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Abstract. DNA typing or profiling is a widely used practice in various forensic
laboratories, used, for example, in sexual assault cases when the source of DNA
mixture can combine different individuals such as the victim, the criminal, and
the victim’s partner. DNA typing is considered one of the hardest problem in the
forensic science domain, and it is an active area of research. The computational
complexity of DNA typing increases significantly with the number of unknowns
in the mixture. Different methods have been developed and implemented to
address this problem. However, its computational complexity has been the
major deterring factor holding its advancements and applications. In this paper,
we review DNA profiling methods and tools with a particular focus on their
computational performance and accuracy. Faster interpretations of DNA mix-
tures with a large number of unknowns and higher accuracies are expected to
open up new frontiers for this area.
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1 Introduction

According to The American Heritage Medical Dictionary, DNA profiling is “the
identification and documentation of the structure of certain regions of a given DNA
molecule, used to determine the source of a DNA sample, to determine a child’s
paternity, to diagnose genetic disorders, or to incriminate or exonerate suspects of a
crime [1].” DNA profiling (also named DNA typing, DNA fingerprinting, or DNA
testing) which was first introduced in 1985 by Alec Jeffreys has changed the area of
forensic science significantly [2]. Dr. Jeffreys has found that there are several regions in
the human DNA that contain repeated DNA sequence. He found that these DNA
sequence areas may differ from one person to another. Dr. Jeffreys was able to measure
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the variation in these DNA sequences by developing a unique identity test called
Restriction Fragment Length Polymorphism (RFLP). The repeated DNA areas are
called Variable Number of Tandem Repeats (VNTRSs).

Today, DNA profiling is helping in many cases to identify an innocent from guilty.
Human Identity test can also be used in contexts such as missing people investigation,
parentage test, ancestry test, and disaster victim identification.

The DNA typing is considered today to be the most useful tool in the hand of law
enforcement. Moreover, computer databases which contain DNA information of
criminals which was taken from crime scenes had helped to associate a crime to an
offender. Due to having a specific set of Short Tandem Repeat (STR) loci in these
massive databases, it is unlikely to see a new set of DNA markers to be introduced
shortly [2].

In order for DNA sample to be processed, several steps should be involved [2].
First, obtaining the DNA from a biological source. Second, assessing the amount of
DNA recovered. Third, isolating the DNA from its cells and using Polymerase Chain
Reaction (PCR), which is a technique for copying specific DNA areas. Finally, the STR
alleles which have been generated from the previous step will be examined.

However, many difficulties may occur during the procedure of producing a DNA
profile that affects the analysis of a sample. One of these problems is the stochastic
effects, which arise during DNA extraction. Other challenges are allele dropout, PCR
process, allele sharing, and PCR amplification artifacts. Such difficulties hardened the
accurate interpretation of the DNA profile [3].

The result of the DNA sample processing will be compared to other sample or
databases to check the similarity. If there is a match or ‘inclusion,’ this indicates that
both samples were taken from the same source. On the other hand, if there is no match,
the result would consider as ‘exclusion,” which means there is no biological relation
between the two samples [2]. A case report will be made by a forensic specialist
explaining the result and containing random match probability answering the similarity
question.

The Scientific Working Group on DNA Analysis Methods (SWGDAM) advise
forensic report to contain a prediction of the number of contributors to the mixture that
is under examination [3]. Usually, the number of contributors of a sample that taken
from a crime scene is unknown. Therefore, an analyst should estimate it according to
the electropherogram obtained. This assumption affects the final weight of DNA evi-
dence [3].

In this paper, we review DNA profiling methods and tools with a particular focus
on their computational performance and accuracy. To the best of our knowledge, this is
the first review paper on DNA profiling tools. Faster interpretations of DNA mixtures
with a large number of unknowns and higher accuracies are expected to open up new
frontiers for DNA profiling. In the coming years, the complete genome sequencing
technologies in a single or only a few cells will be easily available. These technologies
may change the situation of DNA profiling completely. In this case, it is obvious to
prepare appropriate statistical methods for that. It will be, therefore, important to
prepare the mathematical and statistical algorithms for complete-genome-sequencing-
based DNA profile. Emerging computational and big data developments [4], along with
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Internet of Things (IoT) [5] and smart society environments [6], will provide oppor-
tunities for new services related to DNA profiling.

The rest of the paper is organized as follows. Section 2 describes background
concepts related to this paper. Section 3 provides information regarding DNA profiling
methods and technologies that are being used to obtain a DNA sample. Section 4
describes a number of approaches that rely upon the calculation of Likelihood ratio to
interpret DNA profile. We further discuss the importance of the Number of Contrib-
utors (NoC) in profiling a DNA mixture in Sect. 5. Some implementations that estimate
the NoC was mentioned in the same section. Section 6 then illustrate notable DNA
profiling applications. We conclude and give an outlook for the future of DNA pro-
filing in Sect. 7.

2 Background Material

We now give a brief background of the various concepts and methods related to DNA
profiling.

2.1 Forensic Science

Forensic DNA tests had a major influence on the evolution of the criminal justice
system. Yet, the advancement of new technologies is enabling forensic labs to expand
its capabilities and improved the sensitivity of the DNA interpretation.

Butler [7] thinks that this area would develop in the future in three main areas;
DNA technologies will become faster, the sensitivity of extracting relative information
will increase, and higher volume of data will be expected due to that sensitive nature.
He argued that STR will remain the dominant genetic marker.

According to Butler [7], key challenges in the forensic science field are the sub-
jectivity, inconsistency of the complex DNA mixture interpretations between different
laboratories and analysts, and the need for training forensic analyst to enhance inter-
pretation of DNA profiles.

2.2 DNA Mixture

A sample is called a DNA mixture when two or more individuals contribute to it. Under
some circumstances, the interpretation of a mixture could be more challenging. Allele
sharing is one of the factors that increase the difficulty of interpreting a profile [2].

If we have a two-person mixture, then we expected to observe only four alleles per
locus. However, this rule may change if we have alleles overlapping or if we have
heterozygous individuals. If we have more than four alleles per locus, then we might
deal more than two people mixture [8].

DNA mixtures interpretation is a very demanding task [9]. Perez et al. define the
DNA mixtures as when two or more people contribute to the same sample. They added
that contributors include victims, perpetrators, or other people who interact with the
crime scene. Yet, the mixture can be complex when it became a subject of allele drop-
in or/and allele drop-out [10]. A detailed introduction to the DNA analysis on the
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forensic science domain was given by [2, 11]. Butler gives a historical overview that
explaining the evolution of the area. He also explains the structure of the DNA and its
fundamental component. Moreover, how this structure can be different among species
which enable us to use it in the identity test. DNA profiling can use in identity tests
such as parentage analysis, and disaster victim identification [2].

2.3 Technologies for DNA Profiling

The topic of DNA profiling was improved by the new advances in the technology.
Weedn and Foran [11] gave a general overview of the latest updates and challenges in
the forensic science domain related to DNA profiling. STR followed by PCR ampli-
fication is one of the most used methods that regularly used in forensic labs [11]. Other
markers such as Single Nucleotide Polymorphisms (SNP), Y chromosome STRs, and
mitochondrial DNA are also considered. Weedn and Foran argued that the forensic
DNA typing is the most dominant method in the forensic science laboratory. They
mentioned that the forensic test usually performed with taking into consideration the
court challenges. Therefore, the forensic science only uses a well-validated procedure,
and all the laboratory process should be documented. The protocols should be ready to
defend against legal attack.

New technologies had not only increases the quality of profiling the DNA mixture,
but also amplified artifacts such as stutter, variabilities, and baseline noise. Monich
et al. [12] had introduced a quantitative signal model which forms the variability in a
stutter, baseline noise, and allele peak height. They had also applied the chi-squared
and Kolmogorov-Smirnov (KS) tests on the true peak heights and noise to test the
fitness of various probability distribution classes. They argued that the interpretation of
signal measured from a DNA sample used to be accomplished by using thresholding.
Nonetheless, using thresholds during DNA analysis yield problem of losing valuable
information. For that reason, new methods that don’t rely on threshold were developed.

2.4 Factors Increasing the Complexity of DNA Profiles

Different phenomena affect the complexity of interpreting a DNA profile. These factors
include: number of contributors, peak heights, stutter, a major peak masking, a stutter
peak masking, population, drop-out probability, drop-in probability, analytical
threshold. No software had yet considered all these factors in its calculation [13].
Therefore, it is part of the challenges that face people who develop DNA profiler to
select which factor to model in their implementation.

2.5 Likelihood Estimator

Likelihood ratio (LR) is the probability comparison between evidence under two
propositions [2]. One is called the prosecution hypothesis, which assumes that the DNA
collected from a crime scene goes to the suspect, whereas the other is the defendant
hypothesis, which assumes that the matches between the suspect and the questioned
sample happened coincidentally. The two considered propositions are mutually
exclusive.
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The Likelihood ratio is calculated by putting the prosecution hypothesis as a
numerator while putting the defendant hypothesis as a denominator [2]. The LR
equation is:

LR = Hp/Hd (1)

If we assume that the suspect commits the crime (100% probability), which is the
prosecution hypothesis, then Hp = 1. Additionally, if the STR typing result is
heterozygous, the probability of the defendant hypothesis would be Hd = 2pq, where p
and q are the occurrences of the allele one and two for a locus in a relevant population
[2]. If we have a homozygous STR typing, then the probability of the defendant
hypothesis would be Hd = p*. Therefore, the equation would become:

LR = Hp/Hd = 1/2pq (2)

Butler [2] said that if the final result was greater than one, then this result would
support the prosecution side. While if it is less than one, then the defendant theory
would be in favor.

Typically, the LR will have higher ratio if the STR genotype is rear because of the
reciprocal relationship. LR is the inverse of the locus estimated frequency [2]. Note that
the likelihood ratio can be more complex depending on the mixture of the evidence.

The strength of the result of the likelihood ratio in terms of the prosecution’s case
can be interpreted numerically as presented in Table 1. Column 1 represents the LR
value, while Column 2 is showing the corresponding strength of evidence.

Table 1. The strength of evidence according to LR result [2]

Likelihood ratio | Corresponding evidence

1to 10 Limited support
10 to 100 Moderated support
100 to 1000 Moderated strong support

1000 10,000 Strong support
10,000 or greater | Very strong support

3 DNA Profiling: General Methods

Several methods had been proposed to statistically evaluate a DNA mixture. Likeli-
hood ratio, the combined probability of inclusion/exclusion (CPI/CPE), and a modified
random match probability (mRMP) are some examples of these methods [14]. In
February 2000, the FBI’s DNA Advisory Boar had strongly recommended the first two
methods to be used [2]. Moreover, in 2006, the International Society of Forensic
Genetics (ISFG) had emphasis the value of likelihood ratio [14]. There are six steps to
interpreting a DNA mixture which was first described by Tim Clayton in 1998 [2].
First, we need to identify the existence of a mixture. Second, the Allele peaks should be
selected. Third, we need to determine the possible number of contributors. Fourth, an
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approximation of the ratio of the people who contribute to the sample. Fifth, we need to
calculate all potential genotype combinations. Finally, a reference sample comparison
should be made.

In CPI approach, an equal weight is given to all possible genotype combinations.
Therefore, a lot of information is being wasted when using this approach which makes
it inefficient when working with distinct genotypes [14]. This approach does not require
prior knowledge of the number of contributors because it is evaluating all genotypes’
combination based on the evidence profile [14].

The Random Match probability (RMP) is usually used with single-source samples;
therefore, a modified random match probability (mRMP) is used to refer to the method
when it is used with more than single-source sample [14]. Unlike CPI, this approach
requires a prior knowledge of the number of contributors in the mixture and will not
work well with low-level profiles. An example of two- and three-person mixtures
calculations using mRMP was described in [15].

According to Bille et al. LR is the most dominant method of evaluating a DNA
mixture. However, both mRMP and LR make use of the available information in the
sample where CPI does not tend to do so.

More detailed analysis of the three methods and their advantages and weaknesses
can be seen in butler’s book “Advanced Topics in Forensic DNA Typing: Interpre-
tation” [14].

4 DNA Profiling Using Likelihood Ratio

LR is considered as the most appropriate and powerful approach for calculating the
weight of DNA evidence. There are three methods using LR that are widely described
in the literature. The first model is the Binary model, which is the simplest yet it cannot
handle complex mixture [16]. Second, the semi-continuous, which is the most used by
scientists since it is easy to understand and explain, but it still neglects relevant
information [17]. This result in losing information that could be precious. Finally, the
continuous which overcomes most of the previous models’ shortcomings. It utilizes
most of the available information provided by the sample, yet it is harder to be accepted
and explained in a courtroom [16]. These models may involve a human or comput-
erized process, depend on of the complexity of the approach. Kelly et al. [17] had made
a comparison between these three approaches which are suggested by the DNA
Commission of the ISFG.

Many frameworks that interpret complex DNA profiles rely on the likelihood ratios
approach such as [10]. Gill and Haned had mentioned set of guidelines which can help
to evaluate any complex mixture. In addition, they provide some features for any model
that might be dealing with complex interpretation such as the ability to incorporate
several contributors. They emphasize the fact that the calculation must be provided in a
fast manner.

Most of the likelihood ratio based analysis require the number of contributors be
given before to analysis Number of contributors. For instance [18-23] rely on the
number of contributors on their analysis.
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However, others had tried to avoid using it in their interpretation, such as [24, 25].
Russell et al. had developed a semi-continuous method that can calculate the likelihood
ratios without previous knowledge about the contributor’s number. Their simple model
has the abilities to calculate the statistical weight to inclusions. They had also provided
a limit test which will guarantee the absence of any false inclusion by chance. To test
the proposed unconstructed likelihood ratio (UCLR) model, researchers had collected a
set of DNA mixtures with known contributors in different ratios. The result shows good
performance on three people mixture. However, the performance becomes worse as the
number of contributors increased.

5 Estimating Number of Contributors for DNA Profiling

Today, most applications that interpreted the DNA profile require the number of con-
tributors to available as an input [24]. Different methods have been developed to con-
clude the number of contributors in a DNA mixture. One of these methods called
Maximum Allele Count (MAC). This approach calculates the minimum number of
contributors who might contribute to a sample by counting the observed alleles at each
locus. Nevertheless, this method may not be valid to work in a complex mixture because
of the complexity of allele-sharing [26]. New methods were proposed that do not only
rely on the number of observed alleles, but also on the frequencies of observing the allele
in the population. Biedermann et al. [27] had developed a probabilistic method that a
perform a Bayesian network to conclude the number of contributors to DNA mixture.
The new approach performs better than MAC with degraded DNA sample and a higher
number of contributors. Maximum Likelihood Estimator (MLE) is another method used
to estimate the number of contributors. It tries to maximize the likelihood value of the
DNA profile [28].

Haned et al. [29] had compared MAC and MLE. The efficiency of both methods
had been analyzed and compared for identifying two to five-person mixtures. Three
different situations used to test both methods. First, when all contributors belong to the
same population and when allele occurrences are known. Second, when allele occur-
rences are not known, which may occur in population subdivision. Finally, a condition
of partial profiles and how it could affect the estimation accuracy. MAC method is used
to set the lower bound that can clarify the number of alleles in a mixture. Haned et al.
believe that MAC is unreliable since there is a chance for allele sharing between people
which called the masking effect. The result of the comparison supports the use of MLE
when a mixture contains more than three contributors. However, when three or two
people contribute to a mixture, MAC would perform better.

However, as the number of contributors increased the risk would increase. Haned
et al. [30] Had analyzed the risk of dealing with three-, four-, and five-person mixture.
They have done that by comparing the gold standard LR to the casework LR. The gold
standard LR is when the number of contributors and genotypes are known which mean
the availability of all required information to compute LR per contributor. Authors
showed the result and the implied thoughts of analyzing high order mixture in the
forensic domain. Haned et al. argued that the low template DNA mixture of three-,
four-, and five-person are common in forensic casework, yet it is hard to interpret.
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Many methods are used today to evaluate the number of contributors in a sample
such as [3, 8, 9, 31]. Perez et al. had created a strategy that could find out the number of
contributors from two to four-person mixtures for both low template and high template
DNA amounts. The proposed strategy helped to provide a useful tool to differentiate
between high and low template two-, three-, and four-person mixtures. The four-person
mixtures show some difficulties due to the allele sharing phenomena.

Egeland et al. focus on calculating the number of contributors in a mixture by
maximizing the likelihood. The proposed approach is based on single SNP. The
method tried to answer two questions: Is it a mixture? And if yes, then how many
markers are required and how they should be selected. One of the recommendations
that driven from the result was regarding the number of markers needed to calculate the
number of contributors which is 100 markers.

A typical algorithm for finding the best allele pair in a locus to interpret a mixture is
presented in Algorithm 1. Such a process is essential when calculating the number of
contributors in a DNA profile. Moreover, it is a performance bottleneck.

6 Software Tools for DNA Profiling

A number of tools are available that implement various DNA profiling methods. These
include DNA MIX [32], Euroformix [18], LRmix [20], LRmix studio [33, 16],
TrueAllele [19], LikeLTD [22], LabRetriever [13], Ceeslt [21], NOCIt [3], DNAMix-
ture [34], Forensim [35], MixtureCalc, Mixture Analysis [36], FamLink kinship [37],
DNA Mixture Separator [38], and STRmix [39]. We will review the most notable of
these in this section. We shall describe them here and explain their differences.

6.1 DNAMIX

There were three versions of this software, and all of them are open sources. The third
version is the most notable and powerful one among the three, and was based on [32].
This version was written in Java and are appropriate for complex mixtures as well as
single-contributor stains. The software will ask for the database, stains, genotype, and
hypothesis to be inputted as external files. A simple GUI has been developed in this
version.

6.2 LRmix Studio

LRmix Studio is a software designed to interpret complex DNA profiles. It was built on
its previous version, which called LRmix; however, LRmix Studio is much faster and
more flexible. It can measure the probative value of any (autosomal STR-based) DNA
profile [33]. This software is following the semi-continuous model of interpreting DNA
profiles. Moreover, it was written in Java, and it is open-source.
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Algorithm 1 calculate locus’s best allele pair that give best interpretation of the sample
1. procedure GeneProbCalc(stepSize, noc, Iname, revLoci, for Loci, DN Amass, AlleleAt Loci, LDO)
//noc=number of contributors, Iname=locus name, LDO= Locus Drop Out
2 locAlleles = Allele At Loci[locusname]
3 MeanAndSt eanstd(locusname) //find mean and stddev
4; for i=0 to stepSize do
5 g=random array between 0 and 1 with size noc
6: for j=0 to noc do
7
8
9:

for k=0 to 2 do
r=Generate random number that does not exceed the interval of the locus

9: allele = AlleleRangelr] //get the allele in the selected interval for a specific locus

10: Add allele to Peakscumulative

11: contMass=g[i-1]*DNAmass

12; if Rand() < ExpVal(locusName, LDO, contMass) then

13: ValidAlleles.add(allele)

14: weightlallele] = weight[allele] + contMass

15: end if

16: end for

17: end for

18: for aName=ValidAlleles.start to ValidAlleles.end do //aName=Allele Name

19: if locAlleles contains allele then

20 1)

21 & Rdud()<E‘(])Val(lnamf Re UStutDl op()

22 rMu= E\pV’llZ(U\ me, mean, weight[allele]) = allele.height

23: rSigma=ExpVal2(IName, Stddev, weight|allele]) * allele.height
24: revAlleleStut = 10 // get the reverse

25 fowStutPeak = Peakscumulative|allele]

26: end if

27: means[revAlleleStut] = means[revAlleleStut] +rMu

28: variances[revAlleleStut] = variances[revAlleleStut] + rSigma * r

29: if forLoci[IName| && Rand()>ExpVal(IName, forStutDropO, weight) then
30: fMu=ExpVal2(IName, Mean, allele.weight) = allele.height

31 fSigma=ExpVal2(IName, Stddev, allele.weight)  allele.height
32: fowAlleleStut = aName + 10 // get forward

33 fowStutPeak = Peakscumulative|allele]

34 end if

35: means|fowAlleleStut] = means|fowAlleleStut] + rMu

36: variances|fowAlleleStut] = variances|fowAlleleStut] + rSigma = rSigma
37 end if

38 end for

39: for temp=Peakscumulative.start to Peakscumulative.end do

40: mean.add(temp.allele, MeanAndStd[0])

! variances.add(temp.allele, Mean AndStd[1] + Mean AndStd[1])

42: end for

43: locus Prob=calcLocusPeakHeightsProb(Peakscumulative, means, variances)
44: Summation+ = locus Prob

45: if locusProb > currMax then

46 locusProb

4T ame=selectedValidAlleles.start to selectedValidAlleles.end do
48: urr MazAlls.add(alleleN ame)

49: end for

50; end if

51: end for

52: result.add(Summation, curr Max, curr Max Alls)

53: Return result

54: end procedure

Algorithm 1: A typical algorithm for calculating locus’s best allele pair that gives the
best interpretation which helps in finding the number of unknowns in a DNA mixture
(algorithm inspired by NOCIt tool [3]).

6.3 TrueAllele

It is a software that computes DNA interpretation automatically. It can infer genetic
profiles from all sorts of DNA samples. The software applies the continuous model;
however, no open source version of the code is available. It was written in Matlab.
Analysis followed by a comparison of TrueAllele is presented on [19] using a real
information that has been taken from actual cases.
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6.4 LabRetriever

LabRetriever is a free software developed to estimate the likelihood ratios that combine
a probability of drop-out. It was built on another software called LikeLTD which was
written in R language. Authors rewrote the code using C++ to acquire more speed. The
software uses the semi-continuous model. It computes likelihood ratios for up to four
unknown contributors to a DNA sample.

6.5 Ceeslt

Ceeslt is a method that integrates two features of the continuous approach to calculate
the LR and its distribution which are conditioned on the defense hypothesis and the
linked p-value. It combines stutter, dropout, and noise in its calculation. It uses a single
source sample with known genotypes. It calculates the LR for a selected POI on a
questioned sample, together with the p-value and LR distribution. The software was
Witten in Java and is available in a (jar) format. A deep analysis of the software was
presented on [21].

6.6 LikeLTD

LikeLTD is a software that used to computing likelihoods for DNA profile evidence,
including complex mixtures. It has been written in R. However, since the fifth version,
the computation-intensive areas in code have been rewritten in C to be executed in
parallel. This software applies the continuous model of calculating the Likelihood ratio.
These areas include the computation of genotype combinations for unknown contrib-
utors, computing allele doses for each genotype combination, dose adjustments for
relatedness, heterozygosity, dropout, and power.

The runtime of the Peak height model is much slower than the runtime of the
discrete model, yet it yields a higher evidence weight (see Table 2). The time com-
plexity of the peak height model scales up with the number of unknown contributors,
the number of observed peaks, and the number of replicates in the profile. Other
parameters that increase the runtime are the modeling double-stutter or over-stutter.
A parallelism was achieved on the C++ code by using shared memory parallelism
(OpenMP).

Table 2. The runtime of calculating the Weight of Evidence (WoE) using both the two different
models for the laboratory case [18]

Hypothesis Model WOE | Runtime (minutes)
Q/X + K1 + Ul | Discrete 23 |14
Peak height | 8.2 |23
Q/X + Ul + U2 | Discrete 0.5 38
Peak height | 7.8 | 200
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The runtime of the algorithms was recorded using node with eight Intel Core 17
processors (3.1 Hgz per core) and with 15 Gb of RAM. The result is presented in
Table 2. The first column describes the hypothesis that was applied. Two hypotheses
were used. Q is a contributor to the crime scene profile under the Hp while X is the
unknown individual under Hd that assumes to contribute to the profile instead of Q.
The hypotheses may specify the number of K is representing the known contributors
whereas U is the unknown contributors. The second column indicates the used model
whether it uses discrete or peak height. The last two columns are showing the weight of
evidence and the corresponding running time.

6.7 DNAMixture

DNAMixture is a statistical model that calculates and analyze DNA sample for one or
more contributors [34]. This software has been written in R and follows the “fully
continuous” statistical model. Its author claims to develop all methodology within his
framework for consistent analysis and transparency. However, the application does not
have a graphical user interface, which requires a basic experience with R. The paral-
lelism was applied onto the Bayesian network package that used by this software which
called “Hugin.” In Hugin package, they used Pthread in the C code.

6.8 EuroForMix

EuroForMix is a software based on the fully continuous approach to estimate
STR DNA profiles from a complex DNA sample of contributors with artifacts. It is
available as an open source. EuroForMix was written in R language. Nonetheless, the
likelihood function was written in C++. The software added a parallel processing, since
the 0.5.0 version, using snow R-package. The parallel implementation will only be
considered when a number of unknowns are at least 3 (not performed yet for database
searching or non-contributor simulation). A number of processes will be similar to the
number of random start points required in the optimization.

Euroformix requires a significant amount of computational time when the number
of unknown contributors is four or more. Table 3 gives an approximation time com-
plexity for each number of unknown contributors. From the table, it was clear that the
time consumed when we have four unknown contributors was too much. A good idea
would be to parallelize the code over distributed memory system to reduce that time.
The runtime is given in Table 3. Column 1 is showing the number of contributors while
Column 2 gives the corresponding time taken.

Table 3. An approximate overview of the time taken to calculate the LR depend on the number
of unknown contributors [40]

Number of unknown contributors | Runtime
1 ~1s

2 ~1 min
3 ~30 min
4 ~24 h
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6.9 NOCIt

NOCIt [3] analyzes the DNA sample to calculate the number of contributors in a
mixture. Java programming language was used to write the software. It determines the
number of contributors (from 1 to 5). NOCIt can only interpret an autosomal STRs data
which are independent of each other. Moreover, the software is not developed to deal
with a stutter.

The execution time of [3] depends on the maximum number of contributors, the
number of loci/alleles considered and the processing speed of the computer. It is also
dependent on whether multiple runs of NOCIt are occurring at the same time, i.e., two
NOCTt interfaces are open at once and running two separate samples. Table 4 provides
the runtime of NOCIt. The first column gives the number of contributors, whereas the
second column describes the range of time taken to analysis that number. The result
was collected from a dual-core laptop with Intel® CoreTM i5-3380 CPU @ 2.9 GHz.

Table 4. The runtime using a different maximum number of contributors [25]

Number of contributors | Range of time (mode)

1 <1 min (0.2 min)

2 15 min-30 min (17 min)
3 30 min—1.5 h (1 h)

4 1 h-5h (4 h)

5 5 h-20 h (14 h)

6.10 STRmix

STRmix is a probabilistic genotyping application which performs the continuous model
of interpreting the DNA profile. It was built to interpret single and mixed DNA profiles.
Moreover, it follows the SWGDAM recommendations. It utilizes information that
extracts from a DNA sample, such as peak height, to calculate the probability of a DNA
profile for all possible genotype combinations. The software considers aspects such as
allele drop-in, allele dropout, and stutter. The software has been written in Java, and it’s
only available for purchase.

6.11 A Comparison of the DNA Profiling Tools

Table 5 compares different software that we had reviewed in this section. The first
column gives the names of the software. Columns 2-8 provide information about
various features of the software. Column 2 gives information whether the software has a
GUI or not. Columns 3 and 4 are illustrating if the selected software considers the
phenomena of drop-in and stutter on its interpretation or not. Column 5 gives the model
that used to the calculation of LR. The sixth column describes the programming lan-
guage that used to build the selected software. Column 7 indicates the availability of
source code. The last column describes the used parallel framework. The table is missing
some information due to either the lack of resource for some software or because of the
inability to access the software’s source code.
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Table 5. A general comparison between the review softwares

GUI | Drop-in | Stutter | Calculation | Language | Source | Parallelism
model code
LRmix studio Yes | Yes - Semi Java Yes Thread
[13, 16, 33] continuous pool
TrueAllele [18, 19] | Yes | Yes Yes Continuous | Matlab No -
DNAMIX V.3 [32] | Yes |— - - Java Yes No
Euroformix [18] Yes | Yes Yes Continuous |R, C ++ | Yes Snow
package
Ceeslt [21] Yes | Yes Yes Continuous | Java No Thread
pool
NOCIt [3] Yes | Yes Yes Continuous | Java No Thread
pool
DNAMixtures [34] |No | Yes Yes Continuous | R Yes No
LikeLTD [22] No | Yes Yes Continuous |R, C Yes OpenMP
LabRetriever [13] | Yes | Yes - Semi C ++ Yes No
continuous
STRmix [23, 39] Yes | Yes Yes Continuous | Java No -

7 Conclusion

Interpreting DNA mixture is a common practice in forensic science domain. It is a
complicated process that requires an extended period of time. We gave an overview of
the field of DNA profiling. A historical background, along with its application was
mentioned. We, then, discuss the needed steps to sample a DNA mixture and what are
the required technologies. After that, we reviewed the literature based on their clas-
sification into describing DNA profiling in general. We focus later on approaches that
follow the Likelihood Ratio model. We also reviewed the various tools and compared
their performance and accuracy

In the end, we would suggest the use of Euroformix and LikeLTD for DNA
profiling since they are already performing parallelism. They both utilize most of the
available information in the DNA sample because they follow the continuous model for
calculating the LR value. The source code for the two software is available for
assessment and modification. However, Euroformix provides a GUI which gives it a
slight advantage over LikeLTD for users who have no technological expertise.

A frequent necessity to apply these tests might raise the need to speed up the run
time of such analysis. The computational complexity has been the major deterring
factor holding the area advancements and applications. An improvement would give a
chance to interpret mixtures with a larger number of unknowns and within a shorter
timeframe. The investigation of the relevant literature reveals that the current
approaches for parallelization of DNA profiling rely on shared memory parallelization.
A distributed implementation is needed to speed up the computations allowing for the
use of a large number of cores/processors. This is our ongoing research, which will be
reported in the near future. Faster interpretations of DNA mixtures with a large number
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of unknowns and higher accuracies are expected to open up new frontiers for DNA
profiling.

In the coming years, the complete genome sequencing technologies in a single or
only a few cells will be easily available. These technologies may change the situation
of DNA profiling completely. In this case, it is obvious to prepare appropriate statistical
methods for that. It will be, therefore, important to prepare the mathematical and
statistical algorithms for complete-genome-sequencing-based DNA profile. High per-
formance computing (HPC) will play a key role in speeding up DNA profiling
methods, particularly those HPC techniques which exploit domain specific data and
algorithmic patterns [41], system heterogeneity (e.g. disks for space, and accelerators
for speed) for its advantage [42], and virtual organization models (similar to grids [43])
for information sharing across organizational boundaries. Hierarchical system struc-
tures will be needed to localize and optimize data and computations [44]. Internet of
Things (IoT) would be integrated in smart city systems to create innovative services [6]
and deal with big data-related challenges [5]. Mobile, fog and cloud computing [4, 45,
46] will enable dynamic system environments, seamlessly connecting users and
systems.
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