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Abstract. The importance of disaster management is evident by the increasing
number of natural and manmade disasters such as Irma and Manchester attacks.
The estimated cost of the recent Irma hurricane is believed to be more than 80
billion USD; more importantly, more than 40 lives have been lost and thousands
were misplaced. Disaster management plays a key role in reducing the human
and economic losses. In our earlier work, we have developed a disaster man-
agement system that uses VANET, cloud computing, and simulations to devise
city evacuation strategies. In this paper, we extend our earlier work by using
deep learning to predict urban traffic behavior. Moreover, we use GPUs to deal
with compute intensive nature of deep learning algorithms. To the best of our
knowledge, we are the first to apply deep learning approach in disaster man-
agement. We use real-world open road traffic within a city available through the
UK Department for Transport. Our results demonstrate the effectiveness of deep
learning approach in disaster management and correct prediction of traffic
behavior in emergency situations.
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1 Introduction

A large amount of world’s population is currently living in cities because of increased
trend of urbanization. The provision of educational, health, social, cultural and other
facilities is a main reason behind this trend. To provide best facilities to the citizens,
companies and government authorities relies on latest technologies and use devices that
collects and generates a lot of data. These devices not only include personal devices
like smart phones, GPS devices etc. but also include the devices that are used by
government departments like sensors to switch on and off the lights on streets, sensors
and cameras to control traffic, smart health care devices and systems and many more.
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All this together makes foundations of smart city where a tremendous amount of data is
collected from devices and processed to improve the life style of its citizen and to
improve their productivity by providing them a secure and peaceful environment [1, 2].

Disaster management systems or emergency response systems in a smart city are
very important to efficiently handle disaster conditions in effective way, no matter the
disaster was a manmade like 9/11 attacks, blasts etc. or it was natural like earthquake,
tsunami etc. Traffic management in a disaster plays key role in evacuating the affected
area and to monitor the traffic in other parts of the city to avoid congestion and road
blockages. For efficient traffic management, traffic data could be collected from the
sensors and cameras deployed on the road networks. In addition to this, data collected
from GPS could also be used to monitor the traffic flow and to guide the people through
different applications to take alternate routes to ensure their safety, avoid congestion
and to provide the emergency services in affected area in efficient way.

In our earlier works, [3], by leveraging the advancements in the intelligent trans-
portation systems, VANETs, and other technologies including mobile and cloud
computing technologies, we proposed a disaster management systems for smart cities.
This system was able to collect information from these sources and to propagate them
to the vehicles, people and other components of the disaster management system in real
time. In addition to this, it was able to ensure the security and safety of data and
applications as well. In this work, a cloud based architecture was given and a micro-
scopic traffic model Lighthill-Whitham-Richards (LWR) was used. The effectiveness of
our model was tested by modeling the impact of a disaster on a real city and comparing
it with a disaster management technique using traditional technologies. Later, this work
was extended in [4] where we improved our model by introducing a message propa-
gation through VANETs. Microscopic traffic models were used in this work as well in
addition to our novel algorithm. Extended simulation results were used to demonstrate
the effectiveness of newly proposed system. In continuation to these works [3, 4], we
developed a model in [5] to evaluate the performance of disaster management systems
on evacuation operations. In this work, microscopic models were used for the design
and evaluation of our system. Two main evacuation strategies, demand strategy
(DS) and speed strategy (SS) has been reported in this work.

Due to the availability of tremendous amount of data collected by devices in a
smart city, many machine learning approaches could be applied on that data to get
useful insights and based on the collected information from that data, the future steps
taken by individuals or authorities in specific conditions could be predicted. The idea of
machine learning or artificial intelligence techniques is not new but it was not appli-
cable because it requires a huge amount of data for learning phase. Deep learning is
also a machine learning approach that could be used to train the models using historic
or real-time data and then those trained models could be used to predict the expected
values.

In this work, we are using deep learning for traffic management in smart cities in
disasters. Deep learning requires a large amount of data to train the model and therefore
takes long in training process. It is more accurate but is intensive in computation, hence
we need GPU [6]. Therefore, we are using GPUs to expedite the training process and to
provide results in close real-time fashion. Traffic data for this purpose is collected from
data.gov.uk that provides annual average vehicles flow values on roads in a city in UK.
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The rest of the paper is organized as follows. Section 2 provides background
material that defines the tools and technologies used in our work. Work done by others
in this area is presented in Sect. 3. Our proposed framework is presented in Sect. 4. In
order to find the suitable city data, we have examined a number of datasets and their
details are given in Sect. 5. Performance evaluation and analysis of the proposed
system is given in Sect. 6 and, finally, in Sect. 7 we have concluded the discussion
with directions for future work.

2 Background Material

In this section, we will give a brief introduction to the tools and technologies used in
our model in specific and some tools and simulators that are used for traffic modeling in
general.

2.1 Graphical Processing Units

In this section, we will give an overview of the GPU architecture. A GPU chip contains
multiple multi-processors (MP) and each MP contains many stream-processors (SP).
Instructions are executed in SP like ALU in CPU. Different tasks are performed on
MPs and they are mutually independent to each other whereas the SPs in an MP
executes the same operations on different data items. To store data, each SP has its own
register to store variables and temporal data. An SP cannot access the registers of other
SPs in an MP. For this purpose, there is a shared on-chip memory that is accessible to
each SP in that MP. In addition to this, an off-chip shared memory, called global
memory is also available and it can be accessed by all the SPs in all the MPs. This
global memory is connected externally to the GPU chip and it is much larger in size but
the access to this memory is much more expensive than that of the on-chip shared
memory inside the MPs.

Programs in GPU are executed with the help of Compute Unified Device Archi-
tecture (CUDA) toolkit offered by Nvidia and detailed execution flow of a CUDA, the
logical structure of kernel threads and logical to physical mapping in GPU is also part
of the discussion.

2.2 Deep Learning

A branch of computer science that gives the computers, the ability to learn themselves
like human beings is known as machine learning. Machine learning does not require
programmers to program something explicitly to tell computers to perform a specific
task. Instead, machine learning algorithms train computers using different algorithms to
predict the output when a specific input is given. Techniques that enable computers to
learn something without explicit programming are divided into two main categories in
machine learning. These are known as supervise learning and unsupervised learning
techniques. Artificial neural network, clustering, genetic algorithms and deep learning
etc. are some examples of machine learning techniques. In this section, we will focus
on the deep learning techniques and work done in this domain.
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Deep learning approaches have been classified into different categories based upon
the nature and training and testing strategies. These include Convolutional Neural
Networks (CNNs), Restricted Boltzmann Machines (RBMs), Autoencoders and Sparse
Coding techniques [7]. In this work, we are using CNNs for training and testing
purposes. So, we will discuss them in detail in the following paragraph.

2.2.1 Convolutional Neural Networks (CNNs)
In the CNNs, multiple layers including convolutional, pooling, and connected layers
are used for training purpose in a robust manner. Authors in [7] have defined a general
architecture of CNN for image classifications. This architecture is shown in Fig. 1. In
this figure, the whole process is divided into two main phases, forward phase that
include convolutional and pooling layers and backward phase where fully connected
layers are used to produce the output.

Convolutional neural networks are the hierarchical neural networks and their
convolutional layers alternate with subsampling layers like simple and complex cells in
the primary visual cortex. CNNs vary in how convolutional and sub-sampling layers
are realized and how the nets are trained [8].

3 Related Work

In this section, we are presenting the work that deals with the traffic management plans
during emergency conditions in smart cities. Some people focus mainly on traffic
management in smart cities using any approach and some have focused on the
approach i.e. deep learning with smart city scenario on low priority. As we are com-
bining traffic management in smart cities with the deep learning approach, so both are
useful for us and therefore we are presenting some approaches for better understanding
of the work done in this area.

Authors in [9] have proposed an adaptive traffic management plan to ensure the
provision of secure and efficient emergency services in case of disaster in a smart cities.
In this work, a framework has been proposed introduces some components of traffic
management system like traffic management controllers (TMC), local traffic controllers
(LTC), adaptive traffic light controllers, environmental sensor controllers etc. The goal
of this framework is to collect information from communication and other devices about
the severity of the disaster that has been divided into three categories in this work; low,

Fig. 1. General CNN architecture [7]
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medium, and high, and then act accordingly by using these controllers. For example, in
case of high emergency condition, traffic signals could be controlled to ensure the timely
arrival of emergency vehicles e.g. ambulance and fire brigade and to reroute the non-
emergency traffic. SUMO [10] has been used to simulate this process. In this work,
focus is mainly on the provision of emergency services and their security and the plan
has been simulated but no practical scenario or data has been used to handle the traffic
and it also lacks the plan to manage the general traffic in case of disaster.

Smart cities are characterized by advanced and integrated ICT systems, such as
smart logistics solutions [11], autonomic transportation [12]. Internet of things
(IoT) could be considered as the back bone of future smart cities [13]. [14] proposes a
ubiquitous learning system for smart societies. This approach can be used to educate and
prepare citizens for disasters. In particular to vehicles, internet of vehicles (IoV) includes
all the devices that could be used to monitor the vehicles and for inter vehicle com-
munication as well. Data from different types of sensors placed on road networks,
vehicles, and other smart devices [15] is collected to traffic management. There are
many studies that use IoT and IoV to propose a traffic management plan as in [16, 17]. In
addition to this, a lot work has done in the area of autonomic transport management in
smart cities [18]. Work in [19] also shows the importance of Fog and other cloud
technologies in dealing with emergency situations in smart cities. In [20] a parallel
transportation management and control system for smart cities has been presented that
not only use the artificial intelligence technologies but also uses massive traffic data and
uses big data technologies or frameworks like MapReduce. Thus, shows the importance
of these technologies in traffic management in smart cities.

A traffic flow prediction approach has been proposed in [21]. Authors have used the
deep learning approaches for prediction purpose using a large amount of data. They
have proposed a model that uses autoencoders for training and testing purpose to make
predictions. The model is named as stacked autoencoder (SAE) model. To predict
traffic flow at time t, traffic flow data at previous time intervals has been used. The
proposed model has been used to predict 15, 30, 45 and 60 min traffic flow. Data for
this purpose was collected from Caltrans Performance Measurement System (PeMS)
[22]. Three months’ data, collected every 30 s was used for training and testing pur-
poses. In this data, vehicle flow was collected where two directions of same freeway
were treated as different freeway. Support vector machines (SVM) have been used for
comparison purpose.

Authors in [23] have proposed a deep learning based approach for traffic flow
prediction and they have used unsupervised learning approach using deep belief net-
works. They have categorized the traffic prediction approaches into three main cate-
gories that include time-series approaches, probabilistic approaches, and non-parametric
approaches such as neural network based approaches etc. Authors in this work have
used Restricted Boltzmann Machines (RBMs) for training purpose which are stacked
one on other. For training and testing purposes, inductive loop dataset is obtained from
the PeMS [22]. In addition to this, authors have used data from highway system of China
(EESH) as well. A data of 12 months has been collected and the first 10 months’ data is
used for training whereas the data of remaining two months has been used for validation
purpose. Prediction results have been compared with other four methods for top 50
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roads having high flow rates. The results shows that deep learning based architecture is
more appropriate and robust in prediction and could be used for practical prediction
system.

A deep learning based approach has been used in [24] to model the traffic flow. In
this work, authors have developed deep learning predictors to predict the traffic flow
data from the road sensors. Real-time traffic data has been used and by using the
proposed model, they have predicted the traffic flow during a Chicago Bears football
game and a snowstorm. They have used the number of locations on the loop detectors
and traffic flow at a time (say t). They first have developed a linear vector auto
regressive model for predictors selection. These predictors are later used to build a deep
learning model. Stochastic gradient descent (SGC) method is used to know to structure
and weights of parameters. They also have applied three filtering techniques (expo-
nential smoothing, median filter, loess filter) on traffic data to filter noisy data from the
sensors. Data for this purpose is collected from 21 loop detectors on five minutes’
interval basis. This data includes speed, flow and occupancy. They have built a sta-
tistical model to capture the sudden changes from free flow (70 mph) to congestion
(20 mph). In case of bottlenecks, they predict that how fast it will propagate on the
network i.e. loop detectors. For predictor selection, deep learning model estimates an
input-output map with the assumption that they need the recent. So, they collect last 12
readings from each sensor. The performance of DL model has been compared with
sparse linear vector autoregressive (VAR). Both accurately predict morning rush hours
on normal day but VAR miss-predicts congestion during evening rush hour. On the
other hand, DL predicts breakdown accurately but miss-estimates the recovery time.

Authors in [25] also have used deep learning approach to predict the traffic con-
gestion. They have used recurrent neural networks by using Restricted Boltzmann
Machine (RNN-RBM). For comparison purposes, authors have used Support Vector
Machines (SVMs) and found that prediction accuracy was increased by at least 17%.

4 Disaster Management System

In this section, we will discuss the proposed deep learning based disaster management
system in detail. Figure 2 depicts the architecture of our proposed system. Proposed
framework consists of three main layers, input layer, data processing and prediction
layer and output layer.

4.1 Input Layer

Input layer manages the traffic data that is used to training and testing of deep learning
model in the data processing layer. The input data could be either offline i.e. historical
data or it could be real-time or streaming data. Input layer gets the traffic data and
extracts the key features from it like flow, speed, occupancy, density etc. These features
play a key role in prediction making using the proposed model. The role of input layer
becomes more important especially when we are dealing with the real-time data. In this
case, it takes the data from the source, and provides it to the processing layer for further
data formatting.
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4.2 Data Processing Layer

This layer is responsible to process the input data for making predictions in case of
disaster. Our prediction model uses deep learning approach for this purpose. By using a
deep regression model, we train a dataset which is further tested using another input
dataset or a subset of the same dataset. Data processing layer, takes the data from the
input layer and then process it to convert the input data into the format required by the
deep learning algorithm. For example, if date attribute is included in the input dataset, it
could be processed in this layer to get day, month, year, hour etc. The division of one
attribute into multiple attribute could be useful in training process e.g. we can get peak
hours, and can separate the data based on weekends etc. Furthermore, we may need to
normalize the input data for our regression model. So, data normalization is also
performed in this layer.

4.3 Deep Learning Layer

We have used deep regression model to estimate the vehicle flow value by using
multiple input features. Initially we have trained our neural network by adding two
hidden layers to the network. First layer is our input layer and the final one is the output
layer and the two hidden layers are in between the input and output layers. Forward
propagation scheme has been used for computation of weights and finally loss is
calculated on the overall output.

Figure 3 shows a neural network including one input, two hidden and one output
layer. In our case, we are using 9 input parameters, and output layer gives one output

IInput Data (Streaming / Offline)

GPU
Deep Learning

L1 L2 L3

Road Lables
• Blocked
• Highly Dense
• Par ally 

Dense
• Normal

Input Layer + Hidden Layers Output Layer

Suggested Route

Fig. 2. Proposed disaster management framework.
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value because we are applying regression to get one vehicle flow value. We have used
relu activation functions and AdamOptimizer has been used to optimize the generated
results. We ran the training process for 1000 times by selecting a data size of 500
features at one time.

5 Datasets

In this work, we are mainly working on UK traffic data. So, we have explored a variety
of traffic data available through multiple sources in UK that could be used for different
purposes to work on traffic management plans. Some data sources of same kind outside
UK are also included in the list. In our deep learning model, we have used the data
from data.gov.uk that provides the vehicles flow data for minor cities. This includes the
average vehicle count or roads for different vehicle types. In Table 1, we have given
some data sources that provide traffic data. Short data description and URLs to access
the data are also given.

6 Analysis and Comparison

This section defines our deep model configurations and the performance metrics used
for analysis purpose which is used for performance analysis of our model.

Output 
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Fig. 3. Our deep neural network with two hidden layers.
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Table 1. UK traffic data sources.

Data source Description URL

1 Transport for
London (TFL)

Data could be accessed by using
the provided API. Real-time
data and status information of
different sources of
transportation could be
accessed by using API

https://tfl.gov.uk/info-for/
open-data-users/

2 London
Datastore

Public data sharing portal that
provides data related to different
department of London
government. Data from 1997 to
2015 is also available that
provides number of vehicles on
different roads in London

https://data.london.gov.uk/

3 Data.gov.uk Data provided by different
United Kingdom’s government
agencies could be accessed
from this portal. Its transport
data section provides many
options to explore traffic data

http://data.dft.gov.uk/
https://data.gov.uk/dataset/gb-
road-traffic-counts

4 Data from local
government
association UK

This is a research project and its
purpose is to make data useful
for LGA

http://www.local.gov.uk/web/
guest/research/-/journal_
content/56/10180/7783953/
ARTICLE

5 Transit Feeds It provides web feeds for
transport data and provides
updated information related to
transport department of a city or
state etc.

http://transitfeeds.com/

6 Department for
Transport UK

It provides data for all the A
class roads at city level. Data
collected from data collection
points on roads that fall in the
selected city could be accessed
from this source

7 Transport
Infrastructure
Ireland (TII)

This site also provides traffic
data for main roads (highways).
It could be useful while dealing
with the intercity traffic data.
Do not provide enough data to
deal with the traffic on minor
roads in a city

https://www.nratrafficdata.ie/
c2/gmapbasic.asp?sgid=
ZvyVmXU8jBt9PJE$c7UXt6

8 Tyne and Wear
Region Data

We can access the live traffic
data by using the API provided
by the “Open Data Service”
authority

http://www.gateshead.gov.uk/
Parking-roads-and-travel/
planning/TADU.aspx

(continued)
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6.1 Deep Model Setup

In this work, we have used vehicles flow data on minor roads in a city in UK. It
includes six different vehicle categories ranging from cars or small personal vehicles to
big trucks used for transportation of goods. Data used as input contains 70470 data flow
values for all six vehicle categories for the years from 2000 to 2015 and the road names
along with the road categories are also given.

We are using a deep regression model to predict the vehicle flow values. We have
implemented this model using Keras deep learning library [26]. Our regressing model
has four layers including one input, two hidden and one output layer. We have used the
annual average flow data to predict the traffic flow in a city. Input dataset is divided in
the ratio of 7, 2, 1 for training, testing and prediction purposes respectively. Batch size
was set to 10 and number of epoch was set to 1000.

Table 1. (continued)

Data source Description URL

9 The
WisTransPortal
System

Hourly traffic data index page
could be accessed to get a list of
counties in the Wisconsin State,
USA or county could be
selected from the map as well.
By selecting the county, it
displays all the data available
for different roads in that county
by their names

https://transportal.cee.wisc.
edu/products/hourly-traffic-
data/

10 Wisconsin
Department of
Transport

Provides traffic flow data on
weekly and/or annual basis on
selected roads (say highways)

http://wisconsindot.gov/Pages/
projects/data-plan/traf-counts/
default.aspx

11 North East
Combined
Authority

Provides data for selected areas.
It provides data related to
special events, roadworks,
incidents, journey times for key
roads, car parks and CCTV
images

https://www.netraveldata.co.
uk/

12 Highways
England

Provides three types of data:
Monthly Summary Data,
Journey Time Data, and Traffic
Flow Data. HE also provides a
conversion table that gives
description of traffic data
measurement sites

http://tris.highwaysengland.co.
uk/

13 Developer.
here.com

Provides API to get traffic flow
and incidents data

https://developer.here.com/

148 M. Aqib et al.

https://transportal.cee.wisc.edu/products/hourly-traffic-data/
https://transportal.cee.wisc.edu/products/hourly-traffic-data/
https://transportal.cee.wisc.edu/products/hourly-traffic-data/
http://wisconsindot.gov/Pages/projects/data-plan/traf-counts/default.aspx
http://wisconsindot.gov/Pages/projects/data-plan/traf-counts/default.aspx
http://wisconsindot.gov/Pages/projects/data-plan/traf-counts/default.aspx
https://www.netraveldata.co.uk/
https://www.netraveldata.co.uk/
http://tris.highwaysengland.co.uk/
http://tris.highwaysengland.co.uk/
https://developer.here.com/


6.2 Dataset Schema

Dataset we have used in this work contains annual average flow data for different types
of vehicles. It also provides road names, road category and other information. In
Table 2, we have given the schema of input dataset that provides brief description of
some important input attributes in this dataset.

6.3 Performance Analysis

In this paper, our focus is mainly on providing details of the deep learning based traffic
prediction approach. Details of the overall evacuation method can be found in our
earlier work [3–5]. For our deep learning model, we divided the dataset into three parts
where 70% data was used for training, 20% data for testing purpose and the rest 10%
data is used for prediction purposes. Our deep learning model was executed for 20
times to get results for analysis purpose. Furthermore, for all the 20 models, the batch
size for training purpose was 10 and the training procedure was repeated for 2000 times
in each execution.

We have used annual average vehicle flow data on different roads in a city to
predict flow values on minor roads in a city in UK. We have evaluated the results of all
20 executions of our model to see the variation in the accuracy and error rate. This
gives a better idea about the performance of deep learning model and we calculate the
average accuracy rate. For performance analysis, we have used mean absolute error
(MAE), and mean absolute percentage error (MAPE). MAE is used to shows the
closeness between the actual and the predicted values and MAPE shows the relative
difference between the actual and the predicted values. MAPE is not suitable to cal-
culate error rate if the input data or actual values contain zeros because in this case it
suffers from the division by zero error. MAE and MAPE values are calculated using the
following equations.

Table 2. Schema of dataset used as input in our deep learning model

S.No Attribute name Description

1 Road Gives character code names assigned to a road in the city
2 Road name Name of the road
3 RCat Roads have been divided into different categories. RCat

gives character codes to define its category in city road
network

4 iDir Traffic direction on a road e.g. heading east or west
5 Year Year for which AAFD was collected
6 dCount Day of the year when data was collected. It is in the format

dd-mm-yy h:mm
7 Hour Hour of the day
8 CAR, BUS, LGV,

HGVR2, …
A set of different types of vehicles to provide their flow
values. For example, car gives the annual average flow value
for cars. Similarly, Bus, provides the annual average flow
value for buses and so on
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Mean Absolute Error MAEð Þ ¼ 1
N

XN

i¼1

Vi � Pi

Mean Absolute Percentage Error MAPEð Þ ¼ 1
N

XN

i¼1

Vi � Pi

Vi

Here N is the size (number of values predicted by the model) of dataset used for
prediction purpose, V is the set of actual values used as labels, and P is the set of values
predicted by our deep learning model.

In Fig. 4, we have shown the results obtained by executing our deep model 20
times. In this graph, x-axis shows the number of model and it ranges from 1 to 20, and
y-axis shows the MAE values calculated by using the given equation. Graph shows that
error rate was very low because the maximum error value calculated was for model 5
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and it was 3.58, and in some cases, it was as low as zero. Here zero does not mean that
prediction was exactly the same, but it shows that the values were very close and there
was not a big difference between the original and the predicted values.

In Fig. 5, we have shown the results calculated by using the mean absolute per-
centage error. Same as MAE, we have calculated MAPE for all 20 executions and
prediction results of our deep learning model. Maximum MAPE value is 0.105 for 5th

execution of our model with the same configurations. MAPE is considered a best
measure to the data where there are no extremes and our data also contains a relatively
balanced set of flow values. Therefore, our MAPE values describe that the predicted
results have very low error rate and predicted values are very close to the original flow
values.

In addition to the graphs showing error rates using MAE and MAPE, we have
plotted the actual and predicted flow values to show the difference between patterns as
well. Our MAE and MAPE values shows that the actual and predicted values are very
close. If this is true, then the graphs of both plotted values should show the similar
trends. In Fig. 6, we have plotted the first 100 actual and the predicted flow values. In
this graph, y-axis shows the flow values. As both, actual and predicted values are very
close, so graph is drawn by doubling the predicted values to avoid the overlapping of
both curves. Both the curves show that these are not same but follow a similar trend.
This shows that the predicted values are following the same trend that was followed by
the input flow data with slight differences.

Similarly, to analyze the pattern in depth, we have selected a range of actual flow
values from 1 to 500, i.e. we have selected only those results where actual flow values
are in the range of 1 to 500. The purpose of selecting this range is to see the trends
when flow values were uniform and thus input data values were very close. This is
shown in Fig. 7. Again, the predicted values are doubled to avoid overlapping of both
curves representing the flow values. This graph also shows similar graph for both,
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Fig. 6. Comparison of first 100 actual and predicted flow values.
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actual and predicted flow values with not big differences. In this graph, we have
selected values within a range, therefor it is expected for good prediction results that the
output values should also be in a specific range as shown in this graph. So, we can say
that predicted values have followed the trend that was present in the input dataset.
Therefore, the accuracy rate is high and low MSE and MAPE rates are reported.

7 Conclusion and Future Work

In this work we have used deep learning approach to manage traffic flow in smart cities
for disaster management. Deep learning requires a large amount of data for training
purpose that could easily be accessed from the traffic departments in smart cities. In this
work we have used historic traffic data to predict the traffic flow and its behaviour in
disaster. Results shows very high accuracy rate but this is because of the high corre-
lation between the input data and the output values. Results may differ when same deep
learning model is applied on a different type of data. We have plotted MSE and MAPE
results for all 20 executions of our model with the same specification. Results shows
that a specific accuracy rate was maintained in all 20 executions of our model and thus
we can say that its output is consistent to a certain extent. In addition to error rates, we
have plotted the original and predicted flow values to visualize the difference between
the graph trends followed by actual and predicted values graphs. Graphs also show
similar trends and proves that there are not big differences between the actual and the
predicted values. As mentioned earlier, we mainly have focused in this paper on
providing details of the deep learning based traffic prediction approach. Details of the
overall evacuation method can be found in our earlier work [3–5].

Although, we have shown excellent results in this work, but this is not guaranteed
while working with other traffic data with same or other deep learning models. This
could be the result of high uniformity in input data that was used for training and testing
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purposes and therefore the same performance of deep model could not be guaranteed for
other datasets. Therefore, we aim to work on different data with many other features
including incidents data etc. to see its impact. This may also help us in predicting the
people and other stakeholders behavior in emergency situations and we may model them
collectively to present a model to not only to manage traffic by flow values but also by
including other important factors in that environment as well. We can also use real-time
traffic and other data to present an effective traffic management plan in the effected areas
and can also use big data technologies to deal with real-time data.
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