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Abstract. Todays, Internet of Things (IoT) is starting to occupy a
major place in our everyday lives. It has already achieved a huge success
in several sectors and continues to bring us a range of new capabili-
ties and services. However, despite the apparent success, one of issues
which must be tackle is the big quantity of data produced and trans-
mitted by the objects. Transmitting these big quantity of data not only
increases the energy consumption of objects but can also cause network
congestion.

To meet this issue, a Bayesian Inference Approach (BIA) that can
avoid the transmission of highly correlated data is proposed. An hierar-
chical architecture with smart devices and data centers is adopted. We
evaluate our BIA approach using the data obtained from the M3 sen-
sors deployed in the FIT IoT-LAB platform and three distinct scenarios.
The obtained results prove the effectiveness of our BIA approach. The
number of transmitted data and energy consumption are significantly
reduced, and the information accuracy is maintained at a good level.
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1 Introduction

Despite of the large success of IoT, there still remain a lot of problems to be
solved and the management of huge amount of data produced by sensing devices
is one of them. Probably, it will be difficult to store this huge amount of data
locally. Therefore, exploiting the capacity of Cloud is necessary [3], but regret-
tably that will not be sufficient. However, it has been observed that, increasing
sensor density results in a highly strong redundancy of data produced by IoT
devices. In this case, uploading sensing data to the cloud can become inefficient
due to memory wastage and network overhead.

To solve this problem, we proposed in [6,7] an effective and efficient Bayesian
Inference Approach (BIA) for indoor and outdoor environments in the IoT con-
text. For this aim, we used real data collected from sensor nodes deployed in
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the Intel Berkeley lab [5] and in the PEACH project [9]. Although these data
allowed simulating the efficiency of our proposed approach, the lack of access
to the deployed sensors did not allow us to experiment our Bayesian approach
directly on the sensors. In this paper, in order to validate the scalability of our
BIA approach and filter the raw data directly in the sensing nodes, we run
experimentation on our FIT IoT-LAB platform [1].

One can sum up our main contributions in a few points:

– Design of a Bayesian Inference scheme that can avoid sending highly corre-
lated data is proposed in heterogeneous IoT networks. We use Pearl’s Belief
Propagation (BP) algorithm [10] to predict the missing data;

– Use of smart devices (i.e., node and gateway) to decrease the prediction error
and extend the lifetime of the network. Smart in the sense that the node and
gateway know exactly when to send or not the data;

– Assessment of the performance using data obtained from the M3 sensors
deployed in the FIT IoT-LAB platform.

The rest of this paper is organized as follows. Section 2 presents the network
model for the IoT scenario. Section 3 describes our Bayesian Inference Approach
which uses the BP algorithm for the data prediction. Section 4 is intended for
experiments and evaluations of the proposed BIA scheme in different real sce-
narios. Section 5 is dedicated to the conclusion.

2 Network Model

As illustrated in Fig. 1, a BIA scheme in a cloud-based architecture with M3
sensors, smart gateways and data centers is adopted. Each entity present in
our architecture has a different role according to their capabilities (e.g. com-
munication, computation, storage). Multiple subnets associated with different

Fig. 1. A cloud-based IoT network model.
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applications can be included on our network model. In our case, each subnet
corresponds to one site of the FIT IoT-Lab testbed and contains interconnected
IoT devices, and an intelligent gateway which forwards the raw data to the cloud.
The cloud in turn is responsible for storing data and all the cloud-based services.

3 Bayesian Inference Approach

As previously reported, our first target is to cease sending highly correlated
data, while maintaining a good information accuracy level. For this purpose, we
propose a Bayesian Inference Approach (BIA) which is built with Pearl’s Belief
propagation algorithm that we will describe below.

First of all, the choice and design of the model is necessary before performing
the inference procedure. In this paper, we use Probabilistic Graphical Models
(PGM). PGMs are a mix of graph and probability theories where each node
represents a random variable and the edges illustrate the probabilistic relation-
ships among variables. One talks about Bayesian networks when the graph is
directed, and Markov Random Fields (MRF) when the graph is undirected [8].
MRF model coupled with factor graph was chosen to perform the data infer-
ence in this paper. Hence, the main goal is to infer the state X of the sensed
environment using the data sets obtained by each sensor node. Applying the
Hammersley-Clifford theorem, the joint distribution PX(x) of an MRF model
can be calculated as the product of all the potential functions i.e.,

PX(x) =
1
Z

∏

i

ψi(xi)
∏

i,j ∈E

ψij(xi, xj), (1)

where Z is the normalization factor, ψi(xi) represents the evidence function, E
is the set of edges encoding the statistical dependencies between nodes i and j,
and ψij(·) is the potential function. It is important to highlight that the PGMs
parameters (i.e., ψi and ψij) can be learned from the collected data by applying
a learning algorithm like in [2,4].

For simplicity, in our proposed model, we have used pairwise MRF, i.e., MRF
with the maximum clique1 of two nodes.

The main purpose when working with PGMs is the computation of certain
marginal distributions (i.e., the inference), as as illustrated in Eq. (2). Hence,
PGMs are used to infer the most likely assignment for a variable node. For
the convenience of the notation, let us assume that X and Y are two different
random variables with assignments x ∈ X m and y ∈ Yn. We call hidden nodes
all the nodes in Y and observed nodes those in X. So, given the i-th node in
our model, the known data we intend to share (e.g., pressure) will be noted as
xi and the data we want to infer, (e.g., temperature) will be associated to yi

p(yv|x) =
∑

y1

∑

y2

...
∑

yn

p(y1, y2, y3, ...., yn|x). (2)

1 A clique is defined as a fully connected subset of nodes in the graph.
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Clearly, using (2), a direct computation of marginal probabilities would take
exponential time i.e. O(|Y|n−1), which is intractable for most choices of n.
Therefore, a faster algorithm like Belief Propagation (BP)2 [10] is needed for
computing the marginal probability. BP is a well known algorithm for perform-
ing inference on PGMs [10].

For the following, let note p(yi) the marginal distribution of i-th node. Then,
BP algorithm is used to compute p(yi) at each node i using a message pass-
ing algorithm. The message from the i-th to the j-th node related to the local
information yi is defined as:

mji(yi) ∝
∫

ψji(yj , yi)ψj(yj)
∏

u∈Γ (j),u �=i

muj(yj)dyj , (3)

where Γ (j) represents the neighbors of node j and muj denotes the incoming
messages from previous iteration. The message passing (3) will always be carried
out between all nodes in the model until the convergence or if a maximum
number of iterations Imax will be reached. Thus, the belief at the i-th node,
i.e. the prediction, can be computed using all the incoming messages from the
neighboring nodes and the local belief, i.e.:

ŷi = belief(yi) = k · ψi(yi)
∏

u∈Γ (i)

mui(yi), (4)

where k represents a normalization constant. Finally, it is worth to highlight that
the Belief propagation algorithm can compute the exact marginal probability on
a tree-structured PGMs.

4 Experimental Results

In this part, the experimental results of our proposed approach with the FIT
IoT-LAB testbed [1] is provided. Ten nodes from Lille site and ten nodes from
Grenoble site were used for the data collection. Nodes were of the M3 type
[1], which are equipped with an 32-bit ARM Cortex-M3 MCU, 64 kB of RAM,
256 kB of ROM, an IEEE 802.15.4 2.4 GHz radio transceiver and four different
sensors (light, accelerometer, gyroscope, pressure & temperature). Data collected
from all the M3 nodes has been used to build the BIA model. Each collection of
data was done every 15 min and the collected data includes 2.5 days of readings.

During the 2.5 days of reading, we observed a good correlation between pres-
sure and temperature (it is about −0.7720841). So, we can easily infer the tem-
perature value from the pressure and conversely, we can also infer the pressure
from temperature. In this work, we decide to infer temperature from pressure.
The temperature is expressed in degrees Celsius, whilst the pressure is in mbar.

Our assessment is based on four different metrics: (i) the total number of
transmitted data, (ii) average value of the estimation error (ER), (iii) average

2 Only take linear time.
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Fig. 2. Variation of |e| in scenario s2 (a), and s3 (b) versus 2.5 days collection time.

value of the distortion level as a Mean squared Error (MSE), and (iv) the energy
consumption (EC).

Regarding the assessments of the energy consumption, we assume that the
energy cost for sending one temperature and one pressure value is 14 mW.

Furthermore, we use three different scenarios (i.e., s1, s2, and s3) to well
assess the proposed approach.

In the first scenario s1, the M3 node transmits to the gateway all the pressure
and the temperature data it receives. In this case, no inference is performed on
the gateway. In scenario s2, the M3 nodes transmits the pressure only to the
gateway, and the corresponding temperature will be inferred on the gateway
using the Belief propagation algorithm. Finally, in the third scenario s3, we
set the M3 nodes as a “smart” nodes, meaning that before transmitting their
data in the gateway, they first calculate the probability Pr(er|T, P ) of doing
an error of inference (er) on the gateway given the temperature data T , and
the pressure data P . In the case where the error magnitude i.e., |er| is greater
than a predefined threshold i.e., |e|Max, the M3 node transmits both pressure
and temperature data to the gateway, else the M3 node only transmits the
pressure, and the temperature value will be inferred in the gateway using the
BP algorithm. We can model this mathematically as the probability of inference
error greater than a maximum allowed value |e|Max, and conditioned to the
temperature and pressure values i.e., T and h, is lower or at least equal to a
given threshold PMax

e , that is:

Pr {|er| > |e|Max|T, P} ≤ PMax
e , (5)

where BP algorithm was used to compute Pr(er|T, P ). It is important to high-
light that this computation needs the knowledge of the a priori probability of
inference error i.e., Pr(er). Also, the choice of the threshold |e|Max value strictly
depends on the application context. In our case, this value was set equal to 1
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but later we will see how the choice of this value may influence our results. We
can apply a similar consideration to the probability threshold PMax

e , which was
set to 0.5.

Table 1 illustrates the obtained results during 2.5 days of readings, for dif-
ferent simulated scenarios. We can observed that our proposed approach con-
siderably decreases the total number of transmitted data and the energy con-
sumption, while keeping a good level of inference error and information quality.
We can observed also that the estimation error was reduced considerably by
using the fird scenario s3. Indeed, the M3 nodes are smarter in this case i.e., by
knowing the a posteriori probability of the inference error, the M3 nodes know
exactly the right time and the data type to transmit in the gateway. However,
this increases the total number of transmitted data (and obviously the energy
consumption), as compared to the second scenario s2. This is due to the fact
that in s2, the M3 node transmits only the pressure data without taking into
account the risk of inference error in the gateway. It is important to say that
we have a good quality of information in the scenario s3 despite the fact that
we have an inference error of 43%. This is due to the fact that we allow only a
maximum error of one unit (i.e. |e|Max = 1)

Table 1. Results obtained during the two days and half of readings.

Scenario #Transmitted data EC (kJ) MSE ER

s1 10440 1716.64 - -

s2 5220 858.32 1.43 0.55

s3 5829 958.46 0.43 0.43

Figure 2 shows the variation of |e| during the 2.5 days of reading using s2
and s3, where |e| is the gap between the true and inferred values of temperature
i.e., |e| = |ŷi − yi|. This metric represents therefore the inference error of our
approach during the 2.5 days of readings. There is no inference error when |e| = 0,
i.e., for ŷi = yi. In s2, we notice no inference error for most of time i.e., the
probability of having a null inference error is Pr(|e| = 0) = 45.13%, while we
have Pr(|e| = 1) = 41.83%, Pr(|e| = 2) = 6.91%, Pr(|e| = 3) = 4.04%, Pr(|e| =
4) = 1.60%, Pr(|e| = 5) = 0.45%, and Pr(|e| = 6) = 0%. Best performances are
for scenario s3, where we observe no error for the 57.32% of time, while we have
Pr(|e| = 1) = 42.68% for the remaining time.

As we stated before, the choice of the threshold |e|Max value strictly depends
on the criticality of the used system. For example we can use a bigger threshold
for a tolerant system, but conversely, have to use a small value of threshold for
non tolerant system. Its choice has therefore a non-negligible impact on the final
results. From Fig. 3, for example, we can say that the more we use a higher
threshold, the less we send data but also the more we get an inference error and
the more we lose in information quality.
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Fig. 3. Variation of (a) the transmitted data, (b) the estimation error and (c) MSE
according the value of the threshold |e|Max.

5 Conclusions

In this paper, a Bayesian Inference scheme which can avoid the transmission of
highly correlated data was proposed. A good data correlation was necessary for
this study. Indeed, It is important to have a good data correlation to avoid a very
high error rate. Through experimentation on FIT IoT-LAB platform using the
M3 nodes, we have showed that our proposed approach is scalable and decreases
drastically the total number of transmitted data and the energy consumption,
while maintaining a good inference error level and information quality. We have
also shown that the use of smart node reduces the inference error.
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