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Abstract. In order to improve the performance of the conventional algo-
rithms used for network and acoustic echo cancellation, we can exploit
the sparseness character of the echo paths (i.e., a small percentage of
the impulse response components have a significant magnitude while the
rest are zero or small). In this paper, we consider the memory-improved
proportionate affine projection algorithm (MIPAPA), which represents
an appealing choice for echo cancellation. In this context, we focus on the
regularization of this algorithm, relating the regularization parameter to
the signal-to-noise ratio. In this way, the algorithm can operate prop-
erly in different noisy conditions. Simulation results indicate the good
performance of the proposed solution.
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1 Introduction

The main goal in echo cancellation is to model an unknown system, i.e., the echo
path [1,2], similar to a system identification problem. Nevertheless, the echo
paths (for both network and acoustic echo cancellation scenarios) are sparse in
nature, i.e., a small percentage of the impulse response components have a sig-
nificant magnitude while the rest are zero or small. The sparseness character of
the echo paths inspired the idea to “proportionate” the algorithm behavior, i.e.,
to update each coefficient of the filter independently of the others, by adjusting
the adaptation step size in proportion to the magnitude of the estimated fil-
ter coefficient [3]. Following this idea, many proportionate-type algorithms were
developed for echo cancellation, e.g., see [4] and the references therein.

In this work, we focus on the memory-improved proportionate affine pro-
jection algorithm (MIPAPA) [5]. As compared to most of its counterparts, the
MIPAPA takes into account the “history” of the proportionate factors. Moreover,
this also helps to reduce the computational complexity.
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The MIPAPA requires a matrix inversion within its update. Due to the
nature of the input signal (which is mainly speech), this matrix can be very ill-
conditioned. Consequently, it needs to be regularized before inversion by adding
a positive constant to the elements of its main diagonal. In practice, it was found
that the value of this regularization term is highly influenced by the level of the
system noise [6].

In this paper, we present a solution for choosing the constant regularization
parameter of the MIPAPA, aiming to attenuate the effects of the noise in the
adaptive filter estimate. Simulations performed in the context of both network
and acoustic echo cancellation indicate the robustness of the algorithm in differ-
ent noisy conditions.

2 Memory-Improved Proportionate Affine Projection
Algorithm

The improved proportionate affine projection algorithm (IPAPA) [7] is one
of the most popular algorithms used for echo cancellation. It results as a
straightforward combination of the affine projection algorithm (APA) [8] and
the improved proportionate normalized least-mean-square (IPNLMS) algorithm
[9]. The IPAPA is defined by the following equations:

e(n) = d(n) − XT (n)̂h(n − 1), (1)
̂h(n) = ̂h(n − 1) + αG(n − 1)X(n)

[

δIP + XT (n)G(n − 1)X(n)
]−1

e(n), (2)

where e(n) is the error signal vector of length P (with P denoting the projec-
tion order), d(n) =

[

d(n) d(n − 1) · · · d(n − P + 1)
]T is a vector containing the

most recent P samples of the desired signal, superscript T denotes the transpose
operator, X(n) =

[

x(n) x(n − 1) · · · x(n − P + 1)
]

is the input data matrix,

where x(n) =
[

x(n) x(n − 1) · · · x(n − L + 1)
]T is a vector containing the most

recent L samples of the input signal x(n),

G(n − 1) = diag
[

g0(n − 1) g1(n − 1) · · · gL−1(n − 1)
]

(3)

is a diagonal matrix containing the proportionate (or gain) factors, α represents
the step-size of the algorithm, δ is the regularization parameter, and IP is the
P × P identity matrix. The proportionate factors are evaluated as [9]

gl(n − 1) =
1 − κ

2L
+ (1 + κ)

∣

∣

∣

̂hl(n − 1)
∣

∣

∣

2
∑L−1

l=0 |̂hl(n − 1)|
, 0 ≤ l ≤ L − 1, (4)

where κ (−1 ≤ κ < 1) is a parameter that controls the amount of proportionality.
Looking of the equations that define the IPAPA, i.e., (1) and (2), it can be noticed
that the classical APA [8] is obtained for G(n − 1) = IL (where IL is the L × L
identity matrix), while the IPNLMS algorithm [9] results when P = 1.
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In practice, it would be very computationally expensive (and also inefficient)
to compute the matrix product G (n − 1)X (n) in the classical way (i.e., matrices
multiplication). Hence, taking into account the diagonal character of the matrix
G (n − 1), we can evaluate

P (n) = G (n − 1)X (n)
=

[

g (n − 1) � x (n) g (n − 1) � x (n − 1) · · · g (n − 1) � x (n − P + 1)
]

,
(5)

where g (n − 1) =
[

g0 (n − 1) g1 (n − 1) · · · gL−1 (n − 1)
]T is a vector contain-

ing the diagonal elements of G (n − 1) and the operator � denotes the Hadamard
product. Using (5), the IPAPA update (2) can be rewritten as

̂h (n) = ̂h (n − 1) + αP (n)
[

δIP + XT (n)P (n)
]−1

e (n) . (6)

However, the IPAPA does not take into account the “proportionate history”
of each coefficient ̂hl (n − 1), with l = 0, 1, . . . , L − 1, but only its proportionate
factor from the current time sample, i.e., gl (n − 1). Therefore, let us consider a
modified approach in order to take advantage of the “proportionate memory” of
the algorithm, by choosing the matrix [5]

Gl (n − 1) = diag
[

gl (n − 1) gl (n − 2) · · · gl (n − P )
]

. (7)

In this manner, we take into account the “proportionate history” of the coef-
ficient ̂hl (n − 1), in terms of its proportionate factors from the last P time
samples. Thus, the matrix from (5) becomes

P′ (n)
=

[

g (n − 1) � x (n) g (n − 2) � x (n − 1) · · · g (n − P ) � x (n − P + 1)
] (8)

and consequently, the update (6) is

̂h (n) = ̂h (n − 1) + αP′ (n)
[

δIP + XT (n)P′ (n)
]−1

e (n) . (9)

We refer to this algorithm as the “memory” IPAPA (MIPAPA) [5].
The advantage of this modification is twofold. First, the MIPAPA takes into

account the “history” of the proportionate factors from the last P steps. Second,
the computational complexity is lower as compared to the IPAPA. This is (8)
can be recursively evaluated as

P′ (n) =
[

g (n − 1) � x (n) P′
−1 (n − 1)

]

, (10)

where the matrix P′
−1 (n − 1) contains the first P − 1 columns of P′ (n − 1).

Thus, the columns from 1 to P − 1 of the matrix P′ (n − 1) can be used directly
for computing the matrix P′ (n) [i.e., they become the columns from 2 to P of
P′ (n)].

Besides, let us examine the matrix to be inverted in the classical IPAPA, as
compared to the case of the MIPAPA. In the first case, this matrix is M (n) =
δIP +XT (n)P (n), which is symmetric but does not have a time-shift character.



154 R. Mihăescu et al.

On the other hand, the matrix to be inverted in the MIPAPA is not symmetric,
but has a time-shift property, which allows us to evaluate

M′ (n) =
[

δ + xT (n) [g (n − 1) � x (n)] xT (n)P′
−1 (n − 1)

XT
−1 (n − 1) [g (n − 1) � x (n)] M′

P−1 (n − 1)

]

, (11)

where the matrix M′
P−1 (n − 1) contains the first P − 1 columns and P − 1

rows of the matrix M′ (n − 1) [i.e., the top-left (P − 1) × (P − 1) submatrix of
M′ (n − 1)] and the matrix X−1 (n − 1) contains the first P − 1 columns of the
matrix X (n − 1). Consequently, only the first row and the first column of M′ (n)
need to be computed. Moreover, using computationally efficient techniques to
perform to the matrix inversion operation [10], the overall complexity could be
further reduced.

3 Regularization Parameter

Regularization plays a fundamental role in adaptive filtering. An adaptive filter
that is not properly regularized will perform very poorly. As shown in Sect. 2,
a matrix inversion is required within the MIPAPA. For practical reasons, the
matrix needs to be regularized before inversion, i.e., a positive constant is added
to the elements of its main diagonal. Usually, this regularization is chosen as
δ = βσ2

x, where σ2
x = E

[

x2(n)
]

is the variance of the zero-mean input signal
x(n), with E[·] denoting mathematical expectation, and β is a positive con-
stant (usually referred as the normalized regularization parameter). In practice
though, β is more a variable that depends on the level of the additive noise, i.e.,
the more the noise, the larger is the value of β.

In the case of MIPAPA, we propose to choose the constant regularization
parameter based on a condition that intuitively makes sense, i.e., to attenuate
the effects of the noise in the adaptive filter estimate. This idea was introduced
and explained in detail in [6], in case of the NLMS-based algorithms, including
IPNLMS. Moreover, as it was shown in [11,12], the regularization of APA and
IPAPA does not depend on the projection order. Thus, following the idea from
[6], the regularization parameter of MIPAPA is evaluated as

δ =
1 +

√
1 + SNR

SNR
σ2
x = βSNRσ2

x, (12)

where SNR = σ2
y/σ2

v , with σ2
y = E

[

y2(n)
]

and σ2
v = E

[

v2(n)
]

representing the
variances of the echo signal y(n) and the near-end background noise v(n), respec-
tively. In (12), the parameter βSNR is the normalized regularization parameter
that depends on the SNR (which could be estimated in practice).

4 Simulation Results

Simulations were performed in the context of both network and acoustic echo
cancellation. Two echo paths were used, having different sparseness degree, as
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follows: (i) the first impulse response from G168 Recommendation [13], which can
be considered to be very sparse and (ii) a measured acoustic echo path, which
is less sparse. Both impulse responses have 512 coefficients, using a sampling
rate of 8 kHz. The adaptive filter used in the experiments has the same length
(L = 512).
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Fig. 1. Misalignment of the MIPAPA using different values of the normalized regu-
larization parameter. (a)–left : G168 echo path, SNR = 20 dB; (b)–left : acoustic echo
path, SNR = 20 dB; (a)–right : G168 echo path, SNR = 0 dB; (b)–right : acoustic echo
path, SNR = 0 dB.

The input signal (i.e., the far-end signal) is a speech sequence. The output
of the echo path is corrupted by an independent white Gaussian noise (i.e., the
background noise at the near-end) with different SNRs, i.e., 20 dB and 0 dB. In
order to evaluate the tracking capabilities of the algorithm, an echo path change
scenario is simulated in the experiments, by shifting the impulse response to the
right by 12 samples. The performance measure is the normalized misalignment
(in dB), which is defined as 20log10

[∥

∥

∥h − ̂h(n)
∥

∥

∥ / ‖h‖
]

, where h is the impulse
response of the echo path and ‖·‖ denotes the �2 norm.

The performance of MIPAPA are compared for two types of regularization.
The first one is the “classical” ad-hoc choice β = 20/L, which was the rule of
thumb in many practical scenarios that involved the proportionate-type algo-
rithms [1,2]. The second one is the proposed βSNR. The step-size parameter is
set to α = 0.2, the projection order is P = 4, and the proportionality parameter
is chosen as κ = 0.

The results are presented in Fig. 1. As we can notice from the left side of
this figure (where the SNR is set to 20 dB), the performance obtained with the
“classical” regularization β = 20/L ≈ 0.03 are very similar to those obtained
using βSNR. This is expected, because if we consider L = 512 and SNR = 20 dB,
we get βSNR ≈ 0.11, which is quite close to the “classical” value.

The importance of the regularization parameter becomes more apparent in
noisy environments. As we can notice from the right side of this figure (where
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SNR = 0 dB), the MIPAPA using βSNR outperforms by far the “classical” reg-
ularization. In this case, a much higher value of the normalized regularization
constant is required; according to (12), for SNR = 0 dB and L = 512, we
obtain βSNR ≈ 2.41, which is much higher as compared to the “classical” choice
β = 20/L. Clearly, when using an improper regularization, the misalignment of
the adaptive filter fluctuates much and never converges.

5 Conclusions

Adaptive filters with a large number of coefficients are usually involved in echo
cancellation. In this context, the MIPAPA represents an appealing choice, since
it inherits the good convergence features of the APA and also exploits the sparse-
ness character of the echo paths (specific to the proportionate-type algorithms).
However, regularization is an important component of any adaptive filter. It is as
much important as the step-size parameter that controls the stability and con-
vergence of the algorithm. In this paper, we have presented a solution to choose
the regularization parameter of the MIPAPA as a function of the SNR. The
goal was to attenuate the effects of the system noise in the adaptive filter esti-
mate. Simulations performed in the context of both network and acoustic echo
cancellation prove the validity of this approach in different noisy environments.
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11. Paleologu, C., Benesty, J., Ciochină, S.: Regularization of the affine projection
algorithm. IEEE Trans. Circ. Syst. II Express 58, 366–370 (2011)

12. Paleologu, C., Benesty, J., Albu, F.: Regularization of the improved proportion-
ate affine projection algorithm. In: IEEE International Conference on Acoustics,
Speech, and Signal Processing (ICASSP), pp. 169–172 (2012)

13. Digital Network Echo Cancellers. ITU-T Rec. G.168 (2002)


	On the Regularization of the Memory-Improved Proportionate Affine Projection Algorithm
	1 Introduction
	2 Memory-Improved Proportionate Affine Projection Algorithm
	3 Regularization Parameter
	4 Simulation Results
	5 Conclusions
	References




