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Abstract. For the system test of automotive safety systems, thousands
of kilometers need to be driven on real roads. In the future, that number
will increase significantly through higher complexity of the functions. To
reduce that number and guarantee the controllability, reproducibility and
increase the flexibility, a high amount of virtual driving kilometers will
be done in X-in-the-Loop (XiL) tests, simulating sensors, weather condi-
tions, vehicle dynamics, car drivers, vulnerable road users, etc. Defining
these driving scenarios manually is very complex, time consuming and
can not be traced to test coverage conditions. This paper presents an app-
roach to extract simulation based driving scenarios from state based test
models. Through building a test model of the requirements and expend-
ing that with scenery and maneuver information of the driving tests, it is
shown, that complete driving scenarios can be generated automatically
to reach every possible state of the system under test.
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1 Introduction

Highly automated and autonomous cars will have an increasing proportion on
the roads in the next few years, leading to changes and improvements in ecolog-
ical, economical and safety aspects [1]. To survive in the dynamic automotive
market with its high pressure to new technologies and innovations, the auto-
motive companies, suppliers as well as original equipment manufacturers, have
to make more and more tests within every step of the development process. To
test the highly interconnected systems, consisting of sensor systems, environ-
ment interpretation, driving function and motion control [5], up to billions of
driving kilometers would be necessary to ensure the safety requirements within
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the system test in the future [2]. Because of the higher reproducibility, trace-
ability, flexibility and controllability, those driving tests will be done more and
more in simulation based environment [12]. The so called P.E.A.R.S. initiative
is working on harmonized and standardized simulation based methods on how
to validate advanced driver assistances systems with fully virtual simulation [6].
Within X-in-the-Loop (XiL) tests, where the X stands predominately for model,
software or hardware, the simulation offers the generation of data as near as
possible to the real world data within a car and can show the later usability and
effectiveness of the system under test (SUT) in its final state [3]. With models
of sensors, weather conditions, vehicle dynamics, car drivers, vulnerable road
users, etc. this is a very mighty and flexible tool to test new functions through
the whole development process but has high expenses in designing the test sce-
narios and finding necessary test cases. In this paper, a method is presented,
generating relevant test scenarios for safety critical automotive systems under
reproducible conditions with as little effort as possible. Tracing requirements and
reaching every possible state of the SUT was essential. Using a state based test
model, derived from the requirements, combined with simulation aspects helped
to obtain a solution.

The paper starts with related work in Sect. 2 and continues with the descrip-
tion about the idea behind generating driving scenarios from test models in
Sect. 3. In Sect. 4, the whole toolchain will be described. After the practical real-
ization and execution in Sect. 5, the paper will end with a conclusion and forecast
in Sect. 6.

2 Related Work

For this paper, it is important to differentiate between model-based development
(MBD) and model-based testing (MBT). Within the term MBD the system
functionality itself will be described and is usually executable. MBT, on the
contrary, describes the test cases of the SUT and can be analyzed on the expected
results under every possible condition. The third type of model in this paper is
within the driving simulation and consists of mathematical models of vehicles,
drivers, environment, etc.

For the full test of a system model, test cases have to be generated through
analyzing the test model. The simulation offers the whole test environment for
the SUT. In contrast to many other MBT methods, no additional environment
model has to be implemented. Siavashi and Truscan analyzed the different meth-
ods modeling environments for MBT. They selected and analyzed 61 papers
according to methods and tools used. Resulting, Unified Modeling Languages
(UML) is the most used language to describe environments. Others are Timed
Automation, Attribute Event Grammar or Petri Nets [7]. In contrast to that
types of environment modeling, using a driving simulator helps to reduce the
work to do tremendously and offers the possibility to concentrate on generating
driving scenarios for a high test coverage.

Approaches to generating driving scenarios were made through analyzing real
world scenarios and reconstructing them virtually [8], generating them through
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stochastic algorithms with Markov Chain Monte Carlo methods [9], or rebuilding
generic environment descriptions through UML models [4]. In MBT the classic
way to describe test cases is, to add parameter values to state transitions to
trigger conditions within the system model [10]. This approach will be extended
through driving scenario information, resulting in driving scenario descriptions
for every possible state in the system model.

In this paper, the MBT approach for the system test is used in combination
with driving scenarios. In contrast, other papers do not describe those two in
connection, either using MBT to generate test parameters for software compo-
nents from the verification side, or using models to generate driving scenarios
for the validation of the driving function [4]. The direct connection between the
system dependent test and the description of the driving scenario was not yet
done.

3 Generating Driving Scenarios with MBT

Through the data separation by an already existing driving simulator, the test
model and system model can be built by two different development teams, which
will be the best approach developing test cases for SUTs. Both teams only have
to consider the simulation environment as an interface and relate to the require-
ments of the system.

Start / Stop Condition 4

Condition 2
State 1 State 2 State 3

i Internal |
i Function !

Condition 1 Condition 3
Catalog of scenarios to test short atomic Minimal scenario to
situations within one defined state. { trigger conditions

Fig. 1. Example of a state transition model.

The system- and the test model are both designed as state transition mod-
els. Figurel shows a State Transition Model exemplary. Beginning from the
Start, the system will reach different states. Within those states, there are func-
tions/controllers for special driving situations. Parameter changes, timing condi-
tions or external events will lead to state changes [10]. For the test of the system
model, two different test items have to be considered separately until reaching
the Stop state:
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— Internal function test
The internal function test will test the reaction of a controller within one
single state. The main goal within those tests is to test the system under a
high variation of short atomic scenarios, which will represent the variation
in the real world as near as possible for a special situation affecting the con-
troller algorithm. Generating a state transition within that scenarios is not
permitted. This encapsulation of functionality will lead to a high amount of
short driving scenarios which will be controllable in the context of test cover-
age. Special preconditions for the internal function test have to be considered
when generating state transition tests, nonetheless a method for generating
these internal function tests will not be main topic in this paper.

— State transition test
With the state transitions being in the main focus of the test, hard parameter
values are defined for the transition conditions. These conditions will lead
to different driving scenarios in the simulation and can be handled under
different test coverage conditions.
A much more difficult problem is to ensure the preconditions of the atomic
tests scenarios of the internal function tests. Because of the expected high
amount of different driving scenarios in that test, the preconditions can not
be implemented manually in an acceptable amount of time. Having the post-
condition of the previous state, the pre-condition of the internal function test
and parameter boundaries through the simulation environment, compare to
Fig. 2, the scenario problem can be reduced to a search problem to be solved
through evolutionary algorithms [11].

Post-condition Pre-condition

of State 11T i of State 2

' Reaching pre-condition of

~ | State 2 Internal Function
i Internal ! e i Internal !

_Function | | state transition condition | i Function

_______________________________________

State 1

Fig. 2. Boundaries generating state transitions for internal function tests.

4 Framework

To provide test execution with a high grade of automation, a framework for
the system model, the test model, the simulation and suitable interfaces for the
communication between those tools will be needed. Figure 3 shows an overview
of the different tools and utilities used in this project exemplarily. Deriving from
the requirements, the system model was developed within Matlab Stateflow as
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a state transition model. The test model was developed as a state chart UML
model within Enterprise Architect. The XMI data format exported from Enter-
prise Architect can be imported to the MBTsuite. That tool offers the possibility
to extract and filter test cases according to several criteria. An additionally pro-
grammed extension to the MBTsuite offers the export of test cases to CarMaker.
That simulation tool offers a huge set of models and simulation possibilities to
be executed in real-time for driving dynamics, sensors and environment. The
system model is directly connected to the driving simulator and can be fed with
the data from the CarMaker simulation. The evaluation of executed test cases
was done by an additionally developed evaluation tool, which considers different
information from the states of the system model and the expected states of the
test model and additionally compares the corresponding timing information.

.’/ Mathworks Matlab

y SparxSystems Enterprise Architect
System Model |«{-| Requirements Test Model
: (Stateflow) : . (Statechart)
Test O
' execution!
Test — : fe);g ths ted Test-case Export/
Data : Evaluation selection Import
R — /’ criteria
s ; a i)Y ;
} Simulation Test Scenarios < ; [ Explicit test ] L il ] :
! : Export/ : L cases structure '
i IPG CarMaker i Import i sepp.med MBTsuite ;

Fig. 3. Overview of the used framework.

4.1 System Under Test

The system model, describes the functionality of the SUT and can be used to
simulate the system reactions in an early development state. It is possible to
trace the parameter values and state transitions of the model at every time
of the execution and analyze the test coverage of the executed test cases after
execution. When feeding the model with data from the simulation, the state
transitions will be triggered through the driving simulation.

Through automatic code generation, the developed system model can be used
until the system is running on the target hardware. Considering the different
platforms, the system is running on, there will be differences between analyzing
the SUT. Tracing the internal states of the system when running on a special
hardware can be difficult. Therefore it is recommended to test stepwise from the
model tests increasing up to the hardware tests. The test cases can be reused
in every step. While having Gray/White-Box tests on the system model, testing
the hardware system could only be possible as pure Black-Box test. It is to be
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expected, that timing of the state transition will be slightly different in contrast
to the simulated model on the desktop pc without real-time conditions and real
bus interfaces.

4.2 Test Model

The test model describes the overall test cases necessary to test the system
model. It is also modeled in a state based form in Enterprise Architect. In addi-
tion to the system model, it also describes test cases of simultaneously possible
system states. For example: Different bus systems can simultaneously receive dif-
ferent messages which could lead to different state transitions within the system
model. Every possible combination of data, combinable in equivalence classes,
will be modeled as different single state transitions. Considering those possibil-
ities, the test model can get much bigger and more complex than the system
model. It is possible to fully generate test cases automatically according to the
desired test coverage with the MBTsuite (priority based, branch coverage or
guided paths, etc.)

Element Code - Detailed View
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Fig. 4. The test model of the ACC shows the different validation points and the trigger
transitions for the system model. Additionally simulation information is added to every
test step in form of element code.

In a classical way, test cases would be generated consisting of different test
steps, with a pre-condition, a post-condition, the input data and the expected
results. The external interfaces of the SUT will be fed with the defined input
data, without considering the real environment. The test model was extended
to generate test scenarios for the driving simulator through adding environment
information (Fig.4, Element Code). The executed system model will no longer
be triggered by the test steps in a data generator, but by the scenario simulator
itself, which can simulate the whole system environment. This leads to a much
more realistic testing environment in contrary to the methods up to now.
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4.3 Simulation

The simulation is one of the most important parts of the framework, providing
the information of the environment of the SUT. Poor data can lead to unwanted
error states within the SUT, or deliver insufficient or unrealistic test results.
Therefore it is important to know the environment of the SUT and integrate the
SUT in a way, it would be used in the final target platform. The driving simula-
tor includes a generic model of the environment all around the SUT and can be
configured to run in a closed loop [13]. Depending on the test goals, single models
can be exchanged through more realistic or better fitting models. E.g., sensor
models for environmental sensing. Building a whole simulation environment for
virtual driving scenario is not recommended because of its complexity and high
costs for the development time. Different companies are specialized in building
simulation environments for integrating vehicle components in a closed loop envi-
ronment, e.g. Vires (VID), TASS International (PreScan) or IPG (CarMaker).
For the research in this paper, an already existing tool was used.

Depending on the selection of the simulation tool, the syntax and grammar
of the description of driving scenarios within the test model can change, cf.
Sect. 4.2.

5 Example Scenario

5.1 Modeling the Active Cruise Control System

To show the usage of this paper approach, an example implementation of a
system model and a test model was made. As an example of the functionality,
an Active Cruise Control (ACC) driving function was implemented. The model
was implemented according to the ISO15622 and Winner et al. [3]. The ACC
can get from state ACC_OFF to the state ACC_standby until ACC_active and
backwards. For simplification, the condition from off to standby is the same as
from standby to active. When ACC_active, the ACC can be in ACC_speed_control
state, controlling the speed of the vehicle. When detecting a vehicle in front
of the ego car, the state ACC_time_gap_control will get active and control the
distance of the ego vehicle to the vehicle in front. The test model of the ACC, see
Fig. 4 consists of different Verification Points (VP), verifying the current internal
state of the system model. The transitions within the test model are describing
possible events to test in the system model from external inputs or parameter
changes. The state Init_environment_and_vehicle_parameters is used to initialize
the global simulation parameters, that do not change within one scenario.

5.2 Test Case Description

The test case consists of two different aspects separated in bringing the SUT in
the expected state (state transition test) and executing a test within the defined
state (internal state test). Within the ACC_time_gap_control state, the desired
time gap between the ego vehicle and the vehicle in front will be changed and the
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Ego
Vehicle

Traffic

Fig. 5. Driving maneuver of the traffic object and the ego vehicle with its sensor view.

reaction time of the controller measured. The test case generation tool generated
the following test chain:

State: Init_environment_and_vehicle_parameters
State: Init_velocity
State: ACC_OFF (VP)
Transition: ACC on via main switch (test step)
State: ACC_standby (VP)
Transition: ACC activation - no further activation needed in this example
(test step)
(a) State: ACC_speed_control (VP)
(b) Traffic.moving_in_driving lane (test step)
i. Transition: relevant target detected (End condition test step)
(¢) State: ACC_time_gap_control (VP and starting the internal state test)
i. Waiting for condition: acceleration of the ego vehicle less than
0.01m/s?
ii. Changing the parameter time_gap
ili. Waiting for condition: acceleration of the ego vehicle less than
0.01m/s
7. Transition: ACC off via main switch (test step)

A e

It is necessary to add an initial state Imit_velocity for traffic vehicles in this
tool set. Within this state, the velocity of the traffic vehicle will be initialized
at the beginning of the test scenario. To reach the state ACC_time_gap_control
an interaction with the environment is required. It is necessary to have another
vehicle in front of the ego car. Therefore a driving maneuver of the traffic object is
needed and modeled within the test model state Traffic.moving_in_driving_lane.
Figure 5 shows the full scenario. The traffic object is overtaking the ego vehicle
and drives into the sensor view while decelerating to a lower speed than the ego
vehicle to activate the time gap controller.
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5.3 Execution and Evaluation

The example test case was generated via guided path functions meaning that the
test case was defined previously manually. As an example, a traffic car is overtak-
ing the ego vehicle and reaching the sensor view of the ego vehicle, decelerating
to trigger the time gap control function in the ego vehicle. The evaluation of the
test case can be done automatically and offers visual evaluation of the timing of
the state transitions and the parameters. Figure 6 shows the evaluation of the
example scenario. The X axis shows the timing with a resolution of 1 ms and the
Y axis on the left side the different possible states. On the right side, param-
eter values are scaled visualized. The top graph shows the states ACC_OFF,
ACC_standby and ACC_active. The bottom graph visualizes the internal states
of ACC_active, ACC_speed_control and ACC_time_gap_control. As an addition a
None state, if ACC_active is not active. Starting from time 6 s, the test case trig-
gers the transition from ACC_OFF to ACC_active. The enlargement in the red
box shows the corresponding transitions. The green graph shows the expected
transitions generated from the test model. The blue graph, the transitions within
the system model (SUT) and the yellow one the signals in the simulation tool
executing the test case. For that transitions, the system model did take 1 ms for
every transition.

ACC_active

ACC_Stand_by

Fig. 6. Test evaluation through timing visualization of state transitions and parameter
values. (Color figure online)
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Corresponding to the state transitions, the parameters desired speed of the
ego vehicle (top), desired time gap (bottom) and acceleration of the ego vehi-
cle (bottom). At 24s, it is noticeable that the test model defines a transition
to ACC_time_gap_control. In this situation, the traffic vehicle begins with its
overtaking maneuver. At about 40s, the traffic vehicle reaches the range of the
sensors of the ego vehicle and the state transition will be triggered. As a pre-
condition for the internal state test of ACC_time_gap_control, the acceleration of
the ego vehicle has to be less than 40.01 m/s2. Triggered through that condition,
the desired time gap will be changed and the resulting acceleration of the ego
vehicle can be analyzed. Summarized, the test case reaches the expected state
within about 40s. The parameter changes from time 80 s to test end are the test
of the internal state function. It is important that no other state transitions will
be triggered within that test. With the focus on the state transition test, there
are several possible errors to be detected:

— Timing delays of worst case execution time overflow within the system model
— Wrong state transitions because of errors within the transition conditions
— Unexpected parameter values that lead to unexpected transitions.

6 Conclusion and Forecast

Within this first attempt in building simulation based driving scenarios from test
models, it was shown, that the method can be very helpful in efficiently finding
errors within a system model. It could be proved, that the driving scenarios can
be built from the test model and shown, how the framework is working together.
Through the driving simulator, environmental sensors can be included for testing
advanced driver assistance systems and highly automated driving functions in
the future. For this implementation, the atomic scenarios for state transitions and
internal state tests were made manually and could be complex considering pre-
and post-conditions for the chained atomic scenarios. At this point, further work
will be done in integrating evolutionary optimization methods already done in
earlier projects [11]. Through describing driving scenarios with the test model,
a gap can be closed between the real driving tests and the component test.
Through the test model, the driving scenarios will trigger every internal state
transition of the SUT without differentiation between small component tests, or
high level system tests. It is usable under both conditions.
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