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Abstract. Autonomous driving is now near future reality which will transform
our world due to its numerous benefits. The foremost challenge to this task is to
correctly identify the objects in the driving environment. In this work, we
propose an object recognition method known as Decision Tree and Decision
Fusion based Recognition System (D2TFRS) for autonomous driving. We
combined two separate feature sets, which are RGB pixel values and spatial
points X,Y of each pixel to form our dataset. The D2TFRS is based on our
intuition that reclassification of pre-identified misclassified objects in a driving
environment can give better prediction accuracy. Results showed that D2TFRS
outperformed AdaBoost classifier and performed better than C5.0 classifier in
terms of the classification accuracy and Kappa. In terms of speed, C5.0 out-
performs both AdaBoost and D2TFRS. However, D2TFRS outperformed
AdaBoost with respect to speed. We strongly believe that D2TFRS will have
better parallelization performance compared to the other two methods and it will
be investigated in our future work.
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1 Introduction

An autonomous vehicle (AVs) is one that can accelerate, increase and decrease speeds,
put and release brakes and steer, itself avoiding any sort of accidents. Such technology
has long been part of Hollywood sci-fi quixotic vision of the future. This is due to the
fact that AVs will free drivers from boring side of driving during travel and reduce
accident rates by providing breathtaking control over vehicles. In past, many attempts
have been made but subjected to the limitation of available technologies. However, in
recent years with technological advancements, the dream of AVs come very close to
reality. Now we are able to manufacture them nevertheless they are in their testing
phase. AVs have the potential to change how we look at our surroundings.
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The Autonomous Driving (AD) is getting lots of attention and popularity due to its
various benefits [1] and assumed to be an on-road reality soon. Most of the major
industry titans which include Google, Tesla, Ford, Volvo, BMW, Microsoft, Apple,
and others, are making huge investments in developing technologies which will enable
AD. A new forecast by Intel and Strategy Analytics research firm estimated that AVs
will be a 7$ trillion market by 2050 [2]. The competition of which company will bring
its AVs first on the road to common public getting so tough, resulted in various perk
luring practices to get skilled engineers from the rival companies and stealing AVs
technologies from the competitors [3–5]. The core of these developments revolves
around the critical question, how to perceive driving environment with higher
certainties.

The key technology on which success of AVs depends is how accurately, they are
able to perceive the driving environment. The initial step in this quest is to recognize
the static and dynamic objects around the vehicles with higher accuracies. In a driving
environment this object recognition problem in more complex due to the fact that it is
multi-class problem and given the dynamic nature of the driving environment which
add further complexities to it. AVs consist of several on-board and off-board sensors
such as cameras, LIDAR, Radar and GPS as illustrated in Fig. 1.

The aim of any object recognition system is to predict with the highest degree of
certainty for the given task. The result evaluation of different classification schemes can
be different in terms of classification accuracies. One classifier tends to produce better
predictions for a particular class, though its overall accuracy can be lower as compared
to the other. The sets of patterns of rightly classified or misclassified data instances by
the distinct classifiers would not certainly coincide, thus this form the basis to acquire
better classification accuracies through decision fusion of predictions from various
classifiers.

Supervised machine learning algorithms learn using a training dataset which con-
tains independent variables and their response variables. They keep on learning until
the minimum possible classification error achieved. In this work, our focus is to use
supervised learning in a way that it enhances the object classification accuracy in a
driving environment which will enable an auto-pilot to take better driving decisions.

Fig. 1. General view of the autonomous driving environment.
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1.1 Contributions

In this work, our main aim is to develop a methodology to achieve higher object
classification accuracy by integrating supervised learning and decision fusion. The
main contributions of this work are:

• We manually labeled images from a subset of KITTI city dataset [6] by using free-
form selection (polygon) rather than a box or rectangular selection. This means,
highly accurate pixel labeling is achieved by carefully selecting only the area of
interest to enhance training of the algorithm.

• We used two feature sets together for training purposes. The first feature set consist
of RGB values whereas the second feature set consist of the spatial location of each
pixel i.e. x and y coordinates. The use of two feature sets increased the training
accuracy considerably.

• We tried to demonstrate how pre-identification of worst data instances which are
hardest to classify correctly, improves the accuracy of a classifier system.

1.2 Paper Structure

The paper is divided into seven sections. Section 2, contains literature review and in
Sect. 3 we explained dataset and data preparation for this work. Further is Sect. 4, the
classifiers are discussed which are used in this work, whereas in Sect. 5, the proposed
method has been explained in detail. We represent results in Sect. 6 and finally,
conclusions are drawn in Sect. 7.

2 Literature Review

Machine learning is mighty artificial intelligence (AI) tool which helps us to understand
the complicated world around us by learning. Nowadays machine learning applied in
almost every field such as biomedical, education, business, security, robotics, net-
working and much more [7–9]. Machine learning which eventually uses to develop AI
for autonomous vehicles (AVs), ranges from infotainment systems to advanced driver
assistance systems (ADAS) and further to complete self-driving auto-pilots. With
machine learning, AI systems continuously learn from experience by their ability to
foresee and identify the happenings in their surroundings, which is promising to be
highly constructive when integrated into a software architecture of AVs. Search Engine
giant Google and Tesla have been doing considerable research and development for
developing the AI capabilities for their autonomous cars, albeit in a more vocal manner
than their counterparts. Perceiving driving environment is the key problem for facili-
tating safe and smooth autonomous driving. The problem starts from recognizing static
objects (road, speed breakers, traffic light, buildings) and dynamic objects (cars, cycles,
trucks) around AVs. All the different objects must be classified by an object recognition
system which is a multi-class problem for AVs and has been well studied in [10–12].

Identifying, tracking, and avoiding human beings is a pivotal capability of AVs.
Pedestrian recognition must guarantee the safety of humans walking on footpaths and
crossing the roads while auto-pilots are driving AVs which is studied in [13–15].
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At Google, research scientist, Anelia Angelova introduced a novel pedestrian detection
system that only requires video images [16]. Similarly to [16] in [17], the deep learning
based video-only pedestrian detection system is presented which is under development
at the University of California, San Diego. Works like [16, 17], could make human
detection systems for AVs, to pinpoint humans using low-cost sensors like cameras
alone without using expensive Lidar units which can reduce the cost of AVs consid-
erably with high reliability. The developments in [16, 17], also support the arguments
of Tesla CEO Elon Musk against using expensive Lidar technology for self-driving
cars. A realistic situation can arise when AVs will have a sudden encounter with a
pedestrian, to save life and avoid collision with a pedestrian is a crucial and complex
problem. In [18] paper, author studies the problem of detecting sudden pedestrian
encounters to aid drivers to avert any sort of accident. Road detection is a crucial
problem for AVs as it decides how much space is available for driving and turning to
ensure safe and smooth driving. In recent years a lot of development has been seen in
this area [19–21]. For this purpose in [22], authors proposed a road detection technique
using SVM which automatically updates the training data to minimize classification
error. Similarly, in [23], linear SVM is used for Segment-Based Fractal Texture
Analysis (SFTA) and compared with the multi-layer convolutional neural network
(CNN). Both linear SVM and CNN produced very high classification accuracies.
However, CNN showed slightly better specificity.

Another way to perceive driving environment is to combine multiple decisions or
multiple sensor data for deducing the driving environment. This can also be defined as
Data fusion which is well studied from various perspectives in one of the latest and
comprehensive surveys [24]. The paper review mathematical methods for data fusion,
specific sensor environments. Further authors discussed the emerging trends which
would be benefited from data fusion [24]. For example combining GPS and camera
images to predict safe driving distance to another vehicle on the road. Combining the
multiple inputs or features into a single output is a complex problem but the outcome
tends to show more certainty than single sensor data analytics as achieved in pro-
ceeding literature. For example in [25] authors fuse cameras images and LIDAR for
deducing driving environment by labeling segments of images whereas in [26] object
grid maps are created by combining camera images and laser. In literature such as [13,
14], the single feature set is used to identify humans. Solving the same problem, though
using multi-sensor data, a smoothing-based depth up-sampling method for human
detection is proposed in [27] which fuses camera images and LIDAR data. Furthermore
in [28] authors uses knowledge of object classes to recognize humans, car obstacles,
and bicyclists. A multi-layer perceptron (MLP) classifier is used in [29] to recognize,
interpret and track autonomous moving objects. Blend of stereo vision, LIDAR and
stereo vision data is used and supplied to MLP in [29] as input. Hane et, al use images
from cameras with wheel odometry for drawing out static obstacles [30] whereas in
[31] Dempster Shafer theory of evidence is used to integrate sensors data to classify the
obstacles.

Combining results of multiple classifiers tend to produce better results, this is a
well-proven concept. This sort of combination is known as Decision Fusion (DF).
However, it is important to select a combination of right classifiers in order to take
benefits from DF. In one of such work [32], authors critically examine the use of the

158 F. Alam et al.



q-correlation as a way to quantify the classifier diversity for selecting classifiers for
fusion. DF methods are used successfully for image classification problems. A scheme
to aggregate the results of different classifiers is proposed in [33]. Situations where the
classifiers disagree with each other in [33], are solved by computing the pointwise
accuracy and finding the global reliability [34]. Traditional methods for hyperspectral
image classification typically use raw spectral signatures without considering spatial
characteristics. In work [35], a classification algorithm based on Gabor features and
decision fusion is proposed. First, the adjacent and high correlated spectral bands are
intelligently grouped by coefficient correlation matrix. Following that, Gabor features
in each group are extracted in PCA-projected subspaces to quantify local orientation
and scale characteristics. Afterwards, locality preserving non-negative matrix factor-
ization is incorporated to reduce the dimensionalities of these feature subspaces.
Finally, the classification results from Gaussian-mixture-model classifiers are merged
by a decision fusion rule. Experimental results show that the proposed algorithms
substantially outperforms the traditional and state-of-the-art methods. Majority of AVs
researches are based on binary classification problems and less attention has been given
to challenging multi-class problems.

3 Dataset and Data Preparation

We used KITTI datasets [6] for this work. We have used two feature sets which are (R,
G,B) values of the pixels and spatial values of each pixel in the image frames of
dimension 1242 � 375 as depicted in Fig. 2. We create a dataset which has six
attributes, namely r, g, b, x, y, class. We used Raster package [36] in R, to compute
pixel values and location of each pixel in the image frame.

Further, we manually labeled the images from a subset of KITTI city dataset [6] by
using free-form selection (polygon) rather than a box or rectangular selection which is
further depicted in Fig. 3. This means highly accurate pixel labeling is achieved by
carefully selecting only the area of interest to enhance training of the machine learning
algorithm. After selecting pixels of a particular object, we manually labeled every
object pixel and spatial values to make final dataset. Our dataset contains 380000 rows
and six attributes and we divided the datasets into two parts which are training 60% and
40% testing. Further, we used SMOTE algorithm on training data to overcome class
imbalance problem which is discussed in proceeding section.

Fig. 2. Data preparation process.
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4 Algorithms

In this work, we used several supervised machine learning algorithms based on their
prediction accuracy, execution time and scalability for classification and decision
fusion through majority voting.

4.1 Decision Tree

C4.5 is a supervised learning algorithm which builds a decision tree using the concept
of information entropy proposed by Quinlan [37]. It can handle both continuous and
discrete attributes. In this work we used C5.0 which is an extension of C4.5, is also
commercially sold by Ross Quinlan. The reason to use C5.0 for this work lies in the
fact that it is extremely fast, several folds faster than its predecessor C4.5. It can take
benefits of multi-core and multiple CPU [38]. Further, it has better memory manage-
ment, which is needed because of a significant amount of data processing is required
particularly in RGB image classification. It can give similar or better results to C4.5 and
forms significantly smaller decision trees.

4.2 Support Vector Machine

Support vector machine (SVM) is one of the most accurate classifiers and have a sound
theoretical foundation. SVM constructs hyperplane or a set of hyperplanes for per-
forming classification and regression [39]. It can compete with far more complex
modern-day classifiers in terms of accuracies and it is considered as one of the best
classifiers which are listed among top 10 machine learning algorithm [38].

Fig. 3. Object labeling process. The image is taken from KITTI dataset [6].
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4.3 Deep Learning

Deep learning (DL) mimics a neural system of humans for performing learning task. It
belongs to the family of artificial neural networks. It digs deep into the data and finds
out the complex relationships among data elements. Widely used in image recognition,
natural language processing, speech recognition and bioinformatics due to its quality of
producing highly accurate predictions, though DL is computationally expensive. To
develop a further understanding of various deep learning architectures, models, and
their mathematical formulations in a more comprehensive manner, work such as
[40–42] can be investigated.

5 Proposed Method

In this work, our prime focus is to identify data instances which are most difficult to
classify for the given supervised machine learning algorithm, prior to classifying them
and to reclassify the predicted misclassified data. We divide our main method into two
phases. The first phase in which we carefully train our models and generate data for the
training of proceeding stage because, from stage-2 onwards, machine learning algo-
rithms need to be trained with the data specific to that stage. In the second phase, in
which we test our whole method to predict its accuracy. All the experimentations are
performed on R statistical machine learning platform and H2O [43], SVM [44], C5.0
[45] and Caret [46] libraries are used.

5.1 Training

Formally we can define our training process as, for the given training set ðXi; YiÞ, we
want to generate a classifier function to predict Yi labels for new Xi ¼ ðri1; gi2; bi3;
xi4; yi5Þ. In our work, the training process is very critical and the core of the work. It
serves two purposes. Firstly, identify accurate machine learning models and secondly,
generate dataset for next stage. For method depicted in Fig. 4, as input we used data1 to
train C5.0 classifiers and to make data for training of the next stage. We predicted class
labels using data2.

Misclassified data instances are only 2.71% of whole data. Training C5.0 classifier
for predicting misclassified (miss) and rightly classified (hit) data labels produced
results with high accuracy. However, the prediction accuracy of misclassified data
instances is below 50%. This is due to imbalance dataset problem. To counter this, we
used SMOTE algorithm [47], to generate balanced and massive data of 1.5 million
rows for training C5.0 classifier for predicting miss and hit and update data2 accord-
ingly. Then we separated miss and hit data. Further miss dataset (Dmiss1 ) is used to train
classifiers for majority voting. Same steps are repeated to train classifiers n number of
times. Class labels which are predicted at different stages are combined together in
Pfinal based on row indexes of original input data.
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5.2 Testing

The testing process is explained in Fig. 5, which is self-explanatory in nature. We used
classier function, obtained from training process, to predict Yi label for new
Xi ¼ ðri1; gi2; bi3; xi4; yi5Þ. All trained classifiers are used in the testing phase. In Fig. 5,
from stage-2 all the step repeated n number of times. In this work we used n = 2,
however it can be more but will reduce the prediction speed.

6 Results and Analysis

To evaluate our results, we compared D2TFRS method to C5.0 and AdaBoost clas-
sifiers. We used confusion matrix, sensitivity, and specificity as the benchmarks for
results evaluation.

6.1 Confusion Matrix

A confusion matrix (CM) is a table which shows actual versus predicted data labels.
The sum of diagonal (SoD) of CM represents the correctly classified data label, thus
can be used to compute classifier accuracy too which can be given as:

Fig. 4. Training method.
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Accuracy% ¼ ðSoD=Sum of all cells of CMÞ � 100 ð1Þ

In Fig. 6, we visualize the CM of the D2TFRS method, C5.0 and AdaBoost
classifiers. SoD which is the green color cells in Fig. 6, for each classifier represent
rightly classified data labels. D2TFRS outperformed AdaBoost classifier by getting
6.48% better classification accuracy. D2TFRS performed better than C5.0 classifier
which produces classification accuracy of 97.29% which is 1.33% less than classifi-
cation accuracy of D2TFRS.

6.2 Sensitivity and Specificity

Sensitivity can be defined as the proportion of actual class labels which are correctly
predicted by the classifier. Whereas Specificity is the ability of the classifier to identify
negative results. Important terms used to calculate sensitivity and specificity are a
number of true positive (TP), number of true negatives (TN), number of false positive
(FP) and number of false negatives (FN) respectively.

Mathematically, these can be expressed as:

Sensitivity ¼ TP=ðTPþ FNÞ ð2Þ

Specificity ¼ TN=ðTN þ FPÞ ð3Þ

Fig. 5. Block diagram of proposed D2TFRS.
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In terms of sensitivity and specificity, D2TFRS performed better than C5.0 and
AdaBoost classifiers for all classes as depicted in Figs. 7 and 8. AdaBoost performed
worst among the three whereas C5.0 performed better than AdaBoost but lacks slightly
behind proposed D2TFRS. Further, a graphical comparison of sensitivities and
specificities are given in Figs. 7 and 8.

6.3 Kappa and Speed

Kappa (j), is an index that considers an observed agreement with respect to a baseline
agreement [48]. j is a statistical benchmark to measure classification. There are no
universal acceptability criteria on how to interpret j. However first of its kind guide-
lines are given by Landis and Koch. Value of j nearer to 1, means substantial or almost
perfect agreement. Whereas the value of j farther from 1 means no agreement or slight
agreement. For more detail, characterization of j can be found in [49].

Mathematically, j can be expressed as:

j ¼ ðpo � peÞ=ð1� peÞ ð4Þ

Fig. 6. Confusion Matrix of C5.0, AdaBoost, and D2TFRS.
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Where an observed agreement is given as po, and expected agreement is given as
pe. The value of j is always � 1. Values of j are given in Table 1. Proposed method,
D2TFRS, has an almost perfect agreement which is nearest to 1 as compared to C5.0
and AdaBoost classifiers.

In terms of speed, C5.0 took 5.11 s which is almost five times faster than D2TFRS
which took 24.09 s and AdaBoost took 125 s with 20 iterations for which boosting is
run. We strongly believe parallelization can increase the speed of D2TFRS by several
magnitudes, as in this work D2TFRS implemented sequentially not in parallel. Further
details of accuracy, Kappa and speeds can be found in Table 1.

Fig. 7. Sensitivities measurement of C5.0, AdaBoost, and D2TFRS.

Fig. 8. Specificity measurement of C5.0, AdaBoost, and D2TFRS.
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7 Conclusion

Autonomous driving is a near future reality and object recognition will play an
important role in it. In this work, we proposed D2TFRS which recognize objects with
higher accuracy as compared to C5.0 and AdaBoost. There are two reasons which are
responsible for D2TFRS better classification accuracy. Firstly we predicted misclas-
sified data instances prior to classification. Secondly, decision fusion through majority
voting is done for reclassifying predicted misclassified data instances only. In this
work, D2TFRS is implemented sequentially as a result, it is slower than C5.0. In the
future, its speed can also be maximized by several magnitudes by the parallel imple-
mentation. We used a small dataset to test D2TFRS which can be considered as a
drawback of this work. Therefore further investigation needed to confirm the steady
performance of D2TFRS on much larger datasets. In future, we planned to further
optimize D2TFRS to make it much faster with higher accuracy by training with
massive datasets.
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