrices and
eliminated iterations which involve zero-valued elements of the matrix. These modi-
fications add two advantages to the program. First advantage is that there is reduction in
memory foot print of the application and performance increase in memory access as
mentioned in [20]. The number of thread spawned is now decreased to M where M is
number of elements in a sparse matrix whose value is not zero and M < N2 where N is
dimension of the matrix since the matrix is sparse in nature.

We have conducted our experiment on E5-2695v2 (Ivy Bridge) dual socket server
with 12 cores on each socket with 2.4 GHz frequency. Each server has 96 GB of
physical memory. The coprocessor used is Intel Xeon Phi 5110P. This coprocessor has
60 usable CPU cores operating at 1.05 GHz frequency and 8 GB memory.

We have executed multiple iterations of the program using OpenMP on traditional
CPUs and using Offload model on Intel MIC and the results are plotted for comparison.
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5 Results

We have executed multiple iterations of the application with different matrix starting
from 100000 to 1000000 and the results are plotted in Figs. 2 and 3. As seen in the
Figs. 2 and 3, performance of the application on 24 CPUs using OpenMP does not
show considerable performance over performance on single CPU. We have plotted a
separate graph for the performance of Jacobi method on Intel Xeon Phi coprocessor
since the performance of the application on Intel MIC architecture is very poor on

Fig. 2. Performance of single CPU vs 24 OpenMP threads

Fig. 3. Performance on Intel Xeon Phi coprocessor (Intel MIC)
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comparison with performance on CPU. We believe that this is because of initialization
and communication overhead compared to small workload.

6 Conclusions and Future Work

Based on the results of our experiments, we believe that Intel MIC architecture is not
suitable platform for problem like Jacobi method to solve diagonally dominant sparse
matrices. This may be because of the sparseness of the system which reduces the
computations significantly. Since the workload is very small, communication and
initialization overhead overshadows the performance of the application delivering a
poor performance overall.

Our future work is to implement Jacobi method on dense matrices and evaluate the
performance on heterogeneous architectures. We will also investigate further our
implementation of the Jacobi method to identify the performance bottlenecks and
improve the speedup.
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supercomputer at King Abdul Aziz University, Jeddah, Saudi Arabia.
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