
Observing Interoperability of IoT
Systems Through Model-Based Testing

Koray Incki(B) and Ismail Ari

Department of Computer Science, Özyeğin University, Istanbul, Turkey
ben@korayincki.com

Abstract. Internet of Things (IoT) has drastically modified the indus-
trial services provided through autonomous machine-to-machine interac-
tions. Such systems comprise of devices manufactured by various suppli-
ers. Verification is a challenge due to high heterogeneity of composing
devices. In this paper, we present initial results of model-based interop-
erability testing for IoT systems to facilitate automatic test case gener-
ation. We utilize messaging model of Constrained Application Protocol
so as to deduce complex relations between participating devices. We
use Complex-Event Processing (CEP) techniques in order to streamline
the verification process after generating proper runtime monitors from
sequence diagrams. We demonstrate our solution on a fictitious health-
care system.

Keywords: Internet of Things · Model-based testing
Constrained-Application Protocol · Runtime verification
Complex-event processing

1 Introduction

IoT presents a new computing phenomenon for such devices that are smart yet
resource-constrained devices. Those devices involve heterogeneous day-to-day
smart objects [1], which aim to seamlessly construct new services and appli-
cations through untethered autonomous machine-to-machine (M2M) collabora-
tions. Interoperability is a major challenge in achieving such a goal, as there
might occur unprecedented interactions between those objects. It is an issue in
such systems of systems that are composed of subsystems with various communi-
cation protocols, application interfaces. Such interoperability as in communica-
tion layers involves protocol specific interoperability; for example, CoAP-based
devices must be interoperable with respect to the CoAP standard [4,14].

IETF task force CoRE (Constrained RESTful Environments) [3] has pro-
moted adoption of service-oriented in IoT domain with the introduction of
an application layer protocol. The Constrained-Application Protocol (CoAP)
[4] presents a RESTful-like programming environment that not only helps to
develop such systems, but also raises new challenges in providing for interoper-
ability between endpoints. In this paper, we attack the interoperability problem
of application layer interfaces in CoRE IoT domain.
c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2018

G. Fortino et al. (Eds.): InterIoT 2017/SaSeIoT 2017, LNICST 242, pp. 60–66, 2018.

https://doi.org/10.1007/978-3-319-93797-7_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93797-7_8&domain=pdf


MBT for Interoperability 61

IoT systems are intrinsically hot swap systems, such that an endpoint can be
exchanged with another endpoint providing (supposedly) the same services with
the same address. But, endpoint configuration can have flaws before swapping.
Thus, this might cause runtime failures even though the overall system design is
verified in the development phase. Thus, we believe that a runtime solution for
interoperability testing is a necessity in IoT domain.

IoT systems usually consist of commercial-off-the shelf (COTS) products
with nearly no knowledge of internal implementation details, we promote a
black-box testing approach for providing interoperability. We propose that a
model-based testing approach that leverages the RESTful-like application layer
interaction model of CoAP-based IoT systems should facilitate interoperability
testing efforts. Model-based testing (MBT) has been utilized in several domains
[8]. We demonstrate the applicability of MBT in IoT domain through imple-
mentation of a case study with Papyrus [5] modeling tool. Our previous work
on runtime verification of IoT systems [6] has demonstrated that an IoT system
can be described in terms of simple events occurring in the system. Thereby, we
proposed a verification approach that utilized complex-event processing (CEP)
technique. In this paper, we further that research with a MBT solution that
allows automatically generating test cases from sequence diagrams in a UML
model.

The paper is organized such that Sect. 2 discusses recent research on interop-
erability testing, Sect. 3 provides our solution framework, and Sect. 4 elaborates
on the implementation. In Sect. 5 we conclude with a discussion and future work.

2 Related Work

A black-box testing approach for assuring interoperability assumes that the indi-
vidual components are thoroughly tested by the manufacturer. But, when it
comes to the complexities of the integrated heterogeneous system of systems,
the runtime actions of the system might be overlooked with black-box testing.
In [8] Wu et al. proposes using Unified Modeling Language (UML) [7] to express
the expected behavior of a component-based software. They utilize interaction
diagrams to capture functionality expected from the system. They explain how
UML interaction diagrams can be used to extract the context-dependence and
content-dependence relations so as to use in deciding if test cases are comprehen-
sive or not. The research doesn’t provide any guidance through implementation
nor the automation of a model-based testing approach.

Internet community is majorly built around web services concept, thus inter-
operability of those distributed and heterogeneous services is an ongoing chal-
lenge. Bertolino et al. [10] proposed an audition framework for solving this prob-
lem. They extend the UDDI registries so that the services registered to a direc-
tory is audited before it is registered. Thereby, they validate the claimed behavior
of the service before such services with the same UDDI registry can collaborate
with proclaimed service contracts. This is a solid contribution in service registry
coordination, however it lacks to observe the runtime behavior of services.



62 K. Incki and I. Ari

In [13], Smythe discusses that using a the modeling approach in develop-
ment of a distributed service oriented system facilitates both implementation and
testing efforts. The interoperability tests are automatically generated through a
series of XML Metadata Interchange (XMI) transformations over a UML model
of the system. Our approach also use XMI transformations in order to facilitate
runtime EPL statements for interoperability testing.

In [14] authors proposes a new solution for certification of products, which
involves conformance testing of IoT devices with respect to CoAP standards [4].
In their approach, they first record the live network traffic, and save them in
files for post processing. When the system test run finishes, they collect those
record files and apply post mortem tests on those logs so as to find any devi-
ation in the CoAP communication primitives from the standard specification.
The test cases are prerecorded according to the standard specification. Since,
they operate on recorded log files, the approach does not scale well to runtime
(online) interoperability testing. Moreover, they focus solely on protocol imple-
mentation interoperability, so the solution does not scale well for application
specific interaction models.

3 Model-Based Testing for Interoperability

Software intensive systems has increasingly being developed with component-
based architectures [9]. IoT systems are no exception to that adoption in the
industry. Particularly, application layer protocols such as CoAP have made it
possible to treat such systems purely as service-oriented systems. Monitoring of
services in SOA systems has been valuable for post mortem analysis [12]. Thus,
we will define how model-based testing approach can be used for describing
the service interactions, and consequently facilitate interoperability testing at
runtime.

Interoperability issue might be present at various levels of communication
layers. Application level interoperability can be defined to occur between service
calls, such that endpoint-A calls a service that exists in endpoint-B with the
correct signature and parameters, and also data interoperability. In this research
we address solely service call interoperability.

Figure 1 summarizes our solution framework. A system integrator first
(Step-1) needs to model the interoperability scenarios in sequence diagrams.
Each diagram captures expected behavior of an individual service of a partic-
ular endpoint in terms of CoAP interactions with other endpoints; thus, there
must be as much sequence diagrams as the number of services provided by an
endpoint in an IoT system, in order for fully covering all behaviors. The inter-
actions are represented as asynchronous message exchanges in the sequence dia-
grams. In second step, a model-to-text transformation algorithm is exerted on
each sequence diagram to transform event relations in it into EPL statements.
EPL statements act as runtime monitors. EPL statement is an executable special
purpose instruction written in Event Processing Language (EPL) of Esper CEP
engine [15]. EPL statements are implemented as (see Sect. 4) Java classes that



MBT for Interoperability 63

Fig. 1. MBT process for interoperability

can be run on any Java compatible platform. Those are registered (in Step-3)
with an Esper engine running either on a stand-alone endpoint acting as an edge
computing solution for interoperability testing, or it can be provided as a service
over a cloud implementation. In step 4, the CoAP events that are captured from
the running network by means of sniffing it passively are injected into the Esper
engine for monitoring through complex-event processing. The Verdict can either
be SUCCESS or FAIL depending on the result.

4 Implementation

The example implementation assumes a healthcare system based on research
in [16]. They present a case study on interoperability testing for HL7 systems
with a sample hardware reference implementation. The communication model is
based on CoAP (Fig. 2).

Fig. 2. Healthcare interoperability [16]

In [6] we showed that a CoAPsystem can be expressed in terms of Send
Events in the system. Thus, we can represent a patient consent scenario with a
sequence diagram as in Fig. 3. For ensuring privacy, a doctor must first request
patient’s consent for observing health data (e.g., ECG) (m1). After the patient
grants the consent (m2), the doctor can ask to observe the patient data (m3).



64 K. Incki and I. Ari

Fig. 3. Patient consent sequence diagram

After that, the sensor on patient can periodically sends the measured data (m4).
Each ei represents a send event for corresponding message mi.

Follows(ei, ti, ej , tj)
≡ ∃ei, ti, ej , tjHappens(ei, ti) ∧ Happens(ej , tj) ∧ (ti < tj) (1)

The system in Fig. 3 can be represented in terms of events (Eq. 1) by using
Follows relations as described in [6]. Equation 1 states that ei must be followed by
ej if they appear sequentially on the sequence diagram (e.g., e2 follows e1). Thus,
by observing if each sequential pair of (ei, ej) at runtime satisfies Follows relation
we can conclude that interoperability patient consent requirement. In order to
conclude with a SUCCESS verdict (Eq. 2), we must have e1 ≺ e2 ≺ e3 ≺ e4,
where ≺ denotes the precedence relation. For a FAIL result (Eq. 3), a ei ⊀ ej
must hold for (i, j) ∈ {(1, 2), (2, 3), (3, 4)}, where ⊀ represents doesn’t precede
relation. Equation 3 states that the CEP engine must select all the complex
events that occur as a result of m1 is followed by either m3 or m4 message
before an m2 event occurs in order to indicate a failure case. The same rule can
be extended for other messages as well.

select ′SUCCESS′from HealthEvent match recognize(
measures A.mId as a id,B.mId as b id, C.mId as c id,D.mId as d id

pattern (A B C D) define A as A.mId = m1, B as B.mId = m2,

C as C.mId = m3,D
′asD.mId = m4); (2)

select ′FAIL′,m1 from pattern [everym1 = HealthEvent(mId = m1) − >

((m3 = HealthEvent(mId = m3) or m4 = HealthEvent(mId = m4)) and

not m2 = HealthEvent(mId = m2))] ; (3)

Figures 4 and 5 list algorithms for generating EPL statements for Success and
Fail cases of interoperability testing in Acceleo. Acceleo runs over XMI definitions
of sequence diagrams, and generates Java classes containing corresponding EPL
statements (Eqs. 2 and 3). After executing M2T code in Papyrus [5], a Java class



MBT for Interoperability 65

Fig. 4. Algorithm for generating epl statement of success verdict

Fig. 5. Algorithm for generating EPL statement of fail verdict

containing a similar EPL statement as in Eq. 2 is generated. This EPL statement
selects all the matching sequences of messages as described in Fig. 3.

The solution framework can be extended to other scenarios by following the
procedure and implementation details described in Sects. 3 and 4. The event
relations logic, how to sniff a network for CoAP packets through a CoAP sniffer,
and how to run runtime monitors as EPL statements are explained in [6]. Note
that, the solution framework would be applicable to both online and offline
testing provided that raw CoAP packets are injected into the CoAP Sniffer.
This solution enables for observing interoperability of IoT systems at runtime.

5 Conclusion

The paper presented a framework for facilitating interoperability testing of IoT
systems. The framework promotes interoperability through model-based testing
techniques. We utilized sequence diagrams in order to describe expected inter-
actions between endpoints. Then, those are extracted from the diagram so as
to compose a set of runtime monitors in terms of CEP EPL statements. We
demonstrated the applicability of this approach with a case study on a health-
care system. Our future work will address a more comprehensive interoperabil-
ity approach by involving structural and semantics testing; which will present
a domain-specific metamodel for CoAP-based IoT systems, and the framework
will be incorporated in a cloud service such that the solution can be used as
a service. We believe that we can model the interactions between IoT systems
with thorough event relations, which elaborates on the application layer protocol
behavior.



66 K. Incki and I. Ari

References

1. Fortino, G., Trunfio, P.: Internet of Things Based on Smart Objects, Technology,
Middleware and Applications. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-00491-4

2. Spichkova, M., Schmidt, H., Peake, I.: From abstract modelling to remote cyber-
physical integration/interoperability testing. CoRR Journal, abs/1403.1005 (2014)

3. IETF Constrained RESTful Environments (core) Working Group. https://
datatracker.ietf.org/wg/core/about/

4. Shelby, Z., Hartke, K., Bormann, C.: The constrained application protocol (CoAP).
IETF RFC-7252 (2014)

5. Papyrus Modeling Environment. https://eclipse.org/papyrus/
6. İnçki, K., Arı, İ., Sözer, H.: Runtime verification of IoT system using complex event

processing. In: Proceedings of 14th IEEE International Conference on Networking,
Sensing and Control, Italy. IEEE Press (2017)

7. Unified Modeling Language (UML) Version 2.5. http://www.omg.org/spec/UML/
2.5/

8. Wu, Y., Chen, M.-H., Offutt, J.: UML-based integration testing for component-
based software. In: Erdogmus, H., Weng, T. (eds.) ICCBSS 2003. LNCS, vol. 2580,
pp. 251–260. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36465-
X 24

9. Allen, P.: Component-based Development for Enterprise Systems: Applying the
SELECT Perspective. Cambridge University Press, Cambridge, UK, New York
(1998)

10. Bertolino, A., Polini, C.: The audition framework for testing web services interoper-
ability. In: 31st EUROMICRO Conference on Software Engineering and Advanced
Applications (2005)

11. Vega, D.E., Schieferdecker, I., Din, G.: Design of a test framework for automated
interoperability testing of healthcare information systems. In: 2010 Second Inter-
national Conference on eHealth, Telemedicine, and Social Medicine (2010)

12. Canfora, G., Di Penta, M.: Testing services and service-centric systems: challenges
and opportunities. IEEE IT Prof. 8(2), 10–17 (2005)

13. Smythe, C.: Initial investigations into interoperability testing of web services from
their specification using the unified modelling language. In: Proceedings of Interna-
tional Workshop on Web Services Modeling and Testing (WS-MaTe 2006) (2006)

14. Chen, N., Viho, C., Baire, A., Huang, X., Zha, J.: Ensuring interoperability for
the Internet of Things: experience with CoAP protocol testing. Automatika 54(4)
(2013)

15. EsperTech Complex-Event Processing Tool. http://espertech.com/
16. Gebase, L., Snelick, R., Skall, M.: Conformance testing and interoperability: a

case study in healthcare data exchange. In: Proceedings of the 2008 International
Conference on Software Engineering Research and Practice, SERP 2008, Las Vegas
(2008)

17. Acceleo Model to Text Language. https://www.eclipse.org/acceleo/

https://doi.org/10.1007/978-3-319-00491-4
https://doi.org/10.1007/978-3-319-00491-4
https://datatracker.ietf.org/wg/core/about/
https://datatracker.ietf.org/wg/core/about/
https://eclipse.org/papyrus/
http://www.omg.org/spec/UML/2.5/
http://www.omg.org/spec/UML/2.5/
https://doi.org/10.1007/3-540-36465-X_24
https://doi.org/10.1007/3-540-36465-X_24
http://espertech.com/
https://www.eclipse.org/acceleo/

	Observing Interoperability of IoT Systems Through Model-Based Testing
	1 Introduction
	2 Related Work
	3 Model-Based Testing for Interoperability
	4 Implementation
	5 Conclusion
	References




