
Towards High Throughput Semantic
Translation

Maria Ganzha1,4, Marcin Paprzycki1,5, Wies�law Paw�lowski2(B),
Pawe�l Szmeja1, Katarzyna Wasielewska1, Bart�lomiej Solarz-Nies�luchowski1,

and Jara Suárez de Puga Garćıa3

1 Systems Research Institute, Polish Academy of Sciences, Warsaw, Poland
{maria.ganzha,marcin.paprzycki,pawel.szmeja,katarzyna.wasielewska,

bartlomiej.solarz-niesluchowski}@ibspan.waw.pl
2 Faculty of Mathematics, Physics, and Informatics,

University of Gdańsk, Gdańsk, Poland
wieslaw.pawlowski@inf.ug.edu.pl

3 Departamento de Comunicaciones, Universitat Politècnica de València,
Valencia, Spain

jasuade@dcom.upv.es
4 Warsaw University of Technology, Warsaw, Poland
5 Warsaw Management Academy, Warsaw, Poland

Abstract. One of “urban legends” of today’s computer science is: use of
semantic technologies can become a serious performance bottleneck. It is
even possible that this, widely spread, belief is one of the reasons of slow
progress in adopting semantic technologies in real-world applications.
Since, obviously, IoT scenarios involve fast flowing streams of sensor data,
will use of semantic technologies be “efficient enough” to not to adversely
affect the effectiveness of the whole Internet of Things (IoT) ecosystem.
The aim of this contribution is to provide an initial response to this
question.

1 Introduction

It is rather rare when semantic technologies materialize in real-world/industrial
grade projects/deployments. Instead, they are one of poster children of academic
research. It is easy to find publications claiming that, for instance, ontologies will
become a silver bullet for problems of e-commerce [3], or that semantics combined
with software agents will deliver novel form of intelligent systems [2]. It can be
stipulated that one of the reasons of this situation is a, widely held, belief that
semantic technologies result in poor performance of applications. However, very
few tests of this claim, for specific deployments, have been run.

In this context, in the (EU-funded) INTER-IoT project it was decided that
semantic technologies will facilitate high-level interoperability between IoT arti-
facts (platforms, middlewares, applications, etc.). As reported in [4–6,10] the
proposed approach can be summarized as follows. Assume that (1) multiple
artifacts have to communicate (exchange/send/receive) messages within an IoT
c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2018

G. Fortino et al. (Eds.): InterIoT 2017/SaSeIoT 2017, LNICST 242, pp. 67–74, 2018.

https://doi.org/10.1007/978-3-319-93797-7_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93797-7_9&domain=pdf


68 M. Ganzha et al.

ecosystem; and (2) majority of them use different internal data representation
(syntax and semantics). Then, to facilitate interoperability, the following steps
need to be undertaken. (1) Semantics of each artifact has to be represented in the
form of an OWL-based ontology. This may require “lifting” other data represen-
tations to OWL ontologies [4,7]. (2) Uni- or bi-directional syntactic translators
have to be implemented, to translate data from the artifact’s internal syntax to
the RDF representation (and, possibly, back). Note that when an artifact already
uses RDF, the process is reduced to wrapping the message into a “proper struc-
ture”. Need for uni- or bi-directional translation depends on the flow of informa-
tion to be used. (3) Central modular ontology, covering the “core concepts of the
IoT” as well as “domain specific” aspects of the deployment, has to be designed
(from modules recommended by INTER-IoT, or other external ontologies). Mod-
ularity of the central (OWL-based) ontology assures that individual message
flows can be easier managed, if they concern different “aspects” of the ecosys-
tem. (4) Semantic translation mechanism, based on ontology alignments [5,10],
has to be facilitated for translations between ontologies representing semantics
of individual artifacts and the central ontology (and back). Here, again, need
for uni- or bi-directional translation depends on the flow of messages between
artifacts. The latter functionality has been conceptualized and implemented in
the Inter-Platform Semantic Mediator (IPSM) component. The translation rules
are defined in an alignment persisted in the INTER-IoT Alignment Format.

The aim of this contribution is to described preliminary experiments measur-
ing performance of the IPSM. In the next section we introduce the architecture
of the IPSM. We follow with results of throughput testing and conclude with
proposed future work.

2 Inter-Platform Semantic Mediator

The role of the Inter-Platform Semantic Mediator is to facilitate alignment-
based translation between source and target artifacts’ semantics. Specifically, for
each “communicating artifact” it’s ontology is aligned with the central ontology.
Note that there is no need to define complete alignments between ontologies.
It is enough to capture correspondences between parts (or modules) used in
communication. Specifically, while an alignment can represent number of corre-
spondences (for a pair of ontologies), only the actually used ones are included.
Alignments are represented in the INTER-IoT Alignment Format (for details
see [5,10]). This format is based on the Alignment API1 and influenced by the
EDOAL2.

The architecture of the IPSM is depicted in Fig. 1, where one can “follow” the
translation process. Briefly, IPSM offers translation channels and communication
infrastructure, based on Apache Kafka3. An input RDF message, expressed in
the source ontology, is published to a preconfigured input topic associated with
1 http://alignapi.gforge.inria.fr/format.html.
2 http://alignapi.gforge.inria.fr/edoal.html.
3 https://kafka.apache.org/.

http://alignapi.gforge.inria.fr/format.html
http://alignapi.gforge.inria.fr/edoal.html
https://kafka.apache.org/


Towards High Throughput Semantic Translation 69

Fig. 1. IPSM architecture

a translation channel. Next, it gets translated to an RDF message, in the target
ontology, and published to a preconfigured output topic of the channel, from
where it can be consumed. Operations, for alignments and channel management,
are exposed via a REST API. Each communication channel has a number of
configuration parameters, including input and output topic names, alignment
from source to central ontology, alignment from central to target ontology, and
a “parallelism factor” of the channel. A more detailed description of the IPSM
inner structure and the translation process can be found in [6].

3 IPSM Throughput Testing

Let us now discuss results of experimental testing of performance of the IPSM.
Since IPSM is used to translate messages, we have decided to focus on through-
put of the translation process. In other words, we assess how fast messages are
translated. Due to the limited space, we report only a single set of experiments.

3.1 Experimental Setup

Let us introduce the setup used for carrying the experiments. We have used
three different “machines”. (A) Desktop PC with dual-core AMD Athlon 64 X2
processor and 4 GB of RAM, (B) Desktop PC with a quad-core Intel Core2 pro-
cessor running at 2.4 GHz, with 4 GB of RAM, and (C) MS Azure VM exposing
a “dual-core subset” of the Intel Xeon E5-2673 processor4, and 8 GB of RAM.
4 12-core Xeon E5-2673 offers two logical cores for each physical one, resulting in 4

(logical) cores available to the Azure VM.



70 M. Ganzha et al.

Translation involved real-life size and complexity messages, including geospa-
tial data. In each experiment, 40,000 messages have been generated (with actual
payload, differing by randomly chosen sensor data and numerical values of lati-
tude and longitude). IPSM was set up to log the individual message processing
time using Apache Kafka. Monitoring data was analyzed using R5 framework.

3.2 Results and Analysis

In Fig. 2, a comparative histogram of message processing times for all three
testing environments is presented. Specifically, we show how many messages
have been processed within 5 ms, 15 ms , 25 ms, etc. As expected, the Azure VM
was the most efficient, with a majority of messages processed within 5–15 ms.
The next was the quad-core Intel machine, where processing time of majority of
messages was between 5–25 ms. More importantly, even in the case of a weak,
approximately 8 years old Athlon-based machine, the processing time of a vast
majority of messages was less than 35 ms. This seems to contradict that general
view that semantic technologies have to introduce bottlenecks to applications
running them.

Fig. 2. IPSM message processing time(s) – comparative histogram

Interestingly, we have observed (but have no space to depict) that perfor-
mance of the Azure-based infrastructure was somewhat “erratic”. Specifically, in
each run there was a (small) number of individual messages that took relatively
large amount of time to be translated. For instance, 3–5 messages took around
200 ms each, to be processed. We believe that this is an effect of Azure being a
virtual machine, running together with other processes/VMs on a shared hard-
ware, and competing for resources. No similar “obvious processing time peaks”
5 https://www.r-project.org/.

https://www.r-project.org/


Towards High Throughput Semantic Translation 71

were observed for the “physical machines”. The figure shows that the IPSM per-
formance “gently degrades” in accordance with the hardware specification of the
machines used for testing.

The next series of experiments concerned possibility of further utilizing
potential of the underlying hardware. We started by testing the influence of
internal parallelism of translation channels. This time, we have concentrated
solely on the Azure VM, as the most powerful environment in our setup. Results
of experiments have been summarized in Fig. 3. Once again, we have streamed 40
thousand randomly generated, parametrized messages through a single transla-
tion channel, with a “parallelism factor” ranging from 1, up to 32. Figure 3
shows, for each of the tested factor values, a relationship between the message
processing time median, and the total time needed to translate the whole stream.

Fig. 3. Processing 40k messages via channel with internal parallelism on Azure VM

As can be seen, “performance gain” (represented as reduction of total process-
ing time for all messages) has a “sweet spot” for the channel parallelism factor
equal to 4. Further attempts at increasing the channel internal parallelism either
result in substantial increase of the median or do not bring (sufficient) reduction
of the total processing time. In other words, in-channel 4x parallelism exhausted
resources of hardware used in our experiments. Obviously, for different hardware,
it may be possible to further (in-channel) parallelize flow of messages.

Finally, in the last series of experiments, we have used multiple 1–16 (purely
sequential) IPSM channels. As before, each run involved 40.000 messages (Fig. 4).

The results show that the sweet spot is, again, reached for four channels,
where the underlying hardware became “saturated”. Together with the results
of the channel internal parallelism tests this shows that the IPSM translation



72 M. Ganzha et al.

Fig. 4. Processing 40k messages via multiple channels on Azure VM

infrastructure is able to efficiently utilize the “native threads” (logical cores) of
the VM’s CPU.

All completed, thus far, performance test show that the IPSM architecture is
not only efficient, but also scales very well “vertically”, i.e., the more powerful the
available hardware, the better translation throughput can be observed. Here, let
us note that IPSM has been implemented using Scala programming language [9]
and the actor-based [1,8] Akka6 toolkit. Thanks to the well known properties of
Akka and Apache Kafka, which was used to organize the IPSM communication
infrastructure, and due to the fact that IPSM is component that can be deployed
in multiple instances, it should also be highly scalable “horizontally”.

4 Conclusions and Future Work

In this contribution we have attempted at experimentally addressing the ques-
tion: is it really the case that use of semantic technologies results in serious
performance bottlenecks? The context for seeking an answer was provided by
the semantic translation that is being implemented in the IPSM component,
developed within the framework of the INTER-IoT project.

The results are quite promising, since even when running the IPSM on an
almost obsolete computer hardware, the processing time is reasonable. Therefore,
we believe that semantic technologies can be used for information processing
(e.g. semantic translation) even in the case relatively fast data flows.

6 https://akka.io/.

https://akka.io/


Towards High Throughput Semantic Translation 73

Obviously, it is possible that more complex semantic translation scenarios
than the ones used in our tests, will be needed. As a matter of fact, such trans-
lations are very likely to materialize within the scope of the INTER-IoT project.
Therefore, we will continue our research and study performance of the IPSM in
such cases. We will also see, which elements of the IPSM can be optimized to
further improve its performance (in case of complex semantic translations). To
even further improve the horizontal scalability of our solution we plan to inves-
tigate the possibility of forming IPSM clusters, where multiple IPSM instances
can be administered and utilized in a uniform way.

Acknowledgment. This research was partially supported by the European Union’s
“Horizon 2020” research and innovation program as part of the “Interoperability of Het-
erogeneous IoT Platforms” (INTER-IoT) project under Grant Agreement No. 687283.

References

1. Agha, G.A.: Actors: A Model of Concurrent Computation in Distributed Systems.
MIT Press, Cambridge (1986)

2. Allemang, D., Handler, J.: Semantic Web for the Working Ontologist, Second Edi-
tion: Effective Modeling in RDFS and OWL. Morgan Kaufmann Publishers Inc.,
San Francisco (2008)

3. Fensel, D.: Ontologies: Silver Bullet for Knowledge Management and Elec-
tronic Commerce. Springer, Heidelberg (2001). https://doi.org/10.1007/978-3-
662-04396-7

4. Ganzha, M., Paprzycki, M., Paw�lowski, W., Szmeja, P., Wasielewska, K.: Towards
semantic interoperability between Internet of Things platforms. In: Gravina, R.,
Palau, C.E., Manso, M., Liotta, A., Fortino, G. (eds.) Integration, Interconnection,
and Interoperability of IoT Systems. IT, pp. 103–127. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-61300-0 6

5. Ganzha, M., Paprzycki, M., Paw�lowski, W., Szmeja, P., Wasielewska, K.:
Alignment-based semantic translation of geospatial data. In: Proceedings of the 3rd
International Conference on Advances in Computing, Communication & Automa-
tion (ICACCA) (in press)

6. Ganzha, M., Paprzycki, M., Paw�lowski, W., Szmeja, P., Wasielewska, K.: Stream-
ing semantic translations. In: Proceedings of the 21st International Conference on
System Theory, Control and Computing, ICSTCC (in press)

7. Ganzha, M., Paprzycki, M., Paw�lowski, W., Szmeja, P., Wasielewska, K., Palau,
C.E.: From implicit semantics towards ontologies–practical considerations from the
INTER-IoT perspective (submitted for publication). In: Proceedings of 1st Edition
of Globe-IoT 2017: Towards Global Interoperability Among IoT Systems (2017)

8. Hewitt, C., Bishop, P., Steiger, R.: A universal modular ACTOR formalism for
artificial intelligence. In: Proceedings of the 3rd International Joint Conference
on Artificial Intelligence, IJCAI 1973, pp. 235–245. Morgan Kaufmann Publishers
Inc., San Francisco (1973)

https://doi.org/10.1007/978-3-662-04396-7
https://doi.org/10.1007/978-3-662-04396-7
https://doi.org/10.1007/978-3-319-61300-0_6


74 M. Ganzha et al.

9. Odersky, M., Spoon, L., Venners, B.: Programming in Scala, 3rd edn. Artima Press,
USA (2016)

10. Ganzha, M., Paprzycki, M., Paw�lowski, W., Szmeja, P., Wasielewska, K.: Declar-
ative ontology alignment format for semantic translation. In: 3rd International
Conference on Internet of Things: Smart Innovation and Usages (IoT-SIU 2018)
(submitted)


	Towards High Throughput Semantic Translation
	1 Introduction
	2 Inter-Platform Semantic Mediator
	3 IPSM Throughput Testing
	3.1 Experimental Setup
	3.2 Results and Analysis

	4 Conclusions and Future Work
	References




