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Abstract. We present a novel non-invasive neural network based three layered
system for detecting fatigue by analyzing facial expressions evaluated using the
Facial Action Coding System. We analyze 16 Action Units pertaining to eye and
mouth regions of the face. We define an Action Units map containing Action
Unit intensity levels for each frame in the video sequence and we analyze this
map in a pattern recognition task via a feed-forward neural network. We show
that emotion-induced frontal face recordings offer more information in the
training stage, while for testing stage the random dataset can be used with no
major impact on accuracy, specificity and sensitivity. We obtain over 88%
accuracy in intra-subject tests and over 83% for inter-subject tests and we show
that our system surpasses the state-of-the-art in terms of accuracy, specificity,
sensitivity and response time.
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1 Introduction

Most research conducted in the area of facial expression recognition is focused on face
recognition or emotion detection. The current paper takes another challenge, proposing
a novel non-invasive neural-network based system for fatigue detection using the
Facial Action Coding System (FACS). Although this task has been researched in other
papers, the current research novelty is in how the architecture is designed as well as the
use of feed forward neural networks for this task. Such a system would prove useful in
a variety of tasks as monitoring the physical fatigue of a subject reveals the health
condition of the person, but also can be used for real-time driver fatigue detection,
fatigue being one of the main reasons for car accidents around the globe.

In the following chapter we will present the state-of-the-art in the area of fatigue
detection based on facial features.
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2 Related Work

Although the vast majority of research papers in the area of facial expression recog-
nition are focused on face recognition or emotion detection, there are several research
papers where facial features were used for fatigue detection.

Researchers in [1] use Facial Action Coding System (FACS) evaluated using Gabor
filters with different frequencies and orientations and classified by means of a cascaded
AdaBoost with the purpose of determining driver’s fatigue. The proposed method is
tested on a database based on ground truth information and it shows promising results
in the context of a driver monitoring system. Similarly [2] presents a novel method for
detecting daily fatigue using color consistent area correction in the preprocessing phase
to reduce the environment illumination. Two kinds of color spaces are determined in
the grey level co-occurrence matrix and a backward propagation algorithm is used for
detection. The accuracy of the system reaches up to 92.3% with a self-built image
database.

Kawamura et al. [3] study the changes of luminance in facial images to determine
fatigue. Because these changes are usually influenced by vital signs such as heart rate
and blood pressure, the level of fatigue is considered predictable with high accuracy by
combining these features with the changes of luminance in the facial area. 13 facial
parts are used to estimate subject’s fatigue using feature values based on luminance
changes for each facial part. The results show accuracy of up to 92%. In [4], facial
videos acquired in a realistic environment, with natural lighting, where subjects are
allowed to voluntarily move their head were used in order to determine physical
fatigue. Facial feature point tracking method was used by combining a “good feature to
track” and “supervised descent method”. The experimental results show the proposed
system outperforms video-based existing systems for physical fatigue detection. Sim-
ilarly, in [5] a fatigue monitoring system is presented which analyzes eye blinking,
head nod and yawning. The method employed to extract facial characteristics in time
and frequency domain is mean-variance, for eye blink a Haar-like cascade classifier is
used, while for yawning the Canny Active Contour method is employed. The testing of
this system shows promising results.

Optical imaging through digital cameras installed on car dashboard is another
method used for detecting driver fatigue [6]. The camera detects and tracks the driver
face and a non-contact photoplethysmography (PPG) method is applied to get multiple
physiological signals (brainwave, cardiac and respiratory pulses) which are used for
measuring fatigue levels. These are assessed by studying the alteration of facial feature
such as eye, mouth, and head. In order to extract information from the facial features,
supervised descent method (SDM) with scale-invariant feature transform (SIFT) is
used, while, for classifying the fatigue levels, support vector machine (SVM) methods
are employed. [7] presents another research that aims detecting driver fatigue levels by
evaluating facial features based on statistical local features, Local Binary Patterns
(LBP) being used for person-independent fatigue facial expression recognition. The
research shows that LBP features perform stably and robustly over a broad range of
fatigue-affected face images. AdaBoost is employed to learn the most discriminative
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fatigue facial LBP features from a pool of LBP features. These Boost-LBP features
show better performance than state-of-the-art.

Given the above described state-of-the-art, we are proposing a novel neural-
network based system for determining fatigue levels based on facial features analyzed
by means of the Facial Action Coding System. Details on the proposed architecture are
presented in the next chapter.

3 Proposed Architecture

As previously mentioned, the current paper proposes a novel neural network-based
system for detecting fatigue based on facial features collected via Facial Action Coding
System (FACS).

The Facial Action Coding System (FACS) [8] is a framework developed by
Eckman and Freisen which divides the face into a set of Action Units (AUs) that are
correlated with the activity of different facial muscles. The AUs can be additive
(meaning that if a specific AU is triggered it will determine the trigger of another AU)
or non-additive (meaning that the triggering of a specific AU is independent from the
triggering of other AUs). FACS has showed very good results in determining hidden
emotions and we are using it in a fatigue detection task as it offers more reliability
compared to other methods of analyzing the face.

In order to achieve the task of detecting fatigue based on FACS, we design an
architecture on three layers and we will present each layer in the following paragraphs.
The architecture is also depicted in Fig. 1.

The base layer has the main purpose of acquiring facial features from each region
of the face and determine if a specific AU is present or not, and, if present, at which
intensity. For this the video frame containing the frontal face is normalized and the face
is detected by means of Viola-Jones face detection algorithm, then the same algorithm
is used for detecting the face components. We analyze only 16 out of the 46 FACS
AUs, choosing only the ones known to convey important information for detecting
fatigue (mostly linked to eyes and mouth) in order to avoid overcomplicating the
architecture as well as overfitting the neural network, therefore in the base layer three
components are being detected: Eye, Brow, and Mouth. For each of these components
we use specific classifiers to determine the presence/absence and intensity of the AUs
pertaining to that specific region such as:

– Eye component: Gabor jets-based features have been successfully used for ana-
lyzing the eye features providing classification rates of over 90% as well as fast
convergence, surpassing other state-of-the-art methods [9]. Because of these strong
points, we use them in our work as well, alongside with Support Vector Machines
(SVMs) for the AU classification task. The AUs classified in this component are:
AU5 (Upper Lid Raiser), AU7 (Lid Tightener), AU43 (Eyes Closed), AU45 (Blink).

– Brow component: We use again the same Gabor Jets with Support Vector Machines
(SVMs) method as the one used for the Eye component. The AUs classified in this
component are: AU1 (Inner Brow Raiser), AU2 (Outer Brow Raiser), AU4 (Brow
Lowerer).
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– Mouth component: We use active contour classifiers [10] to classify the AUs per-
taining to this component. The AUs classified are: AU8 (Lips toward each Other),
AU10 (Upper Lip Raiser), AU12 (Lip Corner Puller), AU15 (Lip Corner Depressor),
AU16 (Lower Lip Depressor), AU20 (Lip Strecher), AU23 (Lip Tightener), AU25
(Lips Part), AU28 (Lip Suck).

Each of the AU classifiers are previously trained so that they offer over 90%
accuracy in cross database tests on Cohn-Kanade [11] and MMI [12] databases.

The three components presented above will fetch to an intermediary layer the
presence/absence of a specific AU as well as their intensity levels, as follows: A –

Trace (classification score between 15 and 30), B – Slight (classification score between
30 and 50), C – Marked and Pronounced (classification score between 50 and 75), D –

Severe or Extreme (classification score between 75 and 85), E – Maximum (classifi-
cation score over 85), O – AU is not present (under 15 classification score). All these
scores will be used to compute an AU activity map which will have the following
structure: (A1A, A2C, A4A, etc.) where A1A means that the Action Unit AU1 was
classified with level A of intensity. This AU activity map computed in the intermediary
layer will contain a row for each frame from the video sequence, each row describing
the intensity scores for the analyzed action units. The map is fetched to the top layer
which will take the final decision regarding whether the analyzed subjects shows signs
of fatigue or not.

In the top layer we use a neural network which analyzes the map built in the
intermediary layer, in a pattern recognition task, and based on that it determines if the
subject is affected by fatigue or not. Because it’s a pattern recognition task in a
bottom-up layered architecture without feedback loops, the neural network used is a
feed-forward neural network as it is efficient for pattern recognition tasks. The neural
network has one input layer, one hidden layer, and an output layer. The input layer
contains 30 consecutive rows from the AU activity map, hence it has 450 input nodes
which are normalized in the [0, 1] interval, such that level A = 0.2, level B = 0.4, level
C = 0.6, level D = 0.8, level E = 0.9, 0 – if AU not present. We choose 30 consecutive
rows because we are considering a framerate of 30 frames/second, hence 30 consec-
utive rows pertain to 1 s of the video sequence which is high enough to catch
microexpressions and low enough to avoid overfitting the neural network. The output
layer has only one node with a binary result, 0 meaning that the subject doesn’t show
signs of fatigue while 1 means that signs of fatigue are detected. As backpropagation
shows the best performance and fast convergence in pattern recognition tasks [13] we
employ it as a method for training the neural network. The neural network activation
function is determined to be the log sigmoid after trial-and- error. Also through trial and
error, trying to minimize the Average Absolute Relative.

Error (AARE), the optimal number of hidden nodes is determined to be 780.
Gradient descent algorithm is used for learning the weights and biases of the neural
networks until AARE is as low as 0.005. The optimal learning rate is 0.5 and the
optimal momentum is 0.02. 50000 training epochs are needed to train the system and it
took an average of 3 h to complete on an Intel i7 testbed. Nguyen-Widrow weights
initialization is used to evenly distribute the initial weights for each neuron in the input
layer.
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The platform used for implementing the architecture is Scala (as programming
language) using Spark MLib library. We used a Java Virtual Machine (JVM) and
Eclipse as Integrated Development Environment (IDE). The application has a com-
plexity of around 40.000 code lines and it took an average of 1.5 h to train the
feed-forward neural network. The JVM is running on a system with Intel i7 processor,
8 GB of RAM memory, and using Linux Solaris 11.3 as an operating system.

4 Experimental Results

In order to thoroughly test the proposed architecture, we built our own database
containing recordings of frontal facial expressions from 64 subjects when watching
videos inducing the 6 basic emotions (Sadness, Fear, Happiness, Anger, Surprise,
Disgust) from the LIRIS-ACCEDE database [14] as well as in random scenarios.
Because the videos existing in the LIRIS-ACCEDE database typically have between 8

Fig. 1. Overall architecture.
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and 12 s, we combined more videos for the same emotion in a one minute
video-sequence as we needed longer videos for both training and testing. The 64
subjects were recorded six times in three months, every time collecting one frontal face
video recording of their reactions when watching each of the six emotion inducing
videos (referred to as controlled dataset), as well as five frontal face video recordings in
complete random scenarios (when no emotion was induced; referred to as random
dataset). They were also asked to self-report their fatigue levels in each session when
their face was recorded. Subjects were 32 males and 32 females with ages between 18
and 35, participating in accordance with the Helsinki Ethical Declaration. We have
tested the system in both intra-subject and inter-subject methodologies and the results
are presented in the following subchapters.

In order to assess the precision of the architecture, we compute sensitivity, speci-
ficity and accuracy for all tests conducted. Sensitivity is defined as the proportion of
positives that are correctly identified and is calculated as the number of true positives
divided by the sum of true positives and false negatives. Specificity is defined as the
proportion of negatives that are correctly identified and is calculated as the number of
true negatives divided by the sum of true negatives and false positives. Accuracy is
calculated as the proportion of true positive and true negative results from the entire
number of results.

4.1 Intra-subject Methodology

Intra-subject methodology refers to training and testing the system with samples per-
taining to the same subject, but alternating the type of dataset used in training as well as
testing stages (controlled, random, or controlled and random). The tests are repeated for
all subjects and until all combinations of samples are exhausted. Averaged results are
detailed in Table 1. As it can be observed, the higher accuracy is obtained when the
controlled dataset is used for both training and testing, specifically when 24 samples are
used for training and 12 for testing. In this case the accuracy reached 88.5%, while
specificity is 94.5% and sensitivity is 97.2%. We notice that if we change the testing
dataset from controlled to random the accuracy of the system shows a decrease of only
2% compared to when random dataset is used for training purposes when the accuracy
dropped with 7%. This shows that the controlled dataset offers a lot more important
information in the training stage, while for testing any random recordings of the subject
can be used, offering similar accuracy, specificity and sensitivity. This is important as it
offers the possibility for real-time monitoring of a subject, who will only need to watch
emotion inducing videos when he/she first uses the application and further it can be
monitored in random situations with over 88% accuracy. In terms of processing time,
the time needed to detect fatigue when controlled dataset is used in training and random
dataset for testing is no more than six seconds, making the system fast enough to be
used for real-time monitoring.

We also conducted a further test for determining which of the six emotions ads the
most value to the testing stage in order to detect fatigue with high accuracy. Results are
detailed in Table 2.
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It can be observed that videos inducing emotions such as Happiness, Disgust and
Sadness can be used to detect fatigue with over 95% accuracy, sensitivity, and
specificity, while for other emotions results are lower.

4.2 Inter-subject Methodology

For inter-subject methodology we trained the system on multiple subjects and we tested
it on a brand new subject, alternating both the number of subjects involved in training
and testing as well as the type of datasets used (controlled or random). The tests were
repeated using a leave-one-out approach until all combinations of subjects were
exhausted. Averaged results are detailed in Table 3.

As it can be observed, results are similar with the ones obtained in intra-subject
tests, in the sense that the highest accuracy is obtained when controlled dataset is used
in both training and testing stages, specifically when 63 subjects were used in training
and the system was tested on the remaining one, case when we obtained over 84%
accuracy, and over 88% sensitivity and specificity. We make the same observation as in
intra-subject tests that changing the test dataset to the random one only reduces the
accuracy with 1%, as opposed to changing the training dataset to random when the
accuracy is reduced with 8%. This shows again that the controlled dataset ads more
value in the training stage, which is important if we consider building this application

Table 1. Fatigue detection accuracy, specificity and sensitivity in intra-subject tests.

Type of training
samples

Type of test samples Number of
training
samples/number
of test samples

Accuracy
(%)

Specificity
(%)

Sensitivity
(%)

Average
time to
converge to
a result (s)

Controlled Controlled 12/24 86.6 93.4 96 6

Controlled Controlled 18/18 87.4 94 97.2 6

Controlled Controlled 24/12 88.5 94.5 97.5 5

Random Random 12/18 78.3 78 76.5 11

Random Random 18/12 80.5 83 82 11

Random Random 24/6 81.2 85 84.5 10

Controlled Random 36/30 88.2 93 96.2 6

Random Controlled 30/36 81.4 85 84.4 13

Controlled + Random Controlled + Random 44/22 87.7 92.2 95.8 7

Table 2. Fatigue detection accuracy, sensitivity and specificity for intra-subject tests and for
different emotions induced in the training dataset.

Emotion Accuracy (%) Sensitivity (%) Specificity (%)

Happiness 95.4 97.8 97.5
Anger 79.4 80.3 84.2
Fear 92.3 90.2 94.3
Disgust 95.4 95.2 94.1
Surprise 70 70.1 75.4
Sadness 95.2 98.5 98.2
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for real-time monitoring, as the emotions need to be induced only when the application
is first used, while it can be further assessed in totally random scenarios, completely
ad-hoc.

The highest time needed to converge to a result is nine seconds when controlled
dataset is used for training and random dataset for testing, which makes the approach
fast and attractive for fatigue detection in real-time monitoring systems.

We have conducted a similar test as in intra-subject methodology to determine
which emotion ca better be used to detect fatigue, and we reach similar results as in
intra-subject tests, reaching over 89% accuracy, and over 90% specificity and sensi-
tivity for Happiness, Disgust and Sadness, while for other emotions the accuracy is
lower. These results are detailed in Table 4.

4.3 Comparison with State-of-the-Art

We have tested the other methods used in [2, 3, 7] on our dataset and our approach
offered higher accuracy, sensitivity and specificity than the state-of-the-art as well as
faster convergence. Results are detailed in Table 5.

Table 3. Fatigue detection accuracy, sensitivity and specificity in inter-subject tests.

Type of training
samples

Type of test samples Number of
subjects involved
in training/number
of test subjects

Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

Average
time to
converge
to a result
(s)

Controlled Controlled 32/32 81.2 86 86.2 9

Controlled Controlled 48/16 83.3 87 87.2 8

Controlled Controlled 63/1 84.3 88.5 88.4 8

Random Random 32/32 73.3 76.1 75.4 18

Random Random 48/16 75.2 78 77.4 16

Random Random 63/1 76.2 79.2 78.8 15

Controlled Random 63/1 83.2 87.4 86.8 9

Random Controlled 63/1 76.4 80 80.2 15

Controlled + Random Controlled + Random 63/1 82.5 85.5 84.5 10

Table 4. Fatigue detection accuracy, sensitivity and specificity in inter-subject tests and for
different emotions induced in the training dataset.

Emotion Accuracy (%) Sensitivity (%) Specificity (%)

Happiness 89.3 97.8 97.5
Anger 77.2 75 78
Fear 88.5 86.7 89.2
Disgust 91.2 90.2 90.5
Surprise 68.4 63 64.2
Sadness 89.4 93.4 93
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As it can be observed, our approach using a feed-forward neural network for
determining the fatigue levels surpasses in terms of accuracy with 3% the results
obtained when using color consistent area correction [2] and with 2% the results
obtained when luminance changes [3] are used. Our approach also offers up to 5%
more accuracy compared to the methods where SVM with Boost-LBP features [7] were
used. In terms of execution time, our approach is faster than all other methods in state
of the art, the time to compute results being lower than 15 s.

5 Conclusions

We presented a non-invasive neural network based system for fatigue detection by
analyzing facial expressions acquired by means of the Facial Action Coding System.
We only analyze 16 Action Units which are considered to be linked to fatigue and we
propose a three layered architecture such that the base layer determines the facial action
unit presence and intensity level, the intermediary layer builds a map containing AU
details for each frame in the video sequence, and the top layer contains a feed-forward
neural network trained to detect fatigue by analyzing the map built in the intermediary
layer in a pattern recognition task.

We describe the database constructed by recording 64 subjects in both controlled
(emotion is induced) and random (no emotion is induced) scenarios as well as self-
reports of their fatigue level for each recording session. We have tested the system in
both intra-subject and inter-subject methodologies and we have shown that emotion-
induced frontal face recordings offer more information in the training stage, while for
testing stage the random dataset can be used without impacting the accuracy, specificity

Table 5. Comparison with state-of-the-art.

Work Year Method used Accuracy (%) Time to
compute
results
(seconds)

[2] 2017 Color
consistent area
correction

85.3 15

[3] 2017 Luminance
changes

86.2 16

[7] 2015 SVM with
Boost- LBP
features

83 25

Current
work

2017 Feed-Forward
Neural
Network

Intra-subject: 88% Intra-subject
(emotion controlled testing): 95%
(Happiness, Sadness, Disgust)
Inter-subject: 83% Inter-subject
(emotion controlled testing): 89%
(Happiness, Sadness, Disgust)

6–15
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and sensitivity of the system too much. This is an important observation, as users will
only have to watch emotion inducing videos when they first use this application, while
further real-time monitoring can be done ad-hoc, in random scenarios. We obtain over
88% accuracy, over 93% specificity and over 96% sensitivity in intra-subject tests and
over 83% accuracy, over 87% sensitivity and over 86% specificity for inter-subject
tests when controlled dataset is used for training and random dataset for the testing
stage. Results are computed in no more than 9 s, making such system fast and attractive
for real-time monitoring applications. We have tested other methods from the
state-of-the-art on our own database and have shown that our method surpasses them in
terms of accuracy, sensitivity, specificity as well as response time. We have also
analyzed which emotion used in the testing stage can offer the highest accuracies for
fatigue detection and we concluded that these are Happiness, Disgust and Sadness,
offering over 95% accuracy for intra-subject tests and over 89% accuracy for
inter-subject tests. This information can be used to further tune the system by focusing
on these three emotions for achieving higher accuracy which will be the direction of
our future work.
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