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Abstract. X.509 is the de facto digital certificate standard used in
building the Public Key Infrastructure (PKI) on the Internet. However,
traditional X.509 certificates are too heavy for battery powered or energy
harvesting Internet of Things (IoT) devices where it is crucial that energy
consumption and memory footprints are as minimal as possible.

In this paper we propose, implement, and evaluate a lightweight digi-
tal certificate for resource-constrained IoT devices. We develop an X.509
profile for IoT including only the fields necessary for IoT devices, with-
out compromising the certificate security. Furthermore, we also propose
compression of the X.509 profiled fields using the contemporary CBOR
encoding scheme. Most importantly, our solutions are compatible with
the existing X.509 standard, meaning that our profiled and compressed
X.509 certificates for IoT can be enrolled, verified and revoked without
requiring modification in the existing X.509 standard and PKI imple-
mentations. We implement our solution in the Contiki OS and perform
evaluation of our profiled and compressed certificates on a state-of-the-
art loT hardware.
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1 Introduction

Most IoT standards [1,2] specify the use of digital certificates. We have recently
shown that even though conventional X.509 certificates fit into state-of-the-art
IoT hardware [3], they have significant overhead in terms of energy consumption
on battery-powered IoT devices. Conventional certificate standards are devel-
oped for workstations and servers in mind, where factors like computational
power, memory footprint and energy consumption are not main concerns. How-
ever, in battery powered and energy harvesting IoT devices, these factors are
crucial and it is therefore important to adapt these standards to be more suitable
for IoT. We have already adapted the Internet communication security standards
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to IoT by providing the 6LoOWPAN header compression mechanisms for these
standards, namely IPsec [4] and DTLS [5]. In the previous work, we have either
used pre-shared keys or standard X.509 certificates. There are already efforts to
compress digital certificates [6] without breaking the compatibility, which uses
conventional compressing methods and dictionaries with reoccurring and fre-
quently used text strings to compress X.509 certificates. A modified version of
gzip uses the DEFLATE [7] compression algorithm with a dictionary consisting
of a typical certificate with unpopulated cryptographic fields. These solutions are
designed for conventional Internet hosts; however, they can be complementarily
employed along with the solutions proposed in this paper.

This paper investigates and proposes a lightweight implementation of a digi-
tal certificate with properties such as low memory footprint, low computational
complexity and minimised data transfer as the main concerns. The solution pro-
posed in this paper consists of two parts. The first part is an X.509 Profile for
ToT which specify the necessary field that must be included when communicating
with ToT devices, without compromising the security and standard compliance.
To further reduce the size, the second part specifies compression mechanisms for
the profiled X.509 certificate fields, which are applied when a certificate travels
within 6LoWPAN networks. Certificates conforming to this profile will be fully
valid X.509 certificates and can be processed by any entity that can process
regular X.509 certificates. However, new IoT devices cannot process the legacy
X.509 certificates that are generated without using the guidelines detailed in this
paper. Certificates for IoT devices have to be explicitly issued using the speci-
fication of this profile. Legacy devices can get new lightweight X509 certificates
that conforms to this profile.

We implement our IoT X.509 profile in Contiki, a state-of-the-art operat-
ing system for ToT. Our implementation consists of (i) traditional, (ii) profiled,
and (iii) compressed X.509 certificates and their processing. We also perform
empirical evaluation of our solution using a state-of-the-art IoT hardware, the
ARM’s Cortex M3 MCU packaged in the TT’s CC2538 system on chip. Our eval-
uation consists of energy, memory and packet overhead, and shows significant
improvements over the traditional X.509 certificates.

2 Background Technologies

2.1 X.509 Certificates

The X.509 [8] certificates has been around for a long time and are a part of
many standards such as Datagram TLS [9] and IKEv2 [10]. An X.509 certificate
essentially consists of three parts: (i) information about the subject, issuer and
details about the certificate such as serial number and validity dates; () the
public key of the subject and its cryptographic algorithm; and (%ii) a signature
from the issuing Certificate Authority (CA). The latest version (X.509 version 3)
has opened up for optional extensions, which can be marked as critical and thus
has to be processed by the receiver. An X.509 certificate is specified and encoded
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using the Abstract Syntax Notation One (ASN.1) [11] Distinguished Encoding
Rules (DER), and then converted to Base64 before it is stored or transmitted.

2.2 CBOR and CDDL

Concise Binary Object Representation (CBOR) [12] is a lightweight encod-
ing scheme with support for binary data. CBOR is designed to be extremely
lightweight in terms of code and message sizes. CBOR is based on JSON [13]
and fully supports the JSON syntax and data types. Even though CBOR does
not rely on a specific schema in order to encode and decode messages, the CBOR
Data Definition Language (CDDL) [14] was specified in order to describe and
constrain CBOR structures. We use CBOR to encode and ultimately compress
our profiled X.509 certificate.

2.3 1IoT Protocols: 6LoWPAN, CoAP, DTLS

IPv6 over Low power Wireless Personal Area Networks (6LoWPAN) [15] is a
transmission protocol that enables IPv6 communication over low-powered and
lossy networks, such as the IEEE 802.15.4 protocol. The Constrained Application
Protocol (CoAP) [16] is a web protocol (similar to HTTP) standardised for IoT.
Secure CoAP (CoAPs) mandates Datagram TLS (DTLS) [17]. CoAP has some
restrictions on how the certificates must be constructed. Section9.1.3.3 of the
CoAP standard specifies the cipher suits and subject names to be used, which we
take into consideration when designing a certificate for IoT. The DTLS Profile
for ToT [9] specifies the use of DTLS protocol in constrained environments. This
profile also specifies the use of certificates and their contents, where restrictions
have been made to keep the certificates smaller. Our work is in line with these
guidelines.

3 X.509 Profile for IoT

In this section, we propose the X.509 certificate profile for IoT and discuss indi-
vidual fields and their compression mechanisms. In our design, we also use the
guidelines from the DTLS profile for IoT [9] standard.

Version. The current (since 2008) version is 3, which introduces optional exten-
sions. Version 3 is also the only valid version used in the DTLS Profile for IoT. In
our profiled certificate too we fixed the version value to 3. Restricting the version
number allows us omitting this field while a certificate travels within 6LoWPAN
networks. When a certificate leaves a 6LoWPAN network, the version field is
set to 3.

Serial Number. A CA chooses the serial number during the certificate enrollment
process. We do not make any restriction on the serial number value; however,
we suggest low numbers and the size is reduced by encoding it in the CBOR
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format. Relying on the DTLS IoT profile guidelines we also use only unsigned
values.

Signature and signatureAlgorithm. These fields specify the signature algorithm
that a CA uses to sign a certificate. Both the signature and signatureAlgorithm
fields contain the same value. We omit both the signature and the signatureAlgo-
rithm fields, and fix the signature algorithm to ecdsaWithSHA256, which is also
used in the DTLS IoT profile. The field is populated back to ecdsaWithSHA256
by the 6LoWPAN border router when the certificate leaves 6LoWPAN networks.

Issuer. It is a non-empty sequence of name-value pairs that is used to identify
the issuing CA. Though the issuer is a key field to map a given certificate to
a certain CA, the range of possibilities to identify an issuer is extensive and
using full range is not suitable for IoT devices. We therefore restrict this field
to common name (CN) of the UTF8String type. However, the name must not
be the same as for any other known CA. Our CBOR coding of this field reduces
the example “Root CA” to 8 bytes from 20 bytes.

-- Compressed CBOR -- (8 bytes)
0x67 // Text string of size 7
0x52 0x6F Ox6F 0x74 0x20 0x43 0x41 // Value "Root CA"

Validity. It is a sequence of two dates: the start date and the end date, which
can be represented in multiple formats. The ASN.1 representations used in con-
ventional X.509 certificates are the longest of them all, with up to almost six
times more bytes needed than UnixTime. We compress the textual format to
UnixTime that requires the least amount of bytes to represent a date: four bytes
before January 2038 and 5 bytes after that. Since UTCTime is implied, the
structural specifiers are omitted.

Subject. Similar to the Issuer field, the subject field represents the entity with
the given public key. A subject can be another CA or an end-user. In both cases
it must be a non-empty Distinguished Name (DN). Relying on the DTLS ToT
profile guidelines, the subject field in our profile contains the CN represented
in the EUI-64 format when the certificate is issued to an IoT device. We rep-
resent the CN in the UTF8String format that is used in the IEEE Guidelines
for EUI-64 [18]. Within 6LoWPAN networks, we compress the CN to the binary
representation and CBOR format, which brings the size down to 9 bytes from
36 bytes. The CBOR format is represented below.

—-- Compressed CBOR -- (9 bytes)
0x48 // Byte array of size 8
0x01 0x23 0x45 0x67 0x89 0xAB 0xCD OxEF // Value 0x0123456789ABCDEF

Subject Public Key Info. It contains the public key in a bit string and the algo-
rithm the key is used with. For our profiled certificate we fix the algorithm to the
256-bits ECC keys from the curve prime256v1; we therefore omit the algorithm
information when a certificate travels within 6LoWPAN networks. We compress
the ECC public keys using the Miller’s approach [19]. Compression is done by
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omitting the y-value and providing an information byte, depending on the char-
acteristics of y. The information byte will either be 0x02 or 0x03 when the key
is compressed. Since the equation of the given curve is known (y? = 23+ ax +b),
y be calculated from z as the square root of 23 + ax + b. The details of compres-
sion and decompression of ECC public keys can be found in [20] Sects. 2.3.3 and
2.3.4, respectively. To further reduce the key size within 6LoWPAN networks
we encode the compressed key into the CBOR format, which in total reduces its
size from 91 to 35 bytes.

-- Compressed CBOR -- (35 bytes)
0x58 0x21 // Byte string of size 33
0x0* [ECC value X] // Where * is 2 or 3, depending on y value)

Issuer Unique ID and Subject Unique ID. These fields are only valid for version 2
or 3, and are only necessary if the issuer or subject are duplicated. In our solution,
subjects are inherently unique, and issuers must use unique names, which makes
these fields unnecessary. We therefor omit these fields in the profiled certificate.

Extensions. Extensions consist of three parts; an OID, a boolean telling if it is
critical or not, and a ASN.1 DER encoded bit string as the value. We compress
the OIDs by omitting the first two bytes that will always be 0x551D. The rest of
the OID bytes are used as a tag for the CBOR structure which has the format:
[tag, critical*, value], where critical is a true or false value and is the same as
in ASN.1. The value will contain the DER encoded bit string, as a compression
mechanism for all possible extensions and their variants will be too complex to
fit in this simple protocol. Any extension is allowed in this profile. Here is an
example of the compressed extension field [[1, true, 0x3000], [15, 0x03020284]].

-- Compressed CBOR -- (14 bytes)

0x82 /* Array of size 2 */ 0x83 // Array of size 3
0x13 /* Value 1 %/ 0xF5 // Value true
0x42 /* Byte sting of size 2 */  0x30 0x00 // Value
0x82 /* Array of size 2 */ 0xOF // Value 15

0x44 /+* Byte string of size 4 */ 0x03 0x02 0x02 0x84 // Value

Signature. This is an encoded bit string that represents the actual digital signa-
ture of a CA. We use the ECDSA-Sig-Value format described in RFC5480 [21].
The r and s values in an ECDSA signature are both 256 bits (32 bytes) unsigned
integers, when using the prime256v1 curve. Unlike the x and y values of an ECC
public key, r and s are not points on the curve and therefore cannot be com-
pressed in the same way. There are however patented solutions for compressing
ECDSA signatures, for example Compressed ECDSA signatures (patent number
US 8631240 B2) [22], where the s value is replaced by a smaller value ¢. Within
6LoWPAN networks, we omit the signatureAlgorithm value (as it is fixed) and
compress the signature by encoding it to the CBOR format, which reduces the
size from 75 to 66 bytes.
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-- Compressed CBOR -- (66 bytes)
0x58 /*Byte array*/ 0x40 // Size 64
[32 bytes r value] [32 bytes s value]

Table 1 shows the summary of all the X.509 certificate fields and their values
in our profile.

Table 1. Summary of certificate field contents in the X.509 Profile for IoT.

Field Value

Version 3

Serial number Unsigned integer

Signature ecdsaWithSHA256

Issuer CommonName containing CA name as
UTF8String

Validity UTCTime in format YYMMDDhhmmssZ

Subject CommonName containing CA name or
EUI-64 as UTF8String

Subject public key info ecPublicKey followed by prime256v1 and
64 byte uncompressed ECC public key

Issuer and subject unique ID | Not present

Extensions Any extension

Signature algorithm ecdsaWithSHA256

Signature ECDSA-Sig-Value ::= SEQUENCE
{r INTEGER, s INTEGER}

4 Implementation and Evaluation

We implement our proposed IoT X.509 profile in Contiki, an operating system
for IoT. Our implementation supports our proposed compression, decompres-
sion, verification of compressed certificates and creation of new certificates. In
our implementation, a certificate can be in three different states: Uncompressed,
Compressed, and Decoded. An uncompressed certificate is our profiled X.509
certificate, which is used outside 6LoOWPAN networks. It is represented as a
byte array containing the ASN.1 DER encoded structure. A compressed version
of a certificate is our profiled certificate compressed and encoded with the tech-
niques specified in Sect. 3. It is used when a certificate travels within 6LoWPAN
networks. It is represented as byte array containing the CBOR encoded struc-
ture. A decoded certificate is a C struct with all the fields from the compressed
certificate. This struct is used when the certificate is verified and certain fields
need to be accessed. The transitions between these stages are performed using
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a number of functions. We implement the X.509 parser for encoding, decoding
and working with X.509 certificates. We use two external libraries: cn-cbor! for
encoding/decoding a certificate, and micro-ecc? for ECC public key creation
and compression. Our Contiki app is called ziot (X.509 for IoT) and is placed in
the Contiki/apps/xiot directory. All functions and types have the xiot_ prefix.
Figure 1 highlights the Contiki app.

int verify_signature() int verify_validity()

xiot_cer_t *
certificate

size_t compress()
uint8_t* < uints_t*
compressed »| uncompressed

size_t decompress()

Fig. 1. Structure of our Contiki app, with functions and their interactions.

We also perform the evaluation of our profiled and compressed certificates
in order to determine the overheads and gains of our solution. We measure
the certificate size, per field gain, and energy consumption of our solution and
compare it with the standard X.509 certificate. We perform the evaluation on
the Zolertia Firefly® motes that uses ARM® Cortex®-M3 TI CC2538 MCU,
up to 32MHz core clock, 32 KB RAM memory, 512 KB flash memory, and
power consumption from 7mA at 16 MHz clock speed without peripherals and
20mA or 24 mA with active radio in receive or transmit mode, respectively. It
also provides hardware support for AES and ECC crypto. The full specifications
can be found in the CC2538 datasheet [23] and on the Zolertia Firefly GitHub
page [24].

4.1 Memory Usage

Memory overhead is evaluated in two ways: the actual size of a certificate, and
the size of the compiled code. For certificate size comparison we use three dif-
ferent certificates: a regular X.509 certificate, a certificate conforming to the
X.509 Profile for IoT, and a compressed version of the same profiled certifi-
cate. The sizes of these three certificates are shown in Fig.2. In this case,

! https://github.com/cabo/cn-chor.
2 https://github.com/kmackay /micro-ecc.
3 http://zolertia.io/product /hardware/firefly.
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Certificate size

httpS:”examplecom _ 2158
Compressed l 146

0 500 1,000 1,500 2,000 2,500
Bytes

Fig. 2. The size in bytes for different example certificates.

Table 2. Size of individual fields for different certificates.

Field Field size (Bytes)
No profile | Uncompressed | Compressed

Overhead 8 7 1
Version 5 5 0
Serial number 18 3 2
Signature 15 12 0
Issuer 114 20 8
Validity 32 32 11
Subject 168 36 9
Subject public key info 294 91 35
Issuer and subject unique ID 0 0 0
Extensions 596 31 14
Signature algorithm 15 12 0
Signature 261 75 66
Total 1526 324 146

the regular X.509 certificate is a generic example taken from the Internet web
page https://www.example.com. The profiled certificate is self generated with
an EUI-64 as subject and with 2 extensions. Both the profiled certificate and
the example.com certificate are base64 encoded surrounded with the strings -
--——-BEGIN CERTIFICATE----- and ----- END CERTIFICATE-----, while the
compressed certificate is pure binary. Base64 encoding increases the size by one
third, or by ~33%, since it takes 3 bytes and converts them to four printable
characters, where each character is 1 byte. The size of a certificate can be broken
down into sizes of individual fields. Table 2 shows the field sizes for the different
types of certificates. These are the binary sizes without base64 encoding, and the
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total sizes are therefore less than what is shown in Fig. 2. The table shows where
the most bytes are used and where compression does not do much difference. It
also shows for example the subject and issuer fields are greatly reduced with the
profile, and so are the cryptographic parts and the extensions. The fields version,
serial number, signature, validity and signature algorithm are very little affected
by our profile, if any at all.

We measure the code size using the arm-none-eabi-size program provided for
the ARM Cortex M3 platform. For the compiled code size, adding compression
mechanisms on top of the regular library adds about 1.3 kB on the text area,
0.8 kB on the data area and 2 kB on the bss area.

4.2 Energy Comsumption

To measure energy, we use the FEnergest tool, available in the Contiki OS.
Energest measures the time individual peripherals are active, and calculates
power consumption using the current and voltage levels provided in the CC2538
datasheet [23]. Energest returns the time in ticks that must be divided by the
number of ticks per second to retrieve the time in seconds. The formula for cal-
culating energy usage is therefore: Energy = ticks/(ticks/second) * Voltage *
Current.

Figure3 (left) shows the energy consumption for different operations with
uncompressed and compressed certificates. When no hardware support for ECC
operations is used, the verification step is by far the most dominant consumer. In
this case, the gain from smaller size is not as evident as when hardware crypto is
used. Without hardware crypto, the uncompressed certificate consumes ~2.2%
more energy than the compressed, whereas with hardware support the uncom-
pressed certificate consumes ~23.4% more energy. In multi-hop 6LoWPAN net-
works, a digital certificate travels through multiple nodes. Figure 3 (right) shows
the total energy consumption for intermediate nodes plus the end node for mul-
tiple hops. This includes decoding and verification by the end node.

Energy consumption Energy consumption, multi-hop

15.00 ® Uncompressed ® Uncompressed
m Compressed L 150 m Compressed
E

10.00

100
- - i

[ o | -

0.00 o 0

Receive Becode Verify Transmit 1Hop 2Hop 3Hop 4Hop SHop 6Hop 7Hop 8Hop

mJ

Fig. 3. Left: Energy consumption for different certificate handling steps, with hardware
crypto. Right: Combined energy consumption with multiple hops.
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4.3 Compatibility with the X.509 Standard

In order to prove that our profiled certificates are valid X.509 certificates, we
parsed them with the well-known OpenSSL library. Our certificates pass the
parsing without any errors and are X.509 compatible. For parsing an X.509
certificate with the name certificate.crt, the OpenSSL command we used is
openssl 509 -in certificate.crt -text -noout.

5 Conclusion

We have specified a lightweight version of the X.509 certificate for IoT and pro-
vided compression and encoding schemes for our profiled certificate. An impor-
tant feature is the compatibility with the X.509 standard, meaning that our
lightweight certificate can be used in any existing PKI solutions. Our implemen-
tation for constrained environments and evaluation using a real IoT hardware
show significant gains in terms of size and energy consumption.
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