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Abstract. The vast scale of the Internet of Things (IoT), combined
with its heterogeneous nature involving many different types of devices
and machines, could lead the IoT to be vulnerable to a variety of secu-
rity threats and malicious attacks. Addressing the broad array of threats
requires that different security mechanisms are deployed at appropriate
locations within the broader IoT communication network. In this paper,
we examine this problem by applying a resource allocation approach
involving a game-theoretical framework to model: (a) an attack aimed
to maximize total damage to the network, and (b) an attack aimed to
compromise at least one of the devices. To evaluate the probability of
a successful attack we apply a contest success function, and found the
associated equilibrium strategies in closed form. Additionally, we note an
interesting relationship between equilibrium strategies in security rein-
forcement games and OFDM transmission games under hostile jamming.
A criteria is designed that allows one to determine whether an IoT con-
troller’s resources is sufficient to protect all of the IoT devices it manages.
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1 Introduction

The Internet of Things (IoT) is an emerging technology consisting of countless
devices that were not traditionally associated with the Internet (such as TVs,
thermostats, lighting appliances, coffeemakers, etc.), but are now being attached
to the broader Internet. As these devices are deployed alongside next generation
network protocols, they will be remotely accessible, allowing them to be moni-
tored, updated, and reprogrammed. Unfortunately, with this increased connec-
tivity comes the increased likelihood that they will be the target of malicious
attacks.

Due to the large scale and heterogeneous nature of the devices involved (espe-
cially as many will have varying security capabilities), the IoT could end up more
vulnerable to variety of security threats (such as cyber attacks or radio interfer-
ence attacks [24]) than the Internet we have been familiar with. The recent the
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WannaCry virus attack [11] and demonstration of a thermostat ransomware hack
[22], where the thermostat was set to 99◦, and control would only be returned if
the target paid Bitcoin to the cyber attackers, illustrated that such cyber attack
will have unprecedented speed and scale, and might be especially dangerous as
they can influence the physical world around us.

The large scale and heterogeneity of security capabilities makes developing
and deploying anti-adversary strategies more challenging than in traditional net-
works [3]. One of the tools that has been used extensively in the literature to
model different adversarial attacks on the IoT, as well as in the other networks, is
game theory [13]. This is motivated by the fact that in such a security problem,
there are at least two agents (e.g., the IoT controller and the adversary) that are
present, and each of them has its own objective. For such a multi-agent problem,
game theory supplies the foundations for developing and understanding the form
that solutions should take [13]. As examples, we refer the readers to [17] for a
Colonel Blotto game formalism, that arrives at a lower bound on SINR as a crite-
ria for successful communication, and an evolutionary algorithm is devised that
involves a centralized anti-jamming approach for an OFDM-based IoT system,
where the IoT controller faces an adversarial attack aimed at maximizing the
number of devices that cannot communicate with each other. In [15], signaling
games were used to model honeypot-based deception mechanism to ensure secu-
rity. In [16], a model motivated by low throughput networks was presented that
models an attack where the adversary wants to maximize the number of compro-
mised nodes while avoiding detection. In [18], a bi-matrix game was employed to
model a choice of the subset of prosumers to share data if one of the prosumers
can be compromised. In [19], an anomaly detection technique for low-resource
IoT devices based on Nash equilibrium was suggested.

In this paper, motivated by the recent (and extremely rapid world-wide
spread) WannaCry virus attack, in which many IoT devices were compromised
throughout the world, we look at IoT security from a different angle. Namely:
how should the IoT controller allocate its protection reinforcement efforts in a
heterogeneous network to minimize possible damage? Here we quantify the dam-
age involved by either the total number of compromised devices or the possibility
that just one device will be compromised. The last scenario is important since,
if a device inside of a corporate network is compromised, it makes it much easier
for thieves to gain access to workstations and servers, and thus it is desirable to
minimize the likelihood of a single device being compromised. To model the prob-
lem, we apply a resource allocation approach, which has been used extensively
to model different network/communication security problems. As examples, we
refer the readers to [21] for design multiband transmission protocol under jam-
ming, to [6] for modeling one-time spectrum coexistence in dynamic spectrum
access, to [23] for fair and efficient resource allocation in cloud computing, to
[5,7–9] for bandwidth scanning strategy and to [2] for network protection.

The organization of this paper is as follows: in Sect. 2, two game-theoretical
models for security reinforcement are formulated. In Sect. 3, for the first model
dealing with minimizing the total damage (number of devices) to the network,
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equilibrium strategies are found. In Sect. 4, for the second model dealing with
maximizing probability for the network not to be compromised, equilibrium
strategies are designed. Finally, in Sect. 5, discussion of the obtained results is
offered, and, in Appendix, the proofs of the obtained results are given.

2 Model

In the paper, we consider an IoT system consisting of a set of IoT devices located
in a (protected) zone, connected to each other for the purpose of communicating
and sharing data. We will abstract the notion of the network and not specify any
particular topology, but instead consider just a subset D of the protected zone.
This set consists of a finite number (say, n) of devices, i.e., D = {1, . . . , n}. The
devices are under attack by an adversary attempting to intrude on the protected
zone in order to perform a damaging action (e.g. to steal data). To perform
intrusion, the adversary also has some resources, for example this might be
a number of compromised devices attacking the network. The total adversary’s
resources are X. To reinforce the network’s protection, the IoT controller also has
some resources (e.g., it can be related to the amount of time devoted to remote
scanning and attestation of a device). The total IoT controller’s resources is Y .
Let yt be the reinforcement effort the IoT controller applies to protect device
t, and xt be the resource applied by the adversary to infect/intrude into the
device t. Thus, the set of feasible strategies to the adversary is ΠA = {x =
(x1, . . . , xn) ∈ R

n
+ :

∑
t∈D xt = X}. Similarly, the set of feasible strategies for

the IoT controller is ΠC = {y = (y1, . . . , yn) ∈ R
n
+ :

∑
t∈D yt = Y }. Let Pt(x, y)

be the probability of a successful intrusion into a device t of the network, when
the protection effort xt and intrusion effort yt are employed. In this paper, we
assume that this probability is proportional to the fraction of effort put into the
attack, that is

Pt(x,y) = αtxt/(dt + αtxt + βtyt), (1)

where dt is an initial level of the device’s security, αt and βt are coefficients
associated with the protection sensitivity to attack and protection efforts. The
provability (1) is given by the ratio form contest success function commonly used
in the attack-defense literature [4,12,14,20].

To avoid bulkiness in formulas we introduce the notation: αt := αt/dt and
βt := βt/dt. In the new notation, (1), reflects the probability of a successful
attack on the device t, and becomes

Pt(x,y) = αtxt/(1 + αtxt + βtyt). (2)

Then, the probability that no device has been compromised, is

Q(x,y) =
∏

t∈D

(1 − Pt(x,y)). (3)

We now consider the two different goals for the IoT controller.
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The goal of the IoT controller is to minimize total damage to the
network. Let Rt be the value of device t, which reflects the reward to the
adversary for successful intrusion of the network at node t. Then, the expected
total damage is given as follows:

vA(x,y) =
∑

t∈D

RtPt(x,y). (4)

In particular, for R ≡ 1, vA is the expected number of devices that might be
compromised by the adversary’s attack. The vA can be considered as a payoff to
the adversary, which he aims to maximize. For the IoT controller, on the other
hand, it is a cost function to be minimized. We assume that the agents have
complete information about the parameters of the networks, i.e., α, β and R
as well as on the total resources X and Y they have in their disposition. This
scenario is described by a zero-sum game, and we look for an equilibrium [13].
Recall that, for a pair of strategies (x∗,y∗) is an equilibrium in a zero-sum game
if and only if the following inequalities hold for each (x,y):

vA(x,y∗) ≤ vA(x∗,y∗) ≤ vA(x∗,y), (5)

where vA(x∗,y∗) is called the value of the game. Even if there are several equi-
libria, each of them returns the same value of the game, i.e., the value of the
game uniquely defined by (5).
The goal of the IoT controller is to maximize the probability that no
device will be compromised. In this case, the payoff to the IoT controller
is Q(x,y), while for the adversary this is its cost function. Again, this is a zero
sum game and we look for the equilibrium strategies.

3 The Minimizing Total Damage Game

In this section, we find the equilibrium strategies for the game involving mini-
mizing the total damage.

Theorem 1. (a) In the minimizing total damage game, each equilibria has to
have the form (x,y) = (xω,ν ,yω,ν) where ω and ν are positive parameters and

xω,τ,t =

⎧
⎪⎪⎨

⎪⎪⎩

Rtαtβtτ/(ω (ταt + βt)
2), t ∈ I11ω,τ ,(√

Rtαt/ω − 1
)

/αt, t ∈ I10ω,τ ,

0, t ∈ I00ω,τ ,

(6)

yω,τ,t =

{
Rtαtβt/(ω (αtτ + βt)

2) − 1/βt, t ∈ I11ω,τ ,

0, t �∈ I11ω,τ ,
(7)

where

I00ω,τ := {t : Rtαt/ω ≤ 1} , I10ω,τ :=
{

t : 1 <
√

Rtαt/ω ≤ 1 + (αt/βt)τ
}

,

I11ω,τ :=
{

t : 1 + (αtβt)τ <
√

Rtαt/ω
}

. (8)
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(b) Functions Sx(ω, τ) :=
∑

t∈D xω,τ,t and Sy(ω, τ) :=
∑

t∈D yω,τ,t have the
following properties:

(b-a) For a fixed τ > 0, Sy(ω, τ) is continuous on ω and decreasing from infinity
for ω ↓ 0 to zero for ω ≥ maxt αt/(1 + αtτ/βt)2.

(b-b) For a fixed ω > 0, Sy(ω, τ) is continuous on τ and decreasing from
Sy(ω, 0) =

∑
t∈D(1/βt) �Rtαt/ω − 1	+ for τ = 0 to zero for large τ .

(b-c) For a fixed τ there is a unique Ω(τ) such that

Sy(Ω(τ), τ) = Y. (9)

Moreover, due to the monotonicity properties given in (a), the Ω(τ) can be
found by bisection method.

(b-d) Ω(τ) is a continuous and decreasing function from Ω0 for τ = 0 to zero,
while τ tends to infinity, where Ω0 is the unique positive root of the equation:∑

t D(1/βt) �Rtαt/Ω0 − 1	+ = Y.
(b-e) Ω(τ) ∼ Ω∞/τ2 for τ tending to infinity, where Ω∞ is the unique positive

root of the equation:
∑

t∈D �Rtβt/(αtΩ∞) − 1/βt	+ = Y.

(c) The value of the parameters, ω and τ , can be found based on the condition
that the resource budgets have to be fully utilized by both agents, i.e., as a
solution of equations Sx(ω, τ) = X and Sy(ω, τ) = Y in two steps:

(c-a) For each τ , find ω = Ω(τ) as the unique root of (9) by bisection method.
(c-b) Since Sx(Ω(0), 0) = 0 and Sx(Ω(τ), τ) tends to infinity for τ tending to

infinity, τ can be found as the root of the equation Sx(Ω(τ), τ) = X by bisec-
tion method.

Here, we can observe that the IoT controller, due to the restricted resources,
generally applies reinforcement partly, namely to a subset of devices I11 which
were not originally protected in a reliable manner, relying on initial level of
security for the others devices. While the adversary, besides attacking initially
less protected devices will, if he has enough resources, also exhibit a tendency
to take a chance among a subset I10 of the originally reliable protected devices.
A similar phenomena was also observed in the OFDM jamming problem, where
in general SNR regime the jammer can generally jam fewer subcarriers than the
user employs for transmission [1,10].

The theorem, beyond giving an algorithm to design equilibrium strategies,
also implies a criteria needed to establish whether the IoT controller’s resources
are sufficient to reinforce all the devices.

Theorem 2. In the game to minimize damage, the IoT controller can reinforce
all of the devices if the following condition holds:

τ < X min
t∈D

Rtαt

(ταt/βt + 1)2
/∑

t∈D

Rsα(s)/βs

(ταs/βs + 1)2
, (10)

where

τ = X/(Y +
∑

t∈D

1/βt). (11)
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Fig. 1. (a) The payoff to an adversary aimed at maximizing the total damage, as
functions of X and Y ; (b) the strategy of the adversary and (c) the strategy of the IoT
controller as functions of Y for X = 1.

Fig. 2. (a) The payoff for the IoT controller that is aimed at maximizing the probability
that the network is not compromised, as a function of X and Y ; (b) the strategy of
the adversary and (c) the strategy of the IoT controller as functions of Y for X = 1;
and (d) the switching lines in the plane (X,Y ) for the zones where the IoT controller’s
resources are enough to reinforce all of the devices.

Then, the equilibrium strategies are given by the first lines (6) and (7) with

ω =
τ

X

∑

t∈D

Rsαs/βs

(ταs/βs + 1)2
. (12)

4 Maximizing Probability Not to Be Compromised

In this Section, we consider the game where the IoT controller wants to maximize
the probability that none of the devices are compromised.

Theorem 3. In the maximizing probability not to be compromised game, there
is a unique equilibrium given by (xω,τ,t,yω,τ,t) where

xω,τ,t =

⎧
⎪⎪⎨

⎪⎪⎩

αiτ
(αtτ + βt)ω

, t ∈ I11ω,τ ,

1
ω − 1

αt
, t ∈ I10ω,τ ,

0, t ∈ I00ω,τ

yω,τ,t =

{ αt
(αtτ + βt)ω

− 1
βt

, t ∈ I11ω,τ ,

0, t �∈ I11ω,τ

(13)
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with I00ω,τ := {t : αt ≤ ω}, I10ω,τ := {t : αtβt/(αtτ + βt) ≤ ω < αt} and
I11ω,ν := {t : ω < αtβt/(αtτ + βt)}.
Astonishingly, these strategies coincide with OFDM transmission strategies when
facing jamming [10]. This coincidence with OFDM transmission strategies
implies that the value of parameters can be uniquely defined by superposition
of bisection methods from the condition that the strategy must employ all of the
resources, as was done in Theorem 1. Here, as in Theorem 1, as parameters we
use the Lagrange multiplier ω, while as the other parameter τ we use ratio of
Lagrange multipliers that arise to solve the corresponding best response equations.
This allows, similar to Theorem 2, to show that if the following condition holds
then the IoT controller’s resources are enough to reinforce all of the devices:

τ < X min
t∈D

(αtβt)/(ταt + βt)
/∑

t∈D

α(s)/(ταs + βs) where τ is given by (11).

(14)

5 Discussions

As an example, let us consider a network consisting of n = 5 devices and
α = (1, 2, 2.1, 2.8, 3.2), β = (1.5, 2, 1.2, 5, 2), and R = (1, 1, 1, 1, 1). Since R ≡ 1,
the payoff vA, i.e., the expected total damage, reflects the expected number of
compromised devices. Figure 1(a) illustrates that the total damage is decreasing
with respect to an increase in Y , and it is increasing with respect to an increase
on X. Figure 2(a) illustrates that the probability for the network to not be com-
promised is increasing with an increase in Y and it is decreasing with an increase
in X. Figures 1 and 2 illustrate that the adversary’s strategy for compromising
at least one device is more distributed among the devices than for the case where
the objective is to maximize the total damage.

Note that, by (11), the left-side of condition (10) tends to zero for Y tending
to infinity, while its right-side tends to mint∈D Rtαt/

∑
s∈D Rsαs/βs > 0. Thus,

for each fixed X there is a Y such that the resource is enough to reinforce all of the
devices. By (14), a similar conclusion holds for maximizing the probability that
the network is not compromised. Figure 2(d) illustrates, in the plane (X,Y ), the
switching line between the zone where the IoT controller has enough resources
to reinforce all of the devices and the zone where the resources only allows one
to maintain partial reinforcement. In particular, this confirms that, in the game
to maximize the probability for the network to not be compromised, the IoT
controller must employ a strategy to reinforce all of the devices under a smaller
resource budget than in the game to minimize total damage.

Appendix

Proof of Theorem 1. (a) By (5), (x, y) is an equilibrium if and only if x
and y are the best response strategies to each other, i.e., they are the solution
of the best response equations: x = BRA(y) = arg maxx∈ΠA

vA(x, y) and y =
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BRC(x) = arg miny∈ΠC
vA(x, y). Since vA(x,y) is concave on x and convex on

y, a pair of strategies (x,y) is the solution of the best response equations if
and only if there are ω and ν (Lagrange multipliers) such that the following
conditions hold:

Rtαt(1 + βtyt)
(1 + αtxt + βtyt)2

{
= ω, xt > 0,

≤ ω, xt = 0,

Rtαtβtxt

(1 + αtxt + βtyt)2

{
= ν, yt > 0,

≤ ν, yt = 0.
(15)

By (15), ν > 0 and ω > 0. Also, by the second relation of (15), if xt = 0 then
yt = 0, since otherwise ν = 0. Thus, we have to consider separately only three
cases: (a-i) xt = 0, yt = 0, (a-ii) xt > 0, yt = 0 and (a-iii) xt > 0, yt > 0.

(a-i) Let xt = 0, yt = 0. Then, (15) is equivalent to t ∈ I00ω,ν :=
{t : Rtαt/ω ≤ 1} .

(a-ii) Let xt > 0, yt = 0. Then, (15) is equivalent to

Rtαt/((1 + αtxt)2) = ω, (16)

Rtαtβtxt/(1 + αtxt)2 ≤ ν. (17)

Solving (16) implies that

xt =
(√

Rtαt/ω − 1
)

/αt. (18)

Then, since xt > 0, (18) implies that

ω < Rtαt. (19)

By (16), (17) is equivalent to
βtxt ≤ ν/ω. (20)

Substituting xt given by (18) into (20) implies
√

Rtαt/ω ≤ 1+ (αt/βt)(ν/ω).
This, jointly with (19), gives that t ∈ I10ω,ν := {t : 1 <

√
Rtαt/ω ≤ 1 +

(αt/βt)(ν/ω)}.
(a-iii) Let xt > 0, yt > 0. Then, (15) is equivalent to

Rtαt(1 + βtyt)/((1 + αtxt + βtyt)2) = ω, (21)

Rtαtβtxt/((1 + αtxt + βtyt)2) = ν. (22)

Dividing (21) by (22) implies

1 + βtyt = (ω/ν)βtxt. (23)

Substituting (23) into (22) yields xt = Rtαtβt/
(
ν (αt + βtω/ν)2

)
. Clearly,

such xt is positive. Substituting this xt into (23) implies that yt =
Rtαtβt/(ω (αtν/ω + βt)

2) − 1/βt. Then, the condition that such yt is positive
is equivalent that t ∈ I11ω,ν :=

{
t : 1 + (αt/βt)(ν/ω) <

√
Rtαt/ω

}
.
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Finally, let us introduce an auxiliary notation τ := ν/ω. In this notation x,
y, I00, I10 and I11 have the form given by (6), (7) and (8), and (a) follows.

(b-a) and b-(b) follow in a straightforward manner from (7) and (8) and the
fact that Sy(ω, τ) = 0 if and only if the set I11ω,τ is empty. (b-c) and (b-d) follow
from (b-a) and (b-b).

(b-e) By (7) and (8), Sy(ω, τ) = Y is equivalent to
∑

t∈D

⌊
Rtαtβt/((ω/τ2) (αt + βt/τ)2) − 1/βt

⌋

+
= Y. (24)

Then, substituting ω = Ω(τ) into (24) and taking τ to infinity we obtain that
(24) is asymptotically equivalent to

∑
t∈D

⌊
βt/((Ω(τ)/τ2)αt) − 1/βt

⌋
+

= Y.

This implies (b-e), and (b) follows.
(c) By (8), I10ω,0 is empty. Thus, by (6) and (b-d), Sx(Ω(0), 0) = Sx(Ω0, 0) = 0.

By (7) and (6), I11Ω(τ),τ is not empty for any τ . By (6) and (b-e), for large τ

xΩ(τ),τ,t ∼ Rtαtβtτ
3/(Ω∞(αtτ + βt)2) ∼ Rtβtτ/(αtΩ∞) with t ∈ I11Ω(τ),τ .

Thus, limτ↑∞ Sx(Ω(τ), τ) = ∞, and the result follows. �
Proof of Theorem 2. Since I11ω,τ = {1, . . . , n}, x and y are given by the first
lines in (6) and (7). Summing up these xω,τ,t divided by τ on t, summing up
these yω,τ,t on t, and taking into account that xω,τ ∈ ΠA and yω,τ ∈ ΠC imply
(11). Then, by (11), summing up these xω,τ,t implies (12). Finally, (12) and the
fact that I11ω,τ = {1, . . . , n} yields (10). �
Proof of Theorem 3. It is clear that the problem of maximizing (minimizing)
Q(x,y) is equivalent to the problem of maximizing (minimizing) ln(Q(x,y)).
Using this simple observation implies that a pair of strategies (x,y) is the solu-
tion of the best response equations if and only if there are ω and ν (Lagrange
multipliers) such that the following conditions hold:

αt

1 + αtxt + βtyt

{
= ω, xt > 0,

≤ ω, xt = 0,

αtβtxt

(1 + βtyt)(1 + αtxt + βtyt)

{
= ν, yt > 0,

≤ ν, yt = 0.

Astonishingly, these conditions coincide with the conditions for designing
a transmission strategy under hostile jamming in OFDM communication [10].
Then, introducing a new variable τ = ν/ω, in variables τ and ω the result
follows. �
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