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Abstract. Massive multi-input multi-output (MIMO) technology is one
of the most promising concepts in 5G wireless system. Grounded on the
fact that the channel matrix in massive MIMO system is large dimen-
sional, classical MIMO detection algorithms are not appropriate for large
scaled antennas. In this paper, a low-complexity discrete gbest-guided
artificial bee colony (DGABC) detection algorithm is proposed for mas-
sive MIMO uplink, chaotic maps for parameter adaptation is also pro-
posed in order to improve the convergence characteristic of the DGABC
algorithm and to prevent the algorithm from getting stuck in local solu-
tions. Experiments show that the proposed DGABC detection algorithm
outperforms both the original ABC algorithm and MMSE detection with
a relatively low complexity.
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1 Introduction

Massive MIMO has been a key technology in wireless communication systems
with much more antennas at both sides. While many traditional problems have
been solved by massive MIMO benefitting from its advantageous properties
of increased diversity, there are still some technical problems existing to be
explored, one of which is the computational complexity of uplink symbol detec-
tion at the base station with large scaled antennas [1].

As antennas increase to a large amount, traditional detection algorithms
for MIMO have poor bit error rate (BER) performance and high computational
complexity. It is not appropriate for traditional algorithms to be applied directly
in the massive MIMO system. Therefore, it is necessary to improve the massive
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MIMO detection algorithm for optimum BER performance and low computa-
tional complexity. Karaboga proposed the artificial bee colony (ABC) algorithm
firstly for numerical optimization problem [2], and it was applied for massive
MIMO detection by Li [3]. In this paper, to reduce the computational complex-
ity, we propose a novel initialization approach for DGABC algorithm by virtue
of the prior information of matched filter in MMSE. Chaotic maps for param-
eter adaptation is also employed to improve the convergence characteristic of
the algorithm. The proposed algorithm reduces the computational complexity
apparently while achieving a near-optimal BER performance compared to the
original ABC detection algorithm in [3].

The remainder of this paper is organized as follows. Section 2 describes sys-
tem model of the massive MIMO uplink as well as some classical massive MIMO
detection algorithms. The proposed low-complexity DGABC algorithm is pre-
sented in Sect. 3. We present the simulation of the low-complexity DGABC detec-
tion algorithm and analysis its computational complexity and BER performance
in Sect. 4. Finally, the conclusion is given in Sect. 5.

Notation: Lowercase boldface letter is used to indicate a vector and uppercase
boldface letter to indicate a matrix; superscript (·)−1 denotes matrix inversion,
(·)T and (·)H denote transpose and complex conjugate transpose, ‖·‖ denotes
two-norm, statistical expectation is denoted as E{·}, �( ·) indicates the real part
of a complex number, �( · ) indicates the imaginary part, C and R, respectively,
denotes the field of complex numbers and field of real numbers.

Fig. 1. System model of massive MIMO uplink

2 System Model of Massive MIMO Uplink

2.1 System Model

We consider a massive MIMO uplink consisted of NT cells with single trans-
mitting antenna and one BS with NR receiving antennas (NR ≥ NT ). At the
transmitter, the bit stream generated by users are modulated to transmitted
symbols [4]. Modulation alphabet is donated as S, and R denotes the real part
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of Modulation alphabet S as in (1), and M-QAM is adopted. The perfect channel
state information is known by the receiver throughput the paper.

S = R + jR,R ∈ [±1,±3, · · · ,±
√

M − 1]. (1)

According to [5], the signal propagation process can be expressed as in (2)

y = Hx + n. (2)

For a clarity illustration, real-valued system model is adopted in this paper.
Vector y is an 2NR×1 dimensional real received signal vector, H is an 2NR×2NT

dimensional real Rayleigh fading channel matrix, x is an 2NT × 1 dimensional
transmitted real vector, and n is an 2NR×1 dimensional, independent zero-mean
additive white Gaussian noise vector and E{nnH} = σ2I2NR

, where σ2 ∈ R

denotes the average noise variance per receiving antenna. The system model is
as shown in Fig. 1.

2.2 Classical Detection Algorithms

Maximum Likelihood (ML) detection algorithm can obtain the optimum BER
performance for MIMO [6].

x̂ML = arg min
x∈S

‖y − Hx‖2. (3)

The complexity of ML detection algorithm is exponential in an order of mag-
nitude of O(MNT ), which is extremely high in the case of scaled number of
antennas [6]. The hardware implementation of ML is a most critical issue in the
BS side.

Minimum mean square error (MMSE) decoder is a widely used linear detec-
tion algorithm. The matched-filter output is computed firstly as yMF = HHy,
and the estimated transmitted symbol x̂MMSE is achieved as in (4).

x̂MMSE = A−1yMF . (4)

The detection results are obtained with hard decision. The computational com-
plexity of MMSE is in an order of magnitude of O(N3

T ), which is much lower
than that of the ML algorithm. However, the BER performance of MMSE is
rather poorer compared with ML algorithm. Research on improvement of BER
performance of MMSE detection has been extremely attractive.

3 Low-Complexity DGABC Detection Algorithm
for Massive MIMO System

The process of searching the optimum solution vector in ML algorithm can be
formalized as a nonlinear integer programming problem [7]. The ABC detection
algorithm is applied in the process of bees foraging for food and obtains an
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approximately optimum BER performance [3]. However, per-symbol complex-
ity of the ABC algorithm is still as an order of O(N2

T ). In this paper, a pro-
posed low-complexity DGABC algorithm with a novel initialization and chaotic
maps is proposed to reduce the computational complexity with a near-optimum
performance.

3.1 ABC Optimization

The ABC algorithm is a heuristic random search algorithm deriving from the
Swarm intelligence Optimization. In the ABC algorithm, each feasible solution
to the problem is represented by a food source, and the nectar quality of the
food source corresponds to the fitness of this feasible solution, which reflects the
quality of this solution. The detailed process is introduced in [2].

In [7], discrete gbest-guided ABC (DGABC) detection algorithm was pre-
sented to solve the global service composition problem. In this paper, a proposed
low-complexity DGABC detection algorithm is applied for massive MIMO detec-
tion, which can be recognized as an interger programming problem.

3.2 Proposed Low-Complexity DGABC Algorithm for Massive
MIMO System

The solution vector x̂ is calculated as (5) from (2).

x̂ = arg max
x∈S

(2yHHx̂ − x̂HHHHx̂). (5)

The cost function f(x̂) as in (6) is corresponding to the nectar amount in the
ABC algorithm [3].

f(x̂) = 2yHHx̂ − x̂HHHHx̂. (6)

The global optimum solution vector x̂best is obtained until maximizing the
cost function f(x̂) as in (7).

x̂best = arg max
x∈S

f(x). (7)

To speed up the convergence and obtain a better BER, hard decision result
of MMSE is employed as the initial solution vector x̂(0) = xMMSE in ABC detec-
tion algorithm [3]. However, the complexity of algorithm increases to O(NT

3)
resulting from the computation of MMSE. Instead, the algorithm proposed in
this paper takes advantage of the properties of A−1 introduced in Sect. 2 that
are applicable in massive MIMO [8]:

(i) A−1 is a diagonally dominant matrix.
(ii) All diagonal elements of A−1 are positive.
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Deriving from the properties above, the sign of the ith element in x̂ is almost
the same as that of the ith element in yMF . More precisely:

sign(x̂(0)
i ) = sign(

N∑

j=1

a′
ijyi

MF ) � sign(a′
ijyi

MF )

= sign(yi
MF ).

(8)

where x̂i and yi
MF are the ith elements of x̂ and yMF respectively, and a′

ij

denotes the element of A−1 at the ith row and jth column, j ∈ {1, 2, · · · 2N}.
For example, if sign(x̂i) = sign(yi

MF ) > 0, the jth dimension of feasible initial
solutions x̂

(0)
j is a positive value and generated from the positive part of real

modulation alphabet as [1, 3, · · · √M − 1].
After initialization, the exploitation of all the SN feasible solutions will start.

Let the maximum cycle number be Maxiter. The behaviors of employed bees,
onlooker bees and scout bees are repeated in each cycle.

Algorithm 1. Low-complexity ABC detection algorithm
Require: y,H, σ2, SN , limit,Maxiter
1: intialization of x̂

(0)
i (i = 1, 2, · · · , SN).

2: for i = 0 to Maxiter do
3: for d = 0 to SN do
4: vi

d ← x̂i
d +

⌊
φi
d × (x̂i

d − x̂i
e)

⌋
+

⌊
ϕi

d × (xbest
i − x̂i

d)
⌋

5: if f(vd) >f(x̂d) then
6: x̂d ← vd, f(x̂d) ← f(vd)
7: end if
8: end for
9: for f = 0 to SN do
10: The fth onlooker bee selects jth food source through the wheel selection

method.
11: vi

f ← x̂i
j +

⌊
φi
f × (x̂i

j − x̂i
e)

⌋
+

⌊
ϕi

f × (xbest
i − x̂i

f )
⌋

12: if f(vf ) >f(x̂j) then
13: x̂j ← vf , f(x̂j) ← f(vf )
14: end if
15: end for
16: if the kth solution (k = 1, 2, · · · , SN) is not updated after limit iterations then
17: xi

k ← lb + �rand(0, 1) × (ub − lb)�
18: end if
19: end for
20: update Fitness best and xbest so far
Ensure: x̂best

Employed Bees Phase. There is one employed bee assigned to each food
source. At the beginning of each cycle, the dth food source, of which the cor-
responding employed bee exploits the neighborhood, is denoted as Xd, where
Xd ∈ R

2NT ×1, d ∈ {1, 2, · · · , SN}. The local search method is described as
in (9)
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vi
d = x̂i

d +
⌊
φi
d × (x̂i

d − x̂i
e)

⌋
+

⌊
ϕi
d × (xbest

i − x̂i
d)

⌋
. (9)

The parameters i and e in (9) are generated randomly as in (10) and (11)

i = 1+ 	rand(0, 1) × 2NT 
 , (10)

e = 1+ 	rand(0, 1) × SN
 . (11)

The current global optimal composition solution is denoted as xbest, where
xbest ∈ R

N×1, and xbest
i represents the ith element of xbest. To escape the

local optimum, chaotic map is employed in the proposed algorithm to generate
the factor φi

d and ϕi
d instead of stochastic sequence, while the initial value of the

sequence c0 is generated randomly in (0, 1). The φi
d and ϕi

d are generated as in
(12) and (13), and the ck is updated as in (15) after each generation of φ and
ϕ. Tent map is selected from the chaotic maps for its superior characteristics of
convergence

φn = 2ck − 1, (12)

ϕn = 2ck, (13)

ck+1 =
{

ck/0.7
10(1 − ck)/3ck

ck < 0.7,
otherwise.

(14)

The rounding down operation 	
 is introduced considering that each element
of the vi

d is an integer. The bound value will be assigned to vi
d in case it is out of

the bound 	lb, ub
, where vd denotes the location of the new food source attached
to dth employed bee. The fitness value f(vi

d) of the new food source vi
d will be

calculated by cost function as in (6) after it is generated. If the fitness value of
the new solution is higher, the original one will be replaced. After the search of
the employed bees is finished, new population is updated.

Onlooker Bees Phase. The heuristic factor matrix is denoted as η in (15),
which is an 2NT × 1 real vector, each entry ηn of it is a real number reflecting
the quality of the nth solution. The calculation of ηn is given in (15).

ηn = 1/f(x̂n). (15)

The employed bees return to the hive and deliver the pheromone to the onlooker
bees. The onlooker bee select the nth solution vector based on the selecting
probability denoted as p(n) in (16).

p(n) =
ηn

SN∑

j=1

ηj

.
(16)

The fth onlooker bee attaches itself to one nectar by Debs method based on
selecting probability and exploit its neighborhood. Apparently, the food source
with higher fitness value will attract more onlooker bees. The procedure of the
exploitation is identical to (9), and the food source position is updated as the
process of updating in the scout bees phase.
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Scout Bees Phase. If the kth solution (k = 1, 2, · · · , SN) is not updated
after limit iterations, the attached employed bee will abandon the solution and
become a scout bee to sought new nectar randomly through (17).

xi
k = lb + 	rand(0, 1) × (ub − lb)
 . (17)

The bound value will be assigned to xi
k if it is out of the 	lb, ub
. When the

whole exploration is finished, the largest fitness value achieved so far is denoted
as Fitness best and its corresponding nectar position is denoted as xbest. Both
Fitness best and xbest will be updated.

The whole iteration will be repeated until the end condition is fulfilled. The
global optimum solution vector x̂best is obtained and is remapped to the complex
domain as the final detection result. The pseudo code of the proposed low-
complexity DGABC detection algorithm is as shown in Algorithm1.

4 Simulation and Numerical Result

In this section, the simulation of computational complexity and BER are stated
to illustrate the performance of the low-complexity DGABC algorithm. For com-
parsions, ML detection, MMSE detection and original ABC detection in [3] are
in consideration. The proposed algorithm is simulation in both 64 × 64 and
128 × 128 massive MIMO system. The transmitted signals are modulated by
16-QAM. Each antenna transmit 200000 symbols simultaneously.

We denote the average received SNR (dB) per received antenna as
SNR(dB) = 10 log10((NREavg)/σ2), where Eavg = 10 is the mean symbol
energy of the 16-QAM complex alphabet S. The SNR ranges from 0 to 18 dB.
Parameters of the algorithm are detailed in Table 1.

Table 1. Algorithm parameters setting

Amount of bee colony N = 40

Number of employed bees SN = 20

Heuristic factor β 0.8

Maximum number of iteration 20

4.1 Computational Complexity Analysis

The evaluation criterion of computational complexity is the order of magni-
tude of O(·) with the number of floating point operations. As shown in Table 2,
there are three main parts constituting the computational complexity of the low-
complexity DGABC detection algorithm. Since a large number of symbols are
transmitted during one symbol time, average calculation per symbol is applied to
measure the computational complexity. The per-symbol computation complexity
of the DGABC algorithm is O(NT ).



82 B. Zou et al.

Table 2. Computational complexity of DGABC algorithm

Calculation of initial solution x̂(0)t O(N2
T )

Calculation of cost function F (x̂) O(N2
T )

Calculation of the solution vector searching O(NT )

The per-symbol computation complexity O(NT )
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Fig. 2. The bit error (BER) performance of the low-complexity artificial bee colony
(DGABC) detection algorithm for massive MIMO system at 16QAM; ABC, original
artificial bee colony detection algorithm in [3], AWGN, addictive White Gaussian noise;
MMSE, minimum mean square error; SISO, single-in-single-out.

The computational complexity of the proposed low-complexity DGABC
detection algorithm is shown as in Fig. 2. With the number of transmitting anten-
nas increasing, the computational complexity of ABC algorithm in [3] increases in
two orders polynomial rate, the computational complexity of MMSE increases in
three orders polynomial rate and the computational complexity of the proposed
low-complexity DGABC algorithm increases in one order polynomial which is
much lower than that of the original ABC algorithm. Obviously, the proposed
DGABC algorithm lowers the computational complexity effectively.
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4.2 BER Performance Simulation

As is introduced in Sect. 3, the optimum BER performance of ML is unable to be
simulated in consideration of its exponential computational complexity. There-
fore, we use lower bound of ML performance for massive MIMO obtained by
the BER performance of the single-in-single-out (SISO) AWGN. The theoretical
BER for M-QAM of SISO AWGN is given in [9] as (18).

Ptheory = a · Q(
√

b · (SNR/log2(M)). (18)

where a = 2(1−1/
√

M/log2(
√

M)), b = (6 log 2(
√

M)/(M −1)), Q(x) signifies a
function of x, where Q(x) = 1

2erfc( x√
2
) and erfc(·) denotes the complementary

error function.
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Fig. 3. The bit error (BER) performance of the proposed discrete gbest-guided artifi-
cial bee colony (DGABC) detection algorithm for massive MIMO system at 16QAM;
AWGN, addictive White Gaussian noise; MMSE, minimum mean square error; SISO,
single-in-single-out.

The BER performance of the proposed DGABC algorithm is shown as in
Fig. 3. The original ABC algorithm achieves the optimum BER performance,
while low-complexity DGABC algorithm obtains a sub-optimum BER perfor-
mance with little gap. For example, low-complexity DGABC algorithm needs
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13 dB to achieve the BER at a magnitude of 10−1, which is less than 1 dB higher
than that of the ABC algorithm. When the SNR approaches 18 dB, BER per-
formance of low-complexity DGABC detection algorithm converges to the BER
performance of both ML and ABC algorithm.

5 Conclusion

In this paper, we present a low-complexity DGABC algorithm for massive MIMO
detection. With the prior information of the matched filter in MMSE detection,
the initialization of solution vector is simplified. From the simulation and data
analysis in both 64 × 64 and 128 × 128 massive MIMO system with 16QAM
signals, the computation complexity of the proposed low-complexity DGABC
algorithm is decreased with one order lower than the ABC algorithm in [3]. The
SNR of the low-complexity DGABC that required to obtain the same BER is
less than 1 dB higher than that of ABC algorithm, which can be regarded as
near-optimum. Therefore, the proposed DGABC detection is efficient in compu-
tational complexity for massive MIMO system uplink detection.
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