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Abstract. This paper systematically reviews Deep Learning-based methods for
traffic flow prediction. We extracted 26 articles using a concrete methodology
and reviewed them from two perspectives: first, the deep learning architecture
used; and second, the datasets and data dimensions incorporated. Recent big
data explosion caused by sensors, IoV, IoT and GPS technology needs traffic
analytics using deep architectures. This survey reveals that the LSTM (Long
Short-Term Memory) Neural Networks are the most commonly used architec-
ture for short term traffic flow prediction due to their inherent ability to handle
sequential data. Among the datasets, PeMS is the most commonly used for
traffic flow prediction task. Today, Intelligent Transport Systems (ITS) are not
limited to temporal data; spatial dimension is also incorporated along with
weather data, and traffic sentiments from twitter, Facebook and Instagram to get
better results. In the authors’ knowledge, this is the first deep learning review in
ITS domain.
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1 Introduction

Traffic control and management is an important issue in urban transport networks. With
the advancement in the economy and growth of automobile industry, the number of
vehicles on roads is ever increasing. The density of traffic at a road segment may grow
large due to road conditions, maintenance work, and weather conditions. This results in
traffic jams that create bottlenecks in transportation systems and cause time and money
losses for the travelers. To control the traffic flow and avoid congestion, intelligent
transport systems have been in use for many years [1, 43, 44]. One focus of these
systems is to avoid traffic jams by predicting the traffic flow at given road segments
within a specified time interval thereby guiding travelers to avoid possibly congested
road segments thus enabling traffic control authorities to control and manage traffic
routes effectively.

Traffic flow prediction methods used so far can be categorized into parametric and
non-parametric approaches. In parametric approach, the Auto Regressive Integrated
Moving Average (ARIMA) model is a well-known framework and benchmark for short
term traffic flow prediction [1]. Parametric models predict accurately if the traffic
follows regular variations, but the accuracy drops when traffic is irregular due to some
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unexpected incident on the road, or when prediction is required over a longer interval,
e.g., 30 min or more. [2]. These problems shifted research towards non-parametric
approaches like non-parametric regression, Artificial Neural Networks, Support Vector
Machines (SVM) and Probabilistic methods. These methods being able to model the
non-linearity and spatio-temporal relationship in the traffic data, gave better results than
parametric approaches. However, they require prior knowledge and considerable effort
to extract features and perform pre-processing. With the increasing traffic density and
deployment of sensors and cameras, the traffic data has entered big data paradigm. This
data explosion causes a problem famously labeled as the curse of dimensionality
[45, 46], which traditional parametric approaches are unable to handle effectively. To
process and handle big traffic data, deep learning has been recently adapted to learn
deep correlations within data; without any or a little prior knowledge and need of hand
engineered features [3].

This paper reviews deep learning approaches for short term urban traffic flow
prediction. Our objective is to get an insight into the most effective and prevailing deep
learning techniques used for short term traffic flow prediction, challenges and related
problems, and directions of future research. We pose five research questions: (1) which
deep learning architectures are being used for traffic flow prediction? (Answered in
Sect. 4), (2) which deep learning method is best suited for traffic flow prediction and
most widely used? (Answered in Sects. 4.1 and 4.2), (3) which datasets are widely used
for traffic flow prediction? (Answered in Sect. 4.3), (4) How more data dimensions can
be added to achieve better accuracy in traffic flow prediction (Answered in Sect. 4.3);
and (5) what are the future research directions for improving short term traffic flow
prediction? (Answered in Sect. 5).

2 Research Methodology

We follow a systematic approach [4] to review the literature by framing the research
questions (done above), identifying relevant work, studying and assessing the quality
of studies, summarizing and interpreting the findings, and suggesting the future work.

2.1 Identifying Relevant Work

To perform the electronic search, we formulated and executed the following six queries
on all relevant digital sources, specifically IEEE, Springer, Google Scholar, Elsevier
and ACM. Query 1: “Deep Learning” AND “Traffic Flow Prediction”, Query 2:
“Traffic Flow Prediction” AND “Deep Neural Networks”, Query 3: “Deep Convolu-
tional Neural Networks” AND “Traffic Flow Prediction”, Query 4: “Deep Learning”
AND “Urban Traffic Flow Prediction”, Query 5: “Traffic Flow Forecasting” AND
“Deep Neural Networks” and Query 6: “Traffic Flow Forecasting” AND “Deep
Learning”.

We used Boolean AND operator to search for both set of keywords in each query.
We used “prediction” as well as “forecast” as they are used interchangeably. We also
experimented with other keywords, e.g., “Short Term Traffic Flow Prediction” and
“Urban Traffic Flow Prediction” with no difference in results from our six queries.
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We explicitly searched for Deep Convolutional Neural Networks to filter the rare
applications of these networks in traffic flow prediction. We summarized our results in
Table 1.

2.2 Retrieving Relevant Work

We used Mendeley tool to manage the search results of our queries. Due to broad
nature of queries, many retrieved articles were not relevant to deep learning based
traffic flow prediction. As most of the deep learning literature has been published after
year 2000, no time filter was applied in queries. To filter the retrieved results and retain
only the relevant literature, we used a top down approach. In first step, we manually
read the title of each article and imported only those into Mendeley that had relevant
titles to traffic forecast and neural networks. This gave 185 articles from IEEE, 131
from Springer, 82 from Google Scholar, 50 from Elsevier and 13 from ACM (total 461
articles). This included a lot of articles related to predictions based on shallow neural
networks. Being deep learning the focus, we excluded shallow neural network based
articles by reading title, abstract and keywords, which gave us 23 deep learning based
articles. In third step, we reviewed references of these and found 3 other articles not
extracted by our queries. Hence, we reviewed 26 articles published in journals, con-
ferences and library catalogues. The above process is summarized in Fig. 1.

Table 1. No. of publications retrieved after applying necessary filters.

Search query Search engine
IEEE Springer Google Elsevier ACM Total

Query 1 10 10 205 58 1 284
Query 2 419 1 33 38 15 506
Query 3 9 14 48 82 281 434
Query 4 16 38 13 155 619 841
Query 5 195 3 29 122 281 630
Query 6 11 5 103 163 497 779
Total 660 71 431 618 1694 3474

Fig. 1. Literature search flow chart.
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We classified our 26 articles per source search engine in Fig. 2. Some articles were
retrieved from more than one source; so, we counted them accordingly.

3 Review Statistics

As deep learning is a new approach, all articles are published within the last five years.
The distribution of publications per year is shown in Fig. 3. We classified the extracted
publications per source. As shown in Table 2, about 46% publications appeared in
conferences, 39% in journals and 15% in libraries and archives. Majority of the articles
are published in IEEE-related journals and conferences.

We reviewed the articles across the following seven criteria related to our research
questions: (1) learning approach (LSTM, Stacked Auto Encoders, Convolutional
Neural Networks, Deep Belief Networks), (2) learning algorithm (Back Propagation
(BP), Backpropagation Through Time (BPTT), Greedy Layer wise training), (3) data
sets, (4) simulation/actual traffic data, (5) time interval for prediction (15, 30, 45 or
60 min), (6) dimensions incorporated (temporal, spatiotemporal) and (7) additional
information like online tweets, maps and sentiments. We summarize these findings in
Table 3.

Fig. 2. Publications per source. Fig. 3. Growth of research field.

Table 2. No. of publications per conference, journal and arvhive.

Source Retrievals Percentage

Conference proceedings 12 46%
Scientific journals 10 39%
Archives/libraries 4 15%
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Table 3. Overall tabulated results of literature review.

First author Year Data
location

Dataset Prediction
(Min)

Deep
architecture

Algorithm Data dimensions

Zheng Zhao [2] 2017 China BTMB
[34]

15,30,45,60 LSTM Greedy
Layerwise,
Backpropagation
(BP)

Spatiotemporal

Wenhao Huang [3] 2013 China,
USA

PeMS [7],
EESH

15,30,45,60 DBN Greedy
Layerwise, BP

Spatiotemporal

Wenhao Huang [5] 2014 China,
USA

PeMS,
EESH

15,30,45,60 DBN BP, MTL Spatiotemporal

Arief Koesdwiady
[8]

2016 USA PeMS, 16
NWS [35]

15 DBN Greedy
Layerwise, MTL

Spatiotemporal,
Weather

Rida Soua [11] 2016 USA PeMS,
NWS, City
Pulse [36]

15 DSET [39] Mass Assignment
Algorithm

Temporal,
Weather,
Twitter

Yuhan Jia [13] 2016 China BTMB 2,10,30 DBN Greedy
Layerwise

Temporal

Yisheng Lv [14] 2014 USA PeMS 15,30,45,60 SAE Greedy
Layerwise, BP

Spatiotemporal

Leelavathi [15] 2016 N/A Simulation 15,30,45,60 SAE Greedy
Layerwise, BP

Temporal

Yanjie Duan [16] 2016 USA PeMS 15 SAE Backpropagation Temporal
Hao-Fan Yang [17] 2016 UK M6

Freeway
30,60,240,600 SAE(LM) LM [40] Spatiotemporal

Yanjie Duan [18] 2016 USA PeMS 5,10,15,20,50 DSAE Backpropagation Spatiotemporal
Xiaolei Ma [19] 2015 China Microwave 2 LSTM Truncated BBTT Temporal
Rose Yu [20] 2016 USA Los

Angeles
Highway

5 LSTM Backpropagation Temporal

Yaun-yuan Chen
[21]

2016 China AMAP
[37]

30 Stacked
LSTM

BBTT Spatio-Online
Data

Hongxin Shao [22] 2016 USA PeMS 15 LSTM Linear
Regression

Temporal

Rui Fu [23] 2016 USA PeMS 5 LSTM,
GRU

BPTT Temporal

Xiaoguang Niu [24] 2014 China GPS Data 15 RBM SVM Spatiotemporal
Xiaolei Ma [25] 2015 China GPS Data 5,10,30,60 RBM RNN Contrastive

Divergence
Spatiotemporal

JingYuan Wang 26] 2016 China GPS Data 5,30 eRCNN BP, Transfer
Learning

Spatiotemporal

Wu Yuankai [27] 2016 USA PeMS 5 CNN,
LSTM

Adamax
Optimizer

Spatiotemporal

Felix Kunde [28] 2017 Dresden VAMOS
[38]

5,10,15,30,45 FFNN Backpropagation Spatiotemporal

Junbo Zhang [29] 2017 USA,
China

GPS Data 30,60 St-ResNet Deep Residual
Learning

Spatiotemporal,
Weather, Event

HongSuk Yi [30] 2017 Korea OBD Data,
GPS

cong/non-cong Tenser
Flow DNN

AdaGrad GD Temporal

Xiaolei Ma [31] 2017 China GPS Data 10, 20 CNN Backpropagation Spatiotemporal
Shiv Surva [32] 2016 Spain TRANCOS N/A CNN Backpropagation Spatiotemporal
Nicholas G. Polan
[33]

2017 USA Chicago
Interstate

5 Sparce DL Backpropagation Spatiotemporal

MTL: Multitask Learning, LM: Levenberg Marquardt, BBTT: Back Propagation Trough Time, N/A: Not Applicable
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4 Research Findings

Huang [5] was the first researcher to use deep learning for traffic flow prediction in
2013. He used a Deep Belief Network [6] in the bottom and a regression layer in the
top and achieved a 3% improvement over state-of-the-art. He similarly used a temporal
Deep Belief Network with Multitask Learning (MTL) [3] on PeMS [7] dataset and
achieved a 5% improvement. In 2016, Koesdwiady [8] used a DBN trained with SGD
[9] on PeMS dataset and exploited spatio-temporal [10] dimensions of traffic data as
well as weather conditions to predict the traffic flow. Soua et al. [11] used a DBN with
Dampster Shafer theory [12] with mass assignment algorithm to predict traffic flow
using spatio-temporal features of data as well as weather conditions and twitter sen-
timents about traffic. They used PeMS, NWS [35] and City Pulse [36] dataset for their
work. In 2016, Yohan Jia used a temporal DBN with greedy layer wise unsupervised
training [47] to predict the traffic flow on the second and third ring roads in Beijing
[13]. Moreover, Yishang Lv in 2014 used Stacked Auto Encoders (SAE) with greedy
layer wise unsupervised training on PeMS dataset to predict traffic flow [14]. In 2016,
Leelavathi used SAE on spatio-temporal simulation data [15]. Yanjie Duan used SAE
with back propagation on PeMS dataset [16]. Hao-Fan Yang used SAE Levenberg
Marquardt (LM) [40] on spatio-temporal data of M-6 freeway (UK) with greedy layer
wise training to predict traffic flow [17]. In 2016, Yanjie Duan used Denoising Stacked
Auto Encoders (DSAE) with back propagation to forecast traffic flow using PeMS
dataset [18].

Long Short-Term Memory (LSTM) is an extension of Recurrent Neural Networks
capable of incorporating long temporal sequences greatly minimizing the vanishing
gradient problem found in RNN with long sequences. In 2015, Xiaolei Ma and Zhimin
Tao used LSTM to predict traffic speed using microwave detectors data in Beijing [19].
In 2016, Rose Yu used a Deep LSTM to predict traffic flow in extreme conditions using
a real-world large-scale dataset in Los Angeles [20]. Yuan-yuan Chen used stacked
LSTM with BBTT [41, 42] on PeMS dataset coupled with online data to predict traffic
flow [21]. Also, Hongxin Shao used encoder-decoder based LSTM on PeMS dataset
[22]. In 2016, Rui Fu used LSTM with Gated Recurrent Units (GRU) and BPTT on
PeMS dataset [23]. In a most recent research paper in 2017, Zheng Zhao used LSTM
on PeMS dataset and exploited spatio-temporal correlations using an ODC matrix to
achieve state of the art results [2].

Some other related work includes the use of Restricted Boltzmann Machine
(RBM), ST-ResNet, Tensor Flow based DNN, and Image based CNN and some
hybrids of LSTM and CNN. Niu et al. used RBM for dimension reduction and fitting
the non-linearity of traffic data distribution by minimizing the energy function [24], and
Xiaolei Ma used a hybrid RNN-RBM to predict traffic congestion based on GPS data
[25]. Moreover, Wang used Error feedback Recurrent Neural Network (eRCNN) with
SGD and transfer learning on traffic data of Beijing city ring road 1 and 2 with
spatio-temporal components [26]. Also, Yaunkai used a hybrid of LSTM and CNN
with Adam optimizer on PeMS dataset [27] and Kunde used FFNN with SGD on
spatio-temporal VAMOS data set of Dresden city [28]. In 2016, Zhang used St-ResNet
on spatio-temporal, weather and event data using Beijing Taxicabs, NYC and Bike
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trajectories data for traffic flow prediction [29]. In 2017, Yi used Tensor Flow DNN to
classify road segments as congested and non-congested [30]. Ma and Dai [31] and Tao
and Babu [32] used CNN for traffic flow prediction while Polson used a sparse deep
learning architecture using L1 regularization and a sequence of tanh layers to predict
traffic flow and a sequence of tanh layers to predict traffic flows at two special events; a
Chicago Bears football game and an extreme snow storm event [33]. In the next
section, we describe the findings about deep architectures used for traffic flow
prediction.

4.1 Deep Learning Architectures

Most prevailing deep learning techniques for traffic flow prediction are based on Long
Short-Term Memory Networks (LSTM), Deep Belief Networks (DBN) and Auto Stack
Encoders (SAE). Some hybrid techniques are also being used to achieve a high level of
accuracy. Figure 4 shows the distribution of papers according to the used deep learning
technique. Due to space limitations, we don’t describe the deep learning architectures
and algorithms in detail, but refer the reader to [41, 42].

LSTMs are widely used due to the nature of traffic data. Traffic data is time series in
nature; the traffic flow at a particular time on a particular location depends on the prior
traffic flow at some earlier point on the same road. Traditional neural networks cannot
model this situation, as all inputs and outputs are independent so adjacent layers are
fully connected and there is no connection between the nodes of the same layer.
Recurrent Neural Networks can model the sequential traffic flow by employing a
feedback mechanism in hidden layer neurons from the previous state to current state.
However, RNN suffer from vanishing gradients problem for long sequences. LSTM is
an extension of RNNs that overcomes the problem of vanishing gradients [41, 42].

Deep Belief Networks (DBNs) are the second most widely used deep architecture.
A DBN is formed by a stack of Restricted Bolztmann machines (RBMs) which are
trained by using unsupervised greedy layerwise algorithm [47] followed by a super-
vised fine tuning using backpropagation [41]. As traffic flow at a point is a function of
traffic flow at some earlier time at different linked roads, DBNs have an advantage of

Fig. 4. Publications per DL architecture. Fig. 5. Publications per dataset.
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employing Multitask Learning (MTL) which allow learning several tasks together, e.g.
incorporating traffic data of different roads from different related sources, which con-
siderably improves performance [5].

Stacked Autoencoders (SAEs) are the third most widely used architecture which
mostly incorporate greedy layerwise mechanism with backpropagation fine tuning
[14, 15] or simply backpropagation [16, 18] for temporal as well as spatiotemporal
traffic prediction.

4.2 Performance Comparison

This section provides a brief performance comparison of LSTMS, DBNs and SAEs in
traffic forecast. Different accuracy measures used are Mean Absolute Error (MAE) [48],
Mean Relative Error (MRE) [2], Root Mean Square Error (RMSE) [49], Mean
Absolute Percentage Error (MAPE) [50], and precision [21] and accuracy [25]. We
have made comparisons where same evaluation measure and time interval for pre-
diction is used.

From survey results, it is found that DBNs are better at incorporating weather and
sentiments data with spatiotemporal traffic data for traffic flow forecast [8, 11] with an
average RMSE of 0.065 as compared to a temporal LSTM [22] with RMSE 2.51 and a
temporal SAE [16] with 61.30 RMSE for 15 min prediction. A temporal DBN in [13]
gives comparable results with MAPE 0.084 to a temporal LSTM in [20] with
MAPE 0.081 for 30 min prediction and beats an SAE [15] with RMSE margin of 2.69.
A spatiotemporal LSTM in [2] gives better MRE than a spatiotemporal SAE in [14] for
15 min prediction task. A spatiotemporal hybrid LSTM-CNN in [27] gives better MAE
than a spatiotemporal DBN in [3] for 5 and 15 min prediction task respectively.

Table 4. Strength & weaknesses of deep learning architectures.

Architecture Strengths Weaknesses Solution

LSTM Best suited for temporal
as well as spatiotemporal
traffic data

Performance degrades
in case of un expected
events

Use a hybrid of
Bayesian and LSTM
network

DBN Able to incorporate more
dimensions like weather
data and traffic
sentiments

A proper integration
model is needed to
incorporate more
dimensions

Use Multitask
learning and
incorporate more
processing power

SAE Can handle non-liner
spatial and temporal data
effectively. Can be
trained greedy layerwise
with supervised fine
tuning

For higher accuracy,
more auto encoders
are needed requiring
more processing time

Select a suitable
training and fine
tuning algorithm that
gives good results
with less
autoencoders

CNN Good for spatial traffic
data. Surveillance
cameras can be used to
retrieve image data

Temporal features
extraction from
images is difficult

Use hybrid of CNN
and LSTM to model
spatiotemporal data
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From the results it can be concluded that DBNs can incorporate more dimensions to
give better results as compared to LSTMs and SAEs. When only temporal or spa-
tiotemporal dimensions are used, LSTMS perform better than other two methods
(Table 4).

4.3 Traffic Datasets

Our review shows that the PeMS dataset has been used most frequently for short term
traffic flow prediction (Fig. 5). Apart from spatiotemporal traffic data, a number of
traffic flow prediction techniques are based on weather data [8, 11, 29, 35], and online
open data like twitter sentiments about traffic [11, 21, 36, 37]. Specifically, with the
availability of more processing power, traffic flow prediction methods are not limited to
only temporal domain; spatiotemporal features with weather conditions, sentiments
from social websites and related events that affect traffic flow are also being incor-
porated to get a better prediction result.

PeMS has become a benchmark to test the accuracy of a given model. PeMS data is
obtained from Caltrans Performance Management System. Data is collected from more
than 40,000 loop detectors located on freeways spanned over all metropolitan areas of
state of California. Data is collected after each 5 min in terms of number of vehicles
passing through a particular loop detector and aggregated into 15-min periods as
suggested by the Highway Capacity Manual.

With the advancement of GPS technology, IoT and IoV, traffic data can be directly
obtained from vehicles. A GPS equipped vehicle records time and space information
and thus travel speed can be directly measured [25]. If the average speed on a particular
road segment is below some threshold, the road is considered to be congested. Images
obtained from traffic monitoring cameras can also be used to extract spatiotemporal
traffic data [27, 31, 32].

Traffic flow on a particular road is also affected by events like accidents, mainte-
nance work, social events and weather conditions [8, 11, 29]. The spatiotemporal data
needs to be coupled with such type of traffic influential information. The data from
social websites like twitter, Facebook and Instagram can be used to incorporate the
impact of a sudden or un-predicted event [11, 21].

5 Conclusion and Future Research Directions

This survey paper has systematically reviewed deep learning techniques for prediction
of short term traffic flow. Deep learning architectures can model the non-linear
behavior of traffic data and incorporate both temporal and spatial information sup-
plemented with weather data and other traffic affecting events for traffic data analysis
and prediction. At present, Long Short-Term Memory (LSTM), GRU LSTMs, Stacked
Auto Encoders, Dual Stacked Auto Encoders, Restricted Boltzmann Machines, Deep
Belief Networks, and Convolutional Neural Networks are the most commonly used
deep learning techniques and give competitive results. As apparent from the survey
results, LSTM and DBN are most widely used and CNN are less frequently used for
traffic flow forecast.
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To achieve better forecast results, we suggest three future research directions. First,
a hybrid of Deep CNN and LSTM is proposed. CNNs are best at object detection and
LSTM are good at handling sequential data. Spatio-temporal traffic data can be col-
lected by already deployed surveillance cameras in the form of images and analyzed
using image processing techniques in real time. Then an LSTM network can be used at
the top to take this stream of data and forecast the traffic for the next time interval.
Second, a hybrid of deep architectures can be used to model different types of traffic
data. Apart from spatio-temporal data, useful information about traffic is available in
the form sentiments on twitter, Facebook and Instagram and also in the form of text
messages and telephone calls. LSTMS are good at categorizing text and speech and can
be used for analyzing traffic sentiments in real time. LSTM architecture modeling traffic
sentiments can be combined with other deep architectures like CNN or DBN modeling
spatio-temporal traffic data. Third, there are some events like weather change, road
accident, maintenance work or any other social event that affects the traffic flow.
Among these, weather conditions, maintenance work and social events can be known
in advance but road accidents can’t be predicted. Even with weather conditions,
maintenance work and the social event, there is always an uncertainty factor. To model
this un-certainty, a bayesian network model can be used to incorporate the impact of
such traffic affecting events in conjunction with other deep architectures.
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