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Abstract. This paper surveys recent advances related to sparse least mean square
(LMS) algorithms. Since standard LMS algorithm does not take advantage of the
sparsity information about the channel being estimated, various sparse LMS
algorithms that are aim at outperforming standard LMS in sparse channel esti-
mation are discussed. Sparse LMS algorithms force the solution to be sparse by
introducing a sparse penalty to the standard LMS cost function. Under the rea-
sonable conditions on the training datas and parameters, sparse LMS algorithms
are shown to be mean square stable, and their mean square error performance and
convergence rate are better than standard LMS algorithm.We introduce the sparse
algorithms under Gaussian noises model. The simulation results presented in this
work are useful in comparing sparse LMS algorithms against each other, and in
comparing sparse LMS algorithms against standard LMS algorithm.
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1 Introduction

We all know that least mean square (LMS) algorithm has been applied to solve various
technical problems in signal processing fields and broadband wireless communication
areas including adaptive communication line enhancement [1], system identification [2],
channel estimation [3], echo cancelation [4], etc. The main reasons are that LMS
algorithm has low computational complexity as well as does not need extensive
stochastic knowledges of the channel models and the training data sequences compared
to some other parameter estimation methods, for example, the recursive least squares
(RLS) algorithm [5]. But the standard LMS algorithm don’t consider the inherent sparse
structure information of the system model which must weaken the performance of the
estimation. The sparse channel means that there are a few domain taps, in another words,
more than half of the channel coefficients are zero or near to zero [6–10]. The sparse
channel structure is shown as in Fig. 1 in which the length of the channel is 16 but only
four taps are nonzero. To utilize the strengths of LMS algorithm and take full advantage
of the sparsity of the channel, many sparse LMS algorithms have been proposed in
recent years. This paper main analyses the performance of spare channel estimation
based on the sparse LMS algorithms under additive white Gaussian noises model.
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The proposed sparse LMS algorithms force the estimation to be sparse by intro-
ducing a sparse penalty to the classical LMS cost function. The sparse constraint forces
the small channel coefficients to zero, which speed up convergence rate and lower the
steady state error of the estimation when most taps of the channel are zero. This paper
surveys the field of sparse channel estimation based on sparse LMS algorithms and
how to design the sparse penalty to achieve the better performance including faster
convergence rate, smaller mean square error, lower computation complexity etc.

Zero attracting least mean square (ZA-LMS) algorithm and Reweighted zero
attracting least mean square (RZA-LMS) algorithm have been proposed in [11].
Reweighted ‘1-norm penalized least mean square (RL1-LMS) algorithm and ‘p-norm
penalized least mean square (‘p-norm LMS) algorithm in [12] are the improvements of
ZA-LMS. To make much better use of the sparse structure, ‘0-norm penalized least
mean square (‘0-norm LMS) algorithm has been proposed in [13].

In order to compare these sparse LMS algorithms against each other better, we
organize the presentation of the article into four main components. Section 2 reviews
the system model being estimated and the standard LMS algorithm. Performance
analysis of different sparsity-aware LMS algorithms under Gaussian noises model are
presented in Sect. 3. Computer simulation results are shown in Sect. 4. Section 5
concludes the paper.

2 System Model and Problem Formulation

2.1 System Model

The system model of the sparse channel being estimated is as shown in Fig. 2. xn is the
input signal sequence which is defined as xn ¼ x nð Þ; x n� 1ð Þ; . . .; x n� N � 1ð Þ½ �T . N
denotes the length of the channel. w is the actual unknown channel vector which is
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Fig. 1. Example of typical sparse channel model.
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defined as w ¼ w0;w1; . . .;wN�1½ �T. y nð Þ is the output signal of the actual channel,
which is defined as y nð Þ ¼ wTxn. v nð Þ is the additive noise in the sparse channel being
estimated. So d nð Þ is the desired signal at the receiver side which is defined as

d nð Þ ¼ wTxn þ v nð Þ ð1Þ

And bwn presents the estimated channel vector at iteration n, which is defined asbwn ¼ w0;n;w1;n; . . .;wN�1;n
� �

. by nð Þ is the output signal under the estimated channel
vector bwn, which is defined as by nð Þ ¼ bwT

nxn. e nð Þ is the error between the desired
output signal d nð Þ and the output signal by nð Þ based on the estimated channel coeffi-
cients, which is given by

e nð Þ ¼ d nð Þ � by nð Þ ¼ wTxn � bwT
nxn þ v nð Þ ð2Þ

What we should do is to find a vector, which is given by bwn to make e nð Þ
minimum.

2.2 Standard Least Mean Square Algorithm

Different adaptive filter algorithms utilize various cost functions to solve the problems
of signal processing. We all seek the better cost functions either to adapt the channel
better or to achieve the faster convergence speed. The cost function of standard least
mean square algorithm is

G nð Þ ¼ 1
2
e nð Þ2 ð3Þ
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Fig. 2. LMS based system model.
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And it use the gradient descent algorithm to minimize the Eq. (3) to get the solution
of the actual channel vector [5]. So the iterative equation of the standard least mean
square algorithm is given by

wnþ 1 ¼ wn � lrwnG nð Þ ¼ wn þ le nð Þxn ð4Þ

where l is the step size of the adaptive filter algorithm. The parameter l is critical to
guarantee the convergence and stable state of the adaptive algorithm. The lager l, the
faster convergence speed of the algorithm but the larger mean square divation (MSD),

i.e. MSD nð Þ ¼ E w� bwnk k22
n o

. And vice versa. To make sure that the least mean

square algorithm convergences, l is chosen within the scope of 0\l\k�1
max with kmax

being the maximum eigenvalue of the covariance matrix of xn, i.e. R,E xnxTn
� �

[5]. To
see the influence of parameter l directly, the simulation results with different l is
shown in Fig. 3. In the numerical simulation, we set the length of the channel being
estimated N = 128, the input signal power to additive noise power ratio SNR ¼ 20 dB.
The weights vector of the system is random sequence. The input signal sequences are
pseudo random binary sequences and v nð Þ is additive white Gaussian noises. Three
different l values of 0.01, 0.008 and 0.005 are considered. Simulation results are
obtained by taking the average of the network mean square error (MSE) over 2000
independent Monte Carlo runs to smooth the out curves. From Fig. 3 we can see that
when l is smaller the convergence rate is slower but the MSE is smaller and vice versa.
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Fig. 3. MSE of standard LMS algorithm with different l values (SNR = 20 dB).
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3 Reconsider of Sparse LMS Algorithm

In this section, all analysis are under the assumption that the additive noise v nð Þ is
additive white Gaussian noises model which is independent with input signal xn [14].

3.1 The Presentation of Different Sparse Mean Square Algorithms

We present the system model and standard mean square algorithm in Section 2. In this
Section, we analysis and compare the performance of different sparse adaptive filter
algorithms under Gaussian noise environments. The basic idea of all the sparse mean
square algorithms is to introduce a sparse penalty to the cost function of the standard
LMS algorithm. The sparse constraint attracts the entries of the weights vector of the
channel to zero in varying degrees. Accordingly, the estimation of the channel will
have faster convergence rate and lower steady state error because most taps of the
sparse channel are zero. The essential difference between various sparse algorithms is
that the sparse penalties being proposed are diverse which will be analyzed in detail in
the part B.

Zero attracting least mean square (ZA-LMS) algorithm: The cost function of
ZA-LMS algorithm is GZA nð Þ ¼ 1

2 e
2 nð Þþ cZA wnk k1. Where cZA wnk k1 is sparse pen-

alty, in which cZA is regular parameter that balance the mean square error of the
algorithm and the sparse degree of the system model. :k k1 stands for the ‘1-norm of the
vector. Based on the gradient decent algorithm, the update equation of the ZA-LMS
algorithm is

wnþ 1 ¼ wn þ le nð Þxn � qZAsgn wnð Þ ð5Þ

where qZA ¼ lcZA.
Reweighted zero attracting least mean square (RZA-LMS) algorithm: The cost

function of RZA-LMS is GRZA nð Þ ¼ 1
2 e

2 nð Þþ cRZA
PN

i¼1 log 1þ wn½ �i=�0RZA
� �

. Where

cRZA
PN

i¼1 log 1þ wn½ �i=�0RZA
� �

is the sparse constraint, in which cRZA is regularization
parameter that weights the mean square error of the algorithm and the sparse level of
the system model and �0RZA is a positive number. Based on the gradient decent algo-
rithm, the update equation of the RZA-LMS algorithm is

wnþ 1 ¼ wn þ le nð Þxn � qRZA
sgn wnð Þ

1þ �RZA wnj j ð6Þ

where qRZA ¼ lcRZA�RZA and �RZA ¼ 1=�0RZA.
Reweighted ‘1-norm penalized least mean square (RL1-LMS) algorithm: The cost

function of RL1-LMS is Gr‘1 nð Þ ¼ 1
2 e

2 nð Þþ cr skwnk k1. Where cr skwnk k1 is the sparse
constraint, in which cr is regular parameter that balance the mean square error of the
algorithm and the sparse degree of the system model and sk is a row vector with its
elements are sk½ �i¼ 1

�r þ wk�1½ �ij j, i = 1, …, N. And �r is a positive number and :½ �i denotes
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the i-th entry of the vector. :k k1 stands for the ‘1-norm of the vector. Based on the
gradient decent algorithm, the update equation of the RL1-LMS is

wnþ 1 ¼ wn þ le nð Þxn � qr
sgn wnð Þ

�r þ wn�1j j ð7Þ

where qr ¼ lcr and sgn :ð Þ is the sign function which can be presented by

sgn xð Þ ¼
1; x[ 0
0; x ¼ 0
�1; x\0

8<
: . The operation of sgn :ð Þ is on every entry of the vector. The

absolute value operator and the division operator in the last term of Eq. (7) are all
component-wise.

‘p-norm penalized least mean square (‘p-norm LMS) algorithm: The cost function
of ‘p-norm LMS is G‘p nð Þ ¼ 1

2 e
2 nð Þþ cp wnk kp. Where cp wnk kp is sparse penalty, in

which cp is regular parameter that weights the mean square error of the algorithm and
the sparse degree of the system model. :k kp stands for the ‘p-norm of the vector. The
parameter p is a positive number with 0\p\1. Based on the gradient decent algo-
rithm, the update equation of the ‘p-norm LMS algorithm is

wnþ 1 ¼ wn þ le nð Þxn � qp
wnk kp

� �1�p
sgn wnð Þ

wnj j 1�pð Þ ð8Þ

But to prevent the algorithm from being unstable when wn is a zero vector, we
usually add a regularization parameter �p to the last term of Eq. (8). Then the update
equation of the ‘p-norm LMS is

wnþ 1 ¼ wn þ le nð Þxn � qp
wnk kp

� �1�p
sgn wnð Þ

�p þ wnj j 1�pð Þ ð9Þ

where qp ¼ lcp.
‘0-norm penalized least mean square (‘0-norm LMS) algorithm: The risk function

of ‘0-norm LMS is G‘0 nð Þ ¼ 1
2 e

2 nð Þþ c‘0 wnk k0. Where c‘0 wnk k0 is sparse penalty, in
which c‘0 is regular parameter that balance the mean square error of the algorithm and
the sparse degree of the system model. :k k0 stands for the ‘0-norm of the vector. As we
all know, find the minimum solution of the ‘0-norm is a Non-Polynomial (NP) hard
problem. So a approximate continuous function has been proposed in [15] which is

wk k0 �
PN

i¼1 1� e�b wn½ �ij j� �
. Where :j j stands for the absolute operator and wn½ �i is

the i-th element of the vector w. b is a positive number. Then the cost function of ‘0-

norm LMS can be rewritten as G‘0 nð Þ ¼ 1
2 e

2 nð Þþ c‘0
PN

i¼1 1� e�b wn½ �ij j� �
. Based on

the gradient decent algorithm, the update equation of the ‘0-norm LMS algorithm is
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wnþ 1 ¼ wn þ le nð Þxn � ql0b sgn wnð Þe�b wnj j ð10Þ

where ql0 ¼ lc‘0 . But the term e�b wnj j has very high computational complexity which
isn’t what we want. Then the first-order Taylor series expansion of exponential func-

tions has been introduced in [15] which is shown as e�b wn½ �ij j � f xð Þ ¼
1� b wn½ �i

�� ��; when wn½ �i
�� ��� 1=b

0; others

	
. Then the update equation of the ‘0-norm LMS is

derived as

wnþ 1 ¼ wn þ le nð Þxn � ql0 J wnð Þ ð11Þ

where J wn½ �i
� � � bsgn wn½ �i

� �� b2 wn½ �i
� �

; when wn½ �i
�� ��� 1=b

0; others

	
, in which wn½ �i is

the i-th entry of the vector wn.

3.2 Analysis of the Difference Between the Five Sparse Algorithms

We present five sparse least mean square algorithms in part A. They have different
sparse penalties which stand for the different sparse constraints to the channel vector
being estimated. The regularization parameters in every algorithm also play a big role
in the sparse constraint to the resolution of the channel.

The sparse penalty term of ZA-LMS algorithm is h tð ÞZA¼ qZAsgn tð Þj j, where qZA
decides the strength of the penalty term. From Fig. 4, we can know that ZA-LMS has
the same sparse effects on all weights of the channel. It will cause the high steady state
error of the algorithm against the dominant taps of the channel. As the improvement of
ZA-LMS algorithm, RZA-LMS algorithm has a different sparse constraint which is

h tð Þ ¼ qRZA
sgn tð Þ

1þ �RZA tj j
��� ���, where qRZA has the same role as the qZA plays. From Fig. 5, we

can see that RZA-LMS algorithm attracts the entries of the channel vector to zero with
different extent. The smaller the entry, the stronger strength. And vice versa.
Accordingly, RZA-LMS algorithm normally have the better performance than
ZA-LMS algorithm. The sparse penalty terms of the RL1-LMS algorithm and ‘p-norm
LMS algorithm run similar as RZA-LMS algorithm. The main difference between the
three algorithms is the distribution of the strength of sparse constraint to various taps of
the channel. From Figs. 6 and 7, we can find that RL1-LMS algorithm and ‘p-norm
LMS have a significantly stronger effects on small weights of the channel than
RZA-LMS that will yield lower steady state error for sparse channel estimation.

The sparse penalty term of ‘0-norm LMS is h tð Þ‘0¼ q‘0J tð Þ�� ��, where

J tð Þ � bsgn tð Þ � b2 tð Þ; when tj j � 1=b
0; others

	
. From Fig. 8, we can get that the sparse

attraction of ‘0-norm LMS algorithm only effects on the taps of the channel in a definite
interval. This property of ‘0-norm LMS algorithm which reduce the mean square error
of the weights out of the interval usually make it gain a more accurate estimation than
another four sparse algorithms.
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To compare the performance of the five sparse algorithms, we do the numerical
simulation. The simulation results are shown in Fig. 9. The parameter values of every
algorithm in the numeric simulation are shown in the Table 1.

From Fig. 9, we can see that the ZA-LMS have the faster convergence rate and
larger MSE compared with the other four algorithm. And ‘0-norm LMS achieve the
best performance in the simulation.
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Fig. 4. Sparse constraints to channel vector w of ZA-LMS algorithm with different qZA values.

Table 1. Parameter values setting in Fig. 9.

Parameters Values

Input signal Pseudo-random binary sequences
The length of channel N = 128
Number of dominant taps of
channel vector

S = 16

Distribution of nonzero
coefficients

Random Gaussian CN(0,1)

Signal to noise ratio for
channel model

SNR = 20 dB

Gaussian noise distribution Gaussian CN 0; d2n
� �

Step size l ¼ 0:005
Parameters of algorithms qZA = 1e−3, qRZA = 1e−5, ERZA = 25, qr = 5e−6, p = 0.5,

qp = 5e−6, Ep = 0.05, b0 = 10, q0 = 1e−4
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Fig. 6. Sparse constraints to channel vector w of RL1-LMS algorithm with different qr values
(�r ¼ 5� 10�2 ).
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4 Simulation Results

Regular parameters of sparse LMS algorithms and the sparse degree of the channel
have big implications for the gains of the algorithms. The steady state MSD equation
JZA 1ð Þ of ZA-LMS which has been derived in [16] is that

JZA 1ð Þ ¼ t2 � p� 1ð Þlr2x þ 1
2pl2r4x

q2ZA


 �
2

lr2x
� r2v
r2x

ð12Þ

where r2
v denotes the variance of the additive noise v nð Þ and r2x is the variance of the

input sequence x nð Þ. The parameter t is the positive solution of c1t2 þ c2tþ c3 ¼ 0 in

which c1 ¼ L� 2
lr2x

1� lr2x
� �

and c2 ¼ �2 L� Sð ÞqZA
ffiffiffiffiffiffiffiffiffiffi
1�lr2x

pffiffiffiffi
2p

p
lr2x

and

c3 ¼ L�2S
2p þMþ 1

� � 1�lr2x
l2r4x

q2ZA þ
1�lr2xð Þ2
pl3r6x

q2ZA þ r2v
r2x

1� lr2x
� �

. From Eq. (12) we can

see that the steady state MSD depends on the sparse degree of the channel S, the
regular parameter of the algorithm qZA, the step size l and the channel length L [16].
When the sparsity of the channel is determined, the larger value of qZA will increase the
gap between the large tap-weights and it’s true value and the smaller value of qZA will
decrease the effects of sparse constraint on sparse channels. Both of them destroy the
performance of ZA-LMS algorithm. To see the influence of qZA directly we simulate
the algorithm with different qZA values. The simulation based on the channel model
with the length of the channel is N ¼ 128, the sparse level of the channel is S ¼ 16, the
signal to noise ratio of the channel is SNR ¼ 20 dB. Simulation results are obtained by
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Fig. 9. Comparisons between different sparse LMS algorithms.
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taking the average of the network mean square error (MSE) over 2000 independent
Monte Carlo runs. The simulation results are shown in Fig. 10. From the simulation
result, we can see that when qZA ¼ 1� 10�4 that is smaller than 1� 10�3 and is larger
than 1� 10�5 has the lowest steady state MSD.
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Fig. 10. ZA-LMS simulation with different qZA values.
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Fig. 11. RZA-LMS simulation with different qRZA values.
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The regularization parameters of another four sparse algorithm are similar as
ZA-LMS. We simulate another four sparse algorithms with different regular parameters
and fixed sparsity. All the simulations based on the same channel model with the length
of the channel is N ¼ 128, the sparse level of the channel is S ¼ 16, the signal to noise
ratio of the channel is SNR ¼ 20 dB. Simulation results are obtained by taking the
average of the network mean square divation (MSD) over 2000 independent Monte
Carlo runs. The simulation results are shown in Figs. 11, 12, 13 and 14. The simulation
results demonstrate the theoretical analysis that the smaller or larger values of q will
degrade the performance of the algorithm.
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When the regularization parameter qZA is certain, namely, the sparse constraint is
decided, the estimated solutions of the channel model with different number of zero
coefficients will have various accuracy. The more the number of zero weights are, the
more effectively the ZA-LMS algorithm attracts the tap-weights to zero and the vice
versa. Accordingly, the performance of ZA-LMS algorithm increases with the strong
sparse degree of the channel. Another four sparse algorithms have the same property.
To see the influence of the spare level of channel model intuitively we simulate every
algorithm with fixed regularization parameter q (qZA, qRZA, qr, qp, q0) and various
channel model with different sparse structure. The simulation results are shown in
Figs. 15, 16, 17, 18 and 19. The parameter values of the simulations are as shown in
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Fig. 14. ‘0-norm LMS simulation with different q0 values.

Table 2. Parameter values of numeric simulation in Figs. 15, 16, 17, 18 and 19

Parameters Values

Input signal Pseudo-random binary sequences
The length of channel N = 128
Number of dominant taps of
channel vector

S ε {16, 32, 64}

Distribution of nonzero
coefficients

Random Gaussian CN(0,1)

Signal to noise ratio for
channel model

SNR = 20 dB

Gaussian noise distribution Gaussian CN 0; d2n
� �

Step size l ¼ 0:005
Parameters of algorithms qZA = 1e−4, qRZA = 1e−3, ERZA = 25, qr = 5e−5, p = 0.5,

qp = 5e−6, Ep = 0.05, b0 = 10, q0 = 1e−4
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Table 2. From the simulation results we can get that the more sparse of the channel
model structure, the better performance of the sparse algorithms will obtain. The
conclusion is easy for us to understand because that the more numbers of the zero taps
of the channel, there will be smaller bias between the estimated weights and their actual
values.
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Fig. 15. Simulation of ZA-LMS algorithm with different S.
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Fig. 16. Simulation of RZA-LMS algorithm with different S.
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Fig. 17. Simulation of RL1-LMS algorithm with different S.
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Fig. 18. Simulation of ‘p-norm LMS with different S.
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5 Conclusions

We analyze and compare the sparse LMS algorithms performance from various aspects
in this paper. The simulation results have demonstrated that the sparse LMS algorithm
outperformance the traditional LMS algorithm. We know that there are many factors
influence the performance of the algorithm, such as the cost function of the algorithm,
the sparse constraint of the algorithm, the structure of the system model etc. To achieve
the better estimation of the system, we should set proper parameter values. The more
information of the system model we know, the more accurate algorithm we can design.
The next work will explore more information of the system model and design more
effective algorithms.

Acknowledgement. National Natural Science Foundation of China Grants (No. 61401069,
No. 61701258), Jiangsu Specially Appointed Professor Grant (RK002STP16001), Innova-
tion and Entrepreneurship of Jiangsu High-level Talent Grant (CZ0010617002), Natural Science
Foundation of Jiangsu Province Grant (No. BK20170906), Natural Science Foundation of
Jiangsu Higher Education Institutions Grant (No. 17KJB510044), High-Level Talent Startup
Grant of Nanjing University of Posts and Telecommunications (XK0010915026) and “1311
Talent Plan” of Nanjing University of Posts and Telecommunications.

References

1. Mboup, M., Macchi, O., Bershad, N.: Steady-state superiority of LMS over LS for
time-varying line enhancer in noisy environment. IEE Proc. F - Radar Sig. Process. 138(4),
354–360 (1991)

2. Bershad, N.J., Bermudez, J.C.M., Member, S.: Stochastic analysis of the LMS algorithm for
system identification with subspace inputs. IEEE Trans. Signal Process. 56(3), 1018–1027
(2008)

200 400 600 800 1000 1200 1400 1600 1800 2000
10

-4

10
-3

10
-2

10
-1

10
0

Number of Iterations(ρ0=1e-4)

M
S

E

l0-norm LMS(S=16)

l0-norm LMS(S=32)

l0-norm LMS(S=64)

Fig. 19. Simulation of ‘0-norm LMS with different S.

Reconsider the Sparsity-Induced Least Mean Square Algorithms 101



3. Coleri, S., Ergen, M., Puri, A., Bahai, A.: Channel estimation techniques based on pilot
arrangement in OFDM systems. IEEE Trans. Broadcast. 48(3), 223–229 (2002)

4. Rao, H.I.K., Member, S., Farhang-boroujeny, B., Member, S.: Fast LMS/Newton algorithms
for stereophonic acoustic echo cancellation. IEEE Trans. Signal Process. 57(8), 2919–2930
(2009)

5. Taheri, O., Vorobyov, S.A.: Reweighted l1-norm penalized LMS for sparse channel
estimation and its analysis. Sign. Process. 104, 70–79 (2014)

6. Vuokko, L., Kolmonen, V.M., Salo, J., Vainikainen, P.: Measurement of large-scale cluster
power characteristics for geometric channel models. IEEE Trans. Antennas Propag. 55(11),
3361–3365 (2007)

7. Czink, N., Yin, X., Özcelik, H., Herdin, M., Bonek, E., Fleury, B.H.: Cluster characteristics
in a MIMO indoor propagation environment. IEEE Trans. Wirel. Commun. 6(4), 1465–1474
(2007)

8. Adachi, F., Kudoh, E.: New direction of broadband wireless technology. Wirel. Commun.
Mob. Comput. 7(8), 969–983 (2007)

9. Molisch, A.F.: Ultrawideband propagation channels-theory, measurement, and modeling.
IEEE Trans. Veh. Technol. 54(5), 1528–1545 (2005)

10. Schreiber, W.F.: Advanced television systems for terrestrial broadcasting: some problems
and some proposed solutions. Proc. IEEE 83(6), 958–981 (1995)

11. Chen, Y., Gu, Y., Hero, A.O.: Sparse LMS for system identification. In: IEEE International
Conference on Acoustics, Speech and Signal Processing, Taipei, Taiwan, 19–24 April 2009,
pp. 3125–3128 (2009)

12. Taheri, O., Vorobyov, S.A.: Sparse channel estimation with lp-norm and reweighted l1-norm
penalized least mean squares. In: IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), Prague, Czech Republic, 22–27 May 2011, pp. 2864–2867
(2011)

13. Gu, Y., Jin, J., Mei, S.: l0-norm constraint LMS algorithm for sparse system identification.
IEEE Sign. Process. Lett. 16(9), 774–777 (2009)

14. Li, Y., Wang, Y., Jiang, T.: Low complexity norm-adaption least mean square/fourth
algorithm and its applications for sparse channel estimation. In: 2016 IEEE Wireless
Communications and Networking Conference Doha, Qatar, 3–6 April 2016, pp. 1–6 (2016).
Electronic ISSN 1558-2612

15. Gui, G., Peng, W., Adachi, F.: Improved adaptive sparse channel estimation based on the
least mean square algorithm. In: IEEE Wireless Communications and Networking
Conference (WCNC), Shanghai, China, 7–10 April, pp. 3105–3109 (2013)

16. Shi, K., Shi, P.: Convergence analysis of sparse LMS algorithms with l1-norm penalty based
on white input signal. Sign. Proces. 90(12), 3289–3293 (2010)

102 J. Wang et al.


	Reconsider the Sparsity-Induced Least Mean Square Algorithms on Channel Estimation
	Abstract
	1 Introduction
	2 System Model and Problem Formulation
	2.1 System Model
	2.2 Standard Least Mean Square Algorithm

	3 Reconsider of Sparse LMS Algorithm
	3.1 The Presentation of Different Sparse Mean Square Algorithms
	3.2 Analysis of the Difference Between the Five Sparse Algorithms

	4 Simulation Results
	5 Conclusions
	Acknowledgement
	References




