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Abstract. Occurrences of traffic signs that belong to certain sign categories and
occurrences of crossroads of various topologies are utilized in detecting change
in the urban road environment that moves past an ego-car. Three urban envi-
ronment types, namely downtown, residential and industrial/commercial areas,
are considered in the study and changes between these are to be detected. In the
preparatory phase, the ego-car is used for traffic sign and crossroads data col-
lection. In the application phase, the ego-car hosts an advanced driver assistance
system (ADAS) that captures and analyzes images of the road environment and
computes the required input data to the proposed road environment detection
(RoED) subsystem. A statistical inference method relying on the minimum
description length (MDL) principle was applied to the change detection problem
at hand. The above occurrences along a route are seen as a realization of an
inhomogeneous marked Poisson process. Page-Hinkley change detectors tuned
to empirical data were set to work to detect change in the urban road envi-
ronment. The process and the quality of the change detection are demonstrated
via examples from three urban settlements in Hungary.
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1 Introduction

Drivers are assisted in many ways and via different media – ranging from the paper-
based maps, through road and traffic signs, electronic information boards and emer-
gency radio broadcasts to pictorial, navigational, and textual information services – in
perceiving and understanding driving conditions and road environment ahead and
around them. By using these facilities and media, they get access to a wide variety of
road, weather, traffic and accident information, though the relevance, timeliness and
accuracy of the provided information varies across the palette. For an analysis of the
utility of the various facilities and media available for the purpose, particularly of the
more recent (i.e., electronic) services, relevance, see [1, 2].
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The drivers driving smart cars also benefit from the various intelligent functions,
such as the traffic sign recognition (TSR), the lane keeping assistance and the road
marking recognition functions, offered by the respective and other high-end subsys-
tems installed within and on-board their cars. Such subsystems together constitute the
advanced driving assistance systems (ADAS). The ADAS as complete systems – and
also their specific subsystems – are designed to increase driver and passenger safety,
and in many cases also the driver and passenger comfort. An edifying presentation of
an ADAS system architecture that provides a comprehensive set of ADAS functions is
given in [3].

Herein, traffic sign data gathered, categorized and logged by human data entry
assistants, or by on-board TSR systems, or, alternatively, extracted from road-related
geographical information systems (GIS), crossroad data gathered, categorized and re-
corded by data entry assistants, or detected, combined, analyzed, categorized and re-
corded by various ADAS subsystems1, or, alternatively, extracted from some road-
related GIS are utilized in detecting change in the type of road environment along a
route within an urban settlement.

It should be noted that in all the concrete cases presented herein, both the traffic
sign and crossroad detections – together with the categorization and data logging tasks
– were carried out by data entry assistants. Later, however, and considering the pace of
the development of the ADAS capabilities probably in the near future, these activities
could be left to the respective ADAS subsystems. Furthermore, these subsystems might
also take advantage of the information that can be extracted from road-related GIS,
e.g., the crossroad data could be extracted from the roads layer of the relevant Open
Street Map (OSM) [5]. To illustrate this point, the mentioned layer – together with two
other ones – are displayed in the map2 of Vác (Fig. 1).

1.1 The Road Environment Detection and Other ADAS Capabilities

Let us now analyze the tasks of identifying the current urban road environment type
and of detecting the transitions between these from an ADAS capabilities viewpoint.
Firstly, as it was mentioned above, certain object recognition and data gathering,
logging and analysis tasks could be left to ADAS subsystems (e.g., to the TSR
subsystems).

Secondly, the type of the current urban road environment – and the transitions
between different urban road environments – constitute relevant information for the
drivers, as different road environments pose different safety risks, and consequently the
drivers should look out for different things, events and situations in these environments.

1 Including also the TSR subsystem, which per se could be used in gathering, categorizing and logging
traffic sign data, but perhaps its connection to activities in respect of crossroad data needs to be
construed. The connection between the TSR system and the crossroad data is embodied in certain

traffic sign types, e.g., , and traffic signs. The automatic recognition of lane information

traffic signs for ADAS purposes was addressed in [4].
2 The map was created with the QGIS (version 2.8) software, which is a free and open source GIS tool.
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For example, one should drive more cautiously in a densely populated busy
downtown area, than, say, in a calm residential area with virtually no traffic. Also,
drivers should be more prepared to see and patiently tolerate a flow of heavy vehicles in
an industrial/commercial area than in a downtown environment.

For the above reasons many a driver would welcome some computerized assistance
– expediently in the form of a dedicated ADAS function/subsystem – in respect of the
aforementioned tasks. In response to this demand a road environment detection (RoED)
subsystem was proposed in [6]. Its actual implementation targets rural and intercity
road environments. It relies on advanced perception methodology and up-to-date
vehicle automation techniques, as well as recent inter-vehicular and vehicle-to-
infrastructure communication framework to achieve real-time detection and classifi-
cation of obstacles and to identify other potential risks also in real-time.

A different RoED approach that uses traffic sign data as input was proposed in [7]
and the associated method is now extended and developed herein. The proposed
method relies on the availability of an on-board TSR subsystem and was developed for
cars equipped with such a subsystem. Such a TSR-based RoED subsystem could be
seen as a low-cost surrogate for the comprehensive computer vision-based road
environment understanding and recognition systems, such as the one proposed in [6].

Thirdly, a further interesting ADAS aspect that should be considered here is the
feedback from the RoED subsystem back to the invoked ADAS subsystems. For
instance, the RoED subsystem could facilitate the computer vision and the image
understanding computations (e.g., in the TSR subsystem) by providing geometrical
constraints and regions-of-interests for them; thereby making the various recognitions
and visual measurements more robust and reliable.

Fig. 1. The trajectory (purple polyline) of the data collection car trip made in Vác. The roads
(grey lines) and the buildings (ochre shapes) layers and the River Danube, or Duna (light blue
band) from the waterways layer of the OSM of Hungary are shown. (Color figure online)
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2 Related Work

The research presented herein fits in the series of papers [7–9] on statistical change
detection problems pertaining various road environments and using traffic sign-related
data as input. In [8], a statistical inference method for detecting a transition between
two different topographical road environments when driving from one environment to
the other was presented. Logs of traffic sign occurrences recording the traffic sign
locations and types were analyzed. The somewhat impractical task targeted in the paper
(i.e., finding the piedmont via looking at traffic signs along a route) was seen as a test
case for the applied minimum description length (MDL) methodology. In [7], the
change of the urban scenery – often experienced when driving from the periphery of a
town to its centre, or the other way round – is traced in traffic sign logs. The task there
was to identify the change-point between different urban road environments. The
statistical approach infers the type of the urban environment the car is being driven in
and detects the transitions between these road environments from the traffic sign
occurrences and from the corresponding location and categorical data along a route.
The traffic signs considered belong to a pre-selected class. The RoED method relies on
empirical data and the MDL principle is applied to solve the problem at hand. The
method makes use of several Page-Hinkley change detectors (PHCD’s). Some im-
provement in the detection performance could be achieved by considering an aug-
mented set of inputs. To check the validity of this expectation, the crossroad types and
locations were included in the input data. The resulting urban RoED method is pre-
sented herein.

3 Mathematical Background

Marked Point Process. Marked point process is a convenient model for describing
categorized data, e.g., the traffic sign and crossroad data used and analysed herein.
A point process is customarily given by an increasing sequence of time points3, say Tn.
The points of a point process may be labelled with marks. A marked point process then
can be formalized as a pair (Tn, qn), where qn is the mark. In many real-world cases that
can be modelled with marked point processes, the marked Poisson point processes
(MPPP) turned out to be convenient and flexible stochastic models. Although the
Poisson process, and also the MPPP, are continuous-time4 models, their discrete-time
approximations5 are commonly used, as it is also done herein.

Change Detection. The problem of detecting abrupt changes in the dynamics of
stochastic signals is widely discussed in the literature. Also, many interesting appli-
cations were analyzed in this respect. Change detection within independent and
identically distributed (iid) random data was targeted first some fifty-sixty years ago.

3 Spatial points rather than temporal points can be used. Herein: the path-length covered by ego-car
will be used as a sequencing parameter.

4 Herein: continuous space model.
5 Herein: discrete-space approximation.
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This effort led to the Page-Hinkley change detector6 (PHCD), see [10–12], which has
been used widely in the field ever since. The most important performance criteria
concerning change detectors are the average run length between false alarms and the
expected delay in detection.

Minimum Description Length Principle. An interesting approach to change detec-
tion in the dynamics of stochastic signals is based on the minimum description length
(MDL) principle7. The approach was proposed in [16] and later elaborated in [17].

The approach was used with success in tasks ranging from model selection through
feature extraction to summarizing tasks, see e.g., [18]. Its essence is to choose between
stochastic models – for the purpose of describing data – according to the minimum
code-length that can be achieved by encoding the data (relying on the above models).
The advantage of the MDL methodology is its great flexibility (e.g., the PHCD can be
seen as a procedure relying on MDL approach).

Page-Hinkley Change Detector. Assume that a sequence of observations n1; . . .; nN is
given. Furthermore, assume that it is composed of two parts: the first part being an iid
sequence of random variables taking discrete values according to the probability law
p nn; h1ð Þ, while the second part being generated according to another probability law
p nn; h2ð Þ in a similar manner. The problem is to estimate the time, or the location, of
the change between the two probability laws from observed data in a real time manner.

An MDL approach to solve this problem would be to choose an arbitrary time – or
location – s and assuming that this is when, or where, the transition between the
probability laws takes place, encode the observed data optimally according to the
hypothesized data generating mechanism. According to standard results of information
theory, the overall optimal code-length LN(s) of the observed data – in an asymptotic
sense and allowing block coding – is as follows:

LN sð Þ ¼
Xs�1

n¼1

� log p nn; h1ð Þþ
XN
n¼s

� log p nn; h2ð Þ: ð1Þ

According to the MDL principle, the estimator of the change point is obtained by
minimizing LN sð Þ in s. In order to explore the shape of LN as s varies, one could
compare its successive values, e.g., LN (s) and LN (s + 1), and could use them to define
the score ΔLN (s) as

DLN sð Þ ¼ LN sþ 1ð Þ � LN sð Þ: ð2Þ

A heuristic procedure for minimizing LN in real-time is obtained by identifying the
time-point, or space-point, after which LN has a clear upward trend. Then the following
signal needs to be monitored:

6 The PHCD was later adopted and analysed also for dependent data [13].
7 The MDL principle has its theoretical foundations in information theory. The principle was proposed
in [14] and later developed further in [15].
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gn ¼ Sn � min
m� n

Sn; where Sn ¼
Xn
k¼1

DLN kð Þ: ð3Þ

It is then expected that gn is typically 0 for n’s preceding the true change point,
while gn is typically increasing after that. Choosing a positive threshold for gn to
surpass, the corresponding n will mark the estimator of the change point. This heuristic
procedure can be interpreted as and implemented using a PHCD that detects change in
the parameter of the probability law according to which the observed data is generated.

4 Collection of Traffic Sign and Crossroad Data

Car-based data collection trips were made in respect of traffic signs, crossroads and
urban environment types in three urban areas in Hungary. The areas involved were
Csepel (one of the 23 districts of Budapest), Százhalombatta (a town on the west bank
of the river Danube) and Vác (a historic town on the east bank of the River Danube).
The trajectory of the data collection trip made to Vác is shown in Fig. 1, while photos
of typical scenes from the mentioned settlements are presented in Fig. 2. Three dif-
ferent urban road environment types, namely downtown (Dt), residential (Res) and
industrial/commercial (Ind) areas8 were considered in the study, and changes between
these were to be detected. The fact that certain types of traffic signs and crossroads
tend to appear more/less frequently in the Dt areas, or in the Res areas, or in the Ind
areas than they do in the other two, makes the statistical inference and the RoED
possible. For the data collection trips a tablet-based Android application was devel-
oped to facilitate manual data entry in the moving car in respect of traffic signs,
crossroads and urban environments encountered, and for geo-tagging the route in an
on-going manner. Data logging was the task of a data entry assistant, who logged the
data while the driver drove the car along a route.

The empirical probabilities of encountering crossroads and traffic signs of various
categories – over a path-length of 50 m – in different urban road environments are
shown in the Figs. 3a and b, respectively. The crossroad types considered are as
follows: T-shaped, X-shaped, complex crossroads and roundabouts – all these without
traffic lights – and any crossroads with traffic lights installed. In the figure, these types
are indicated with pictograms.

8 Downtown (Dt) areas feature one-, or multi-storey buildings built next to, or close to each other.
Industrial/commercial (Ind) areas can be described in terms of factory buildings, workshops, stores –
all of these with spacious yards – as well as supermarkets and bigger shops with parking lots. The
residential (Res) areas are characterized by somewhat larger green spaces and by one- and two-
storey buildings with somewhat more space between them than between those in the downtown
areas. Note that there can be considerable variations in the descriptions among countries and regions.
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5 The Proposed Method for Detecting Change in Urban
Environment

A discrete time/space approximation of a MPPP was developed in [8]. It was obtained
by assuming an inhomogeneous iid sequence of random variables with binomial dis-
tribution, taking values 1 and 0, with probabilities hi and 1� hi, respectively.

In Eq. 4, index i refers to the sequential number associated with an urban road
environment; say, Dt: 1, Ind: 2, and Res: 3. In the equation, index f refers to the road

Fig. 2. A crossroad – with traffic lights – in Csepel’s Dt (top left). A street in an Ind area in
Százhalombatta (top right) and one in a Res area in Vác (bottom).
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Fig. 3. Probabilities of encountering crossroads (left) and traffic signs (right) of the indicated
types, respectively, over a path-length of 50 m in Dt (yellow), Ind (grey) and Res areas (green)
based on the aggregated data. (Color figure online)
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features considered, i.e., the traffic signs (ts) and the crossroads (cr); e.g., hts2 is the
probability that any kind of traffic sign occurs in an observation (i.e., over a route-
segment of 50 m) within an Ind area. An event occurs, if n f

j ¼ 1; where j identifies the
observation; e.g., ncrj signifies that a crossroad was detected in the j-th route-segment.

The indicator functions f fj;k indicates the presence of a certain mark (i.e., type of the
traffic sign or of the crossroad) in an observation; e.g., fcrj;2 signifies whether an
X-shaped crossroad was detected in the j-th route-segment, or not. If one can assume
that the stochastic processes describing the occurrences of traffic signs and crossroads
are independent of each other, then the score obtained via optimally encoding the j-th
observation using the two probability laws9 is as follows:

DL jð Þ ¼
X

f2 ts;crf g
�n f

j � log
h f
1

h f
2

� 1� n f
j

� �
� log 1� h f

1

1� h f
2

�
Xm
k¼1

n f
j � f fj;k � log

p f
1;k

p f
2;k

 !
:

ð4Þ

This is simply the sum of the score derived for the traffic signs in [8] and the similar
score for crossroads. Relying on the above formula and also on the corresponding
formulae referred to in the footnote, one can compute based on Eq. 3 the signals to be
monitored by the respective PHCD’s.

5.1 Examples for PHCD-Based Environmental Change Detections

The outputs of PHCD’s – used for detecting change in the urban road environment
based on the collected data – are shown in Figs. 4 and 5 as concrete examples. These
output signals were produced by the PHCD’s were tuned to the empirical probabilities
shown in Fig. 3.
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Fig. 4. An urban road environment change – encountered while driving from a Dt area in Csepel
to an Ind area (Dt ! Ind) – detected with a PHCD tuned to the overall empirical traffic sign and
crossroad data. The yellow and the grey areas above correspond to the logged (i.e., true) Dt and
Ind urban road environments.

9 Note that Eq. 4 gives the score when comparing the optimal code-lengths corresponding to the Dt
(1) and the Ind (2) areas, respectively. This is indicated, for instance, by the use of h f

1 and h f
2 in the

formula. Equation 4 corresponds to the case when one drives from a Dt area into an Ind area.
Similar formulas can be derived for other ordered pairs of road environments.
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Having been calculated from the mentioned empirical probabilities hts1 ¼ 49%,
hts2 ¼ 13% and hts3 ¼ 18%, as well as hcr1 ¼ 48%, hcr2 ¼ 27% and hcr3 ¼ 42% were used
in Eq. 4. Using these empirical probabilities and those displayed in Fig. 3, the con-
ditional probabilities p f

1;k can also be calculated. An environmental transition
encountered when driving from a Dt area in Csepel to an Ind area is presented in Fig. 4,
while one from a Res area in Vác to a Dt area is shown in Fig. 5 as examples.

6 Conclusions

When driving from the periphery of a town to its centre, or in the opposite direction for
that matter, the urban scenery may change a lot. This changing scenery and more
importantly the latent socio-economical, architectural, as well as transport- and traffic-
related changes behind the visible traits pose highly different safety risks to the drivers
and it is important that they are aware of these risks. To assist drivers in perceiving and
understanding the road environment, a TSR-based surrogate RoED ADAS-function was
proposed earlier and the function is further developed here.

Occurrences of crossroads encountered along a route and their respective types
were logged and taken into account – together with the traffic sign data gathered in a
similar manner – in detecting change in the road environment. Statistical inference
methodology relying on the MDL principle was applied to the concrete change
detection problem. PHCD’s tuned to empirical data were set to work to detect the
change. The process and the quality of change detection were demonstrated via
examples.

In order to make the surrogate RoED ADAS method and subsystem usable in real
automotive applications, an extensive collection of relevant data would be essential.
It is imperative that the data comes from different regions and countries. Furthermore,
as the built environment changes in time, the data collection trips need to be repeated.

The quality of the collected urban environment type data would improve by
allowing one or more further urban environment type (e.g., for various agricultural
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Fig. 5. An urban road environment change – encountered while driving from a Res area in Vác
to a Dt area (Res ! Dt) – detected with a PHCD tuned to the overall empirical traffic sign and
crossroad data. The green and the yellow areas above correspond to the logged (i.e., true) Res and
Dt urban road environments. (Color figure online)
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areas, parks/cemeteries). Furthermore, the data entry assistant should be allowed to log
two different environment types for a route-segment (i.e., one for the left side and one
for the right).
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