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Abstract. Cameras in general are exteroceptive sensors and provide
visual information about the local environment. For automotive safety
applications, image data is processed to identify critical situations and
avoid traffic accidents. Plenoptic cameras which are capable of record-
ing both, angular and spatial information of light, have found increasing
interest in optical 3D measurement techniques in recent years. Major
advantages are multiple perspective views of captured scene and post
focus capability. Therefore, the depth of the scene can be estimated sim-
ilar to stereo camera.

In this paper, the potential of plenoptic cameras in the field of auto-
motive safety is investigated in three aspects (1) depth estimation per-
formance, (2) feature detection quality, and (3) weather robustness. For
comparative results, adverse conditions such as low light or rain are repli-
cated in a test hall. Initial results show that the additional microlens
array of plenoptic cameras enable to achieve significant improvements
over conventional cameras.
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1 Introduction

In the field of automotive safety, camera sensors play a major role in terms
of object classification, feature detection and depth estimation. These aspects
are even more important when it comes to adverse weather condition such as
rain. Lightfields in general are referred to as the 4D spatio-angular light ray
distribution incident on a 2D light sensor [1]. A plenoptic camera unlike a con-
ventional digital camera, captures not only a 2D image information, but also
the directions of the incoming light rays [2]. Thus, the lightfield implicitly cap-
tures 3D scene geometry and reflectance properties. It is also important to note
that images are formed by extracting same pixels under each microlens which
is placed in between main lens and the image sensor [3]. In adverse weather
conditions, feature or object detection and distance estimation becomes a chal-
lenging task which is crucial in the field of automotive safety to avoid major
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accidents [4]. There are several sensors available for object classification and dis-
tance estimation such as radar, lidar and camera sensors. These sensors have its
restrictions in adverse weather conditions [4]. Plenoptic cameras render many
perspective views of the captured scene, from which a depth map of the scene
can be estimated [7–9] and with additional light direction information it is pos-
sible to refocus on objects of interest after the image has been captured [5,6].
Investigation was also made whether the perspective view changes or post focus
capability can be used for increasing the quality of environmental information.

Outline

This paper is organized as follows. Section 2 gives an overview on related work
done in the field of depth estimation, depth selective focus methods, object
detection, and influence of rain on plenoptic imagery. Section 3 describes aspects
such as depth estimation, depth selective focus on objects, and feature detection
along with rain simulator test setup. Section 4 discusses the experimental results
in terms of adverse weather conditions and Sect. 5 summarizes the results and
the scientific contribution of this paper.

2 Related Work

Georgiev and Lumsdaine [11] proposed a normalized cross correlation technique
between microlens images for estimating the disparity map. Bishop and Favaro
[12] introduced a method for recovering 3D depth of scene by matching anti-
aliased lightfield views and then by performing deconvolution. In Wanner and
Goldluecke [8], disparity map is estimated locally using dominant directions on
epipolar plane images, which are computed with the structure tensor. In Yu et al.
[9], 3D geometry of lines in a lightfield image was analyzed and the disparity
maps are calculated through line matching between the sub-aperture images. In
our research, the algorithm proposed by Jeon et al. [13] was used for estimating
the disparity map using a lenslet lightfield camera. Proposed algorithm in [13]
was used for solving the problem of narrow baseline between the sub-aperture
images by using phase shift theorem.

Focus is an important aspect of photography which allows us to gather more
light information and it also increases the signal-to-noise ratio (SNR). Lightfield
cameras gather more light information than conventional cameras [7] and provide
sufficient information for post focus capability. It blurs out scene elements which
falls outside the plane of focus [5,6,14]. First frequency planar filter [14], 4D
planar filter [15], shift and sum filter [16] which are capable of focusing on object
at particular depth and volumetric filtering which is capable of selecting objects
over range of depths is discussed in [10]. Regarding influence of environmental
factors on plenoptic camera images, [10] has discussed depth selective focus on
objects and noise reduction under murky water and particulate matter scenarios.
To the best of our knowledge no one has investigated the influence of rain on
plenoptic imagery and feature detection in adverse weather condition.
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3 Materials and Methods

The proposed test methodology for investigating the potential of plenoptic cam-
eras is mainly focused on depth estimation and feature detection quality under
adverse weather conditions. These aspects are discussed below.

3.1 Depth Estimation

As a first step, the disparity map was estimated with an assumption regarding
the baseline b in triangulation equation for finding depth Z of the object. In
given method the main lens aperture diameter is considered as the baseline of the
camera. It is clear from [7], that the perspective views are equivalent to viewing
through different sub-apertures on the main lens. Therefore, top and bottom
perspective views can be considered as viewing through top and bottom sub-
apertures of the main lens as illustrated by Fig. 1. Main lens aperture diameter
b is given by

b =
fL

F
(1)

where fL is the focal length of the main lens and F the constant F-number of the
camera. The F-number for Lytro Illum is a constant value of 2. For all test runs
a focal length of 30 mm was set, which is estimated in pixels by using method
proposed by Dansereau et al. [17]. Pixel disparity d of scene is determined for
object at known depth values Z, with the help of basic triangulation equation
gior ven below

d =
fL · b

Z
(2)

where b is the baseline of the camera and Z the known depth value of object. In
commercially available lightfield cameras such as Lytro, the pixel disparity range
is very small in between adjacent sub-aperture images (1 pixel) as reported by

Fig. 1. Pictorial representation of plenoptic camera capturing 3D scene geometry using
microlens array.
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[9]. For investigating this, the disparity map was determined by extracting the
left most and right most sub-aperture images. Triangulation equation (see Eq. 2)
was used to find the approximate depth of the object. The depth map estimated
by this method resulted in larger deviations in depth values up to 2600 mm for
object placed at 500 mm, which is due to the narrow baseline between the sub-
aperture images (see Fig. 3). Object placed at 500 mm and 1000 mm from the
camera showed only 4 pixel and 2 pixel disparity respectively.
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Fig. 2. Required disparity values vs. known depth values in mm.

Therefore, the algorithm proposed in [13] is used for solving the problem
of narrow baseline between the sub-aperture images by phase shifting of the
sub-aperture images using phase shift theorem. For the estimation of sub-pixel
shifts of sub-aperture image, phase shift theorem is used in the fourier domain
and thus by enabling the estimation of the stereo correspondences at sub-pixel
accuracy. The subpixel shifted sub-aperture image Ir can be obtained as

Ir = I(x + δx) = F−1[F{I(x)}exp2πiδx]. (3)
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Fig. 3. Estimated depth map by using two sub-aperture images in normal light sce-
nario. For object placed at 500 mm the estimated depth output showed larger deviation
up to 2600 mm.
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Similarity measurement is performed in between the sub-aperture images shifted
at different sub-pixel locations and the center view sub-aperture image as refer-
ence. Cost volume based stereo [18] was used in order to construct cost volume
and it gives a clear picture of how well a pixel x in image I matches with same
pixel in second image Ir. Per pixel cost volume for different disparity labels are
calculated. Two cost functions namely sum of absolute differences and sum of
gradient differences were used in order to match sub-aperture images and to
construct the cost volume. The cost functions are defined as below.

CSGD =
∑

sεV

βmin[|∇xI(sc, x) − ∇xI(s, x + δx)|, τ2]

+ (1 − β)min[|∇yI(sc, x) − ∇yI(s, x + δx)|, τ2] (4)

CSAD =
∑

sεV

min[|I(sc, x) − I(s, x + δx)|, τ1] (5)

CTotal = αCSAD + (1 − α)CSGD (6)

Parameters α and β can vary between 0 and 1. Parameter α is used for balancing
color and gradient term. As proposed in [13], β is independent of the scene and
is purely determined by using the relative position between phase shifted view
s and center view sc. τ1 and τ2 are the truncation values for suppressing the
outliers. V contains all perspective views, except the center view sc. The shift
vector δx varies linearly with respect to increase in angular deviations from
center view point as following,

δx = lk(s − sc) (7)

where k represents the pixel shift unit and l the cost label. Median filtering
was performed in order to preserve the edges. And based on winner takes all
strategy, label l will be assigned to pixel x. As a final step, graph cut technique
[19] was utilized to correct the disparities using neighbour estimation. Followed
by estimation of object depths using triangulation equation (see Eq. 2).

3.2 Depth Selective Focus

Depth selective focus using the additional light direction information allows to
post focus on objects at different depths [5]. For testing purpose, shift and sum
depth selective focus method which is similar to planar focus method [15] was
used in order to detect the object features under adverse weather conditions
such as rain. In plenoptic camera each lenslet in microlens array is considered as
sub-image, which has a corresponding shift vector up to which it must be shifted
in order to focus on objects at certain depth. The basic principle is that the filter
shifts all the sub-images to a common depth and then adds them together to
yield a single 2D output. As mentioned in [10,15], the parameter slope gives
the amount by which the lightfield slices would be shifted in order to focus
on object at particular depth. In general, slope value of 0 lies near the center of
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captured depth of field, such that slope will be having negative values for objects
in foreground and positive values for object in background. Parameter slope is
given by

slope =
D

PZ
(8)

where D represents separation in between two planes described by [10,15] and
PZ the depth of point P in scene. The relationship between slope and depth
depends on lightfield parameterization.

3.3 Feature Detection Based on Normalized Cross-Correlation

Feature detection using normalized cross correlation technique [20] was per-
formed on images captured under challenging conditions including rain scenario.
Normalized cross correlation is a template based matching technique, whose
output results in correlation scores which can be used as criteria for feature
detection. Therefore, the cross correlation technique was used to investigate the
influence of rain as well as low lighting condition on plenoptic images. Verifi-
cation was also made whether depth selective focus and field of view changes
offered by plenoptic cameras can be utilized in order to achieve an improvement
in correlation scores. For testing purpose the head light part of the car which was
captured under normal light condition was considered as template image. As a
next step, normalized cross correlation was performed in between the template
image and test images taken under various challenging scenarios. The normalized
cross correlation term [20] is given by

c(u, v) =

∑
x,y[I(x, y) − Īu,v][t(x− u, y − v) − t̄]

{∑
x,y[I(x, y) − Īu,v]2

∑
x,y[t(x− u, y − v) − t̄]2

}0.5 (9)

where I is the test image, t is the template image, t̄ is the mean of the feature,
and Īu,v is the mean of I(x; y), which is the region under the feature. The
denominator term consisting of magnitude of I and magnitude of t is mainly used
for normalizing the cross correlation process. Equation 9 results in correlation
scores c(u, v), which ranges from the value −1 to +1, with +1 being the best
match. The condition for detecting the head light part of the car is minimum of
five valid matches which are very close to each other having correlation scores
greater than the threshold value of 0.85. Test results are presented in Sect. 4.

3.4 Test Setup

For simulating the rain scenario, a setup similar to the one suggested by [4]
was used in indoor conditions and a rain intensity of about 120 mmh was used
for testing purpose. Rain simulators are reproducible, controllable and save test
effort. The Lytro lightfield camera was placed in the rain area and car image
objects were placed at 500 mm and 1000 mm. Measurements were also done in
normal and low light scenarios by switching on and switching off the lighting
setup inside the indoor test facility.
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Fig. 4. Estimated depth map using phase shift theorem in normal light scenario show-
ing estimated depth values of 508 mm and 1020 mm.
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Fig. 5. Estimated depth map after using phase shift in rain scenario showing estimated
depth value of 617 mm and 1234 mm for object placed at 500 mm and 1000 mm.

4 Experimental Results

4.1 Depth Estimation Performance

Depth estimation performance of plenoptic camera was investigated in normal
light (see Fig. 4) and rain scenarios (see Fig. 5). For a pixel shift unit k within
the range of 0.015 to 0.017, lightfield camera gave good depth estimation results
for the object placed at 500 mm and 1000 mm. It can be seen that there are
variations compared to normal light scenario. This is mainly due to the presence
of atmospheric disturbances like rain in the image. It will also be difficult to
compute the pixel correspondence in between the sub-aperture images, which
will result in deviations in the disparity and depth maps. Value of 0 will be
assigned to pixels for which correspondence matching cannot be found in the
disparity map. There are higher possibilities of false correspondence matching
which will also result in deviations in disparity and depth maps.

4.2 Feature Detection Performance Based on Normalized Cross
Correlation

Feature detection based on normalized cross correlation was performed in
between head light images captured under normal lighting condition (template
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(b)     (c)     (d)     (a)     (e)     (f)     

Fig. 6. (a) Template image, (b) Feature detection using normalized cross correlation in
normal light, (c) Low light scenario showing good detection result, (d) No detection in
rain scenario (center sub-aperture image), (e) Feature detection in rain scenario after
depth selective focus, (f) Feature detection using field of view change. (Color figure
online)

image) and images captured under adverse conditions (see Fig. 6). The best
matching correlation score is indicated in red color mark. All other valid matches
are indicated in yellow color marks.

Figure 6(b) shows the best matching correlation score +1 and 11 valid
matches which are very close to each other. All resulting correlation scores were
greater than the threshold value of 0.85.

In low lighting condition (see Fig. 6(c)), the correlation process resulted in
best matching score of 0.9755 and a total of 16 valid matches. Feature detection
in low light conditions show good results, which clearly illustrates the higher
light gathering ability of plenoptic cameras.

In adverse weather conditions such as rain scenario (see Fig. 6(d)), the corre-
lation process resulted in best matching score of 0.7809 which is already below
the valid threshold value. The resultant score and detected region in main image
is not the match of the template head light image. Invalid detection occurs due
to rain droplets in scene, which act as disturbances by blurring some regions
of the head light part of the car. Due to invalid detection and zero near valid
matches, head light feature in car could not be detected in rain scenario.

For reducing the effects and disturbances, depth selective focusing provided
by plenoptic cameras was utilized for focusing on the car object. It can be clearly
seen in Fig. 6(e) that effects of rain droplets are completely removed. It resulted
in best matching score of 0.9780. Total of 17 valid matches which are very close
to each other were also obtained as final result. These results clearly illustrates
that post focus capability offered by plenoptic cameras is helpful in removing
the disturbances caused by rain.

Verification was also made whether by utilizing the change in perspective view
can be used for achieving an improvement in feature detection performance. It can
be clearly seen from center sub-aperture image shown in Fig. 6(d) and top most
sub-aperture image represented by Fig. 6(f) that by changing the field of view,
the rain droplet which blocks and blurs the head light part of car is shifted in top
most perspective view such that the head light part of the car is made visible. The
best matching score is increased to 0.9298 and the number of near valid matches
from 0 to 6. It is clear, that changing the perspective view can make a significant
contribution towards improving the feature detection (see Table 1).
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Table 1. Normalized cross-correlation scores for different test scenarios.

Test scenarios Cross-correlation scores

Normal light 1

Low light 0.9755

Rain 0.7809

Depth selective focus in rain 0.9780

Perspective view change in rain 0.9298

5 Conclusion and Future Work

This paper presents the potential of plenoptic cameras in the field of automotive
safety, especially in adverse weather conditions. Initial results show, that rain
drops cause deviations in depth values, but can be corrected by the plenoptic
camera. Object feature detection by utilizing the field of view changes and post
focus capability provided by the plenoptic camera also proves the robustness of
plenoptic cameras in adverse weather conditions. Higher light gathering ability
will be helpful in low light scenarios to gather sufficient information about the
scene. These aspects are possible mainly due to the additional hardware inside
the camera which is nothing but the microlens array.

Although the plenoptic cameras offer several advantages, it has its own dis-
advantages. The spatial resolution of images rendered by plenoptic cameras are
always less when compared to conventional cameras which is due to the fact that
it produces more perspective views of the captured scene. This results in higher
angular resolution and lower spatial resolution. Since many pairs of images are
compared with each other for finding disparity, the computational time regarding
depth estimation and pre-processing of raw images is quite high.

Future work includes the use of focused plenoptic cameras, which have the
ability to render final images with higher resolution. Furthermore, tests can be
conducted in dynamic scenarios with both moving objects and camera.
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