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Abstract. The fast development of the fifth generation (5G) mobile
communications system has brought a bright prospect of the next gener-
ation vehicular networks. Especially, a typical application in future vehic-
ular networks is to deploy intelligent transportation systems (ITS), aim-
ing to providing high level user experience on the move. To support the
deployment of ITS, high rate communications and energy efficiency, low-
latency transmission and low-complexity detection schemes are highly
demanded. Massive multiple-input multiple-output (MIMO) has been
seen as a promising candidate for the demand. The architecture that
many vehicles access the roadside infrastructure is quite suitable for the
employment of massive MIMO as large-scale antennas can be deployed
at the roadside unit. However, the challenges along with massive MIMO
is low complexity and efficient data detection schemes. In this paper,
we provide an overview of low-complexity detection schemes in massive
MIMO, and summarize the challenges and possible solutions.
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1 Introduction

1.1 Intelligent Transportation Systems

With increasing number of vehicles on road nowadays, driving safety, traffic
efficiency, and high quality in-vehicle entertainment service, have drawn much
attention in both academia and industry [1-4]. The emerging intelligent
transportation systems (ITS) have been widely studied aiming to meeting
these requirements. Generally, both vehicle-to-vehicle (V2V) and vehicle-to-
infrastructure (V2I) communications are required in ITS [1,2]. Specially, all
vehicles on the road collect sensor data, including traffic information and road
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conditions, and share with neighboring vehicles through V2V communications
or report to roadside infrastructure through V2I communications. To fulfill these
tasks, each vehicle is equipped with on-board unit (OBU), while the roadside
unit (RSU) is deployed along the roadside infrastructure. OBU and RSU are
acting as the radio interface to establish the dependable connection [1]. Tt is
reported that 90% of vehicles will be connected via wireless links by 2020 [3].
Therefore, the deployment and investigation of ITS becomes significant.

Fig. 1. A typical vehicular network to support I'TS service

A typical application scenario for ITS service is shown in Fig. 1, where multi-
ple RSUs are deployed along the traffic road, serving numbers of vehicles on the
street. Vehicles are connected through V2V communication links, so that infor-
mation about traffic status and road conditions can be shared among vehicles.
Besides, the vehicles can also access the RSU through V2I communication links,
which supports various in-vehicle entertainment service such as video streaming
and social interactions. Suppose an ambulance vehicle is committing an emer-
gence and a huge number of cars are crowded in a busy street. On the one hand,
the emergence information can be reported to all vehicles through V2V commu-
nications, and then all vehicles make proper action to cooperate. On the other
hand, an alternative solution might be that the RSU collects this information
and broadcasts in the vehicular network. By doing that, all vehicles in its com-
munication range will be aware of this information. Actually, the important role
of the RSU playing in ITS service has been demonstrated in [3-5]. Therefore,
we mainly focus on V2I communication in this paper.
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1.2 Massive MIMO in Vehicular-to-Infrastructure Communications

Using massive multiple-input multiple-output (MIMO) in next generation vehic-
ular networks, has been investigated recently [5,6]. It is known that in current
traditional small-scale MIMO system, the antenna size is limited since the wave
length of the microwave signal is relatively large. However, millimeter wave fre-
quency band has been proposed in vehicular communication, which enables the
antenna elements at RSU reach up to 256 [6]. Besides, the massive MIMO archi-
tecture is suitable for multiple vehicles accessing RSU since hundreds of antennas
can be deployed at roadside infrastructure. Massive MIMO has shown signifi-
cant potential in improving system spectrum efficiency and energy efficiency
[7,8]. These improvements, are beneficial to future vehicular networks.

Along with the benefits of massive MIMO, some practical issues need be
addressed. Typically, in massive MIMO, the large array signal processing at
RSU is a high computational load. The processing delay associated with the
detection has great impact on the system latency requirement. To deal with these
practical issues, we need low-complexity and efficient detection schemes. Besides,
compressed-sensing based techniques have been widely applied to communication
systems. For example, it is employed in [9] for channel estimation. In massive
MIMO, it also has many possible roles to play, and one of them is data detection,
as will be discussed in this paper.

1.3 Main Contributions

In [10], MIMO Detection schemes in fifty years have been summarized by the
year of 2014. However, at that time, few works have been done on massive
MIMO detection. As we know, the turbo receivers show great performance in
the traditional small scale MIMO-OFDM systems for data detection [11,12]. For
massive MIMO, many new works on data detection have been proposed recently,
including using compressed sensing technique [13-15], and iterative methods [16—
18]. In this paper, we will extensively overview these new detection schemes and
summarize the challenges and possible solutions in the applications to vehicular
communications.

1.4 Organization

The rest of the paper is organized as follows. In Sect. 2, we briefly introduce the
massive MIMO system model. Compressed-sensing based data detection schemes
are illustrated in Sect. 3. We present a class of low-complexity near linear mini-
mum mean-square error (MMSE) detection schemes in Sect. 4. Finally, the con-
clusions are drawn in Sect. 5.

2 System Model

Consider a massive MIMO system with Np antennas equipped at RSU, and
Ny vehicular users are under service (Np > Ny). The relationship between the
received vector and the transmitted symbols can be expressed as
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y = Hx +7, (1)

where y € CV5*! denotes the received vector at base station. H € CVN&xNv
denotes the channel matrix, with the u-th column vector h,, = He,, representing
the channel impulse response from the u-th user to the base station. x € CNvx1
is the transmitted symbol vector. z € CNBX! is the additive white Gaussian
noise vector, satisfying E {zzH} =0Iy,.

In [10], massive MIMO systems are divided into two groups, according to
lim %U =cor lim % = 0. However, we can see this classification is not
Np,Ny—oo ' B Np—oo''B
practical. This is because in real system configuration, the number of antennas
and users will not be infinite. In this paper, we define r = %—5, r > 1. When r
is sufficiently large, it corresponds the case that NEE}OO% =0;and r — 1, it
corresponds to the case that the number of users is comparable to the number
of antennas at base station. For different range, different detection schemes can
be applied.

In the case r is close to 1, compressed-sensing based data detection schemes
can be applied. In the case r is sufficiently large, low-complexity near Linear

MMSE detection schemes can be adopted.

3 Compressed-Sensing Based Data Detection

When r — 1, the performance of the linear MMSE detection scheme is far away
from the optimal system performance [13]. By noting that the detected sym-
bol vector after conventional detectors is generally acceptable in the operating

regime, the error vector e = x — X is sparse. Therefore, we can use compressed-
sensing techniques to recover the sparse error vector, hence the transmitted
symbols. The block diagram of the compressed-sensing based detection schemes
are shown in Fig. 2.

el

y _ [Conventional
| Detection

'\ _ [Sparse error|
D—»

recovery

Fig. 2. Block diagram of the compressed-sensing based detection schemes

3.1 Transform to Sparse Vector Estimation Model

As the original transmitted symbols in (1) is non-sparse, the compressed-sensing
techniques cannot directly applied to (1). Therefore, we need to transform the
detection model to a sparse vector estimation one.



Massive MIMO for Future Vehicular Networks 57

To begin with, with conventional detectors, the output estimation can be
quantized to the closest constellation symbol. In adequate operating regime, the
quantization error is small, for example, less than 10~!. That is to say, the error
vector after quantization is sparse, hence we can establish a new detection model,
given by

y =y — Hx =He +z. (2)

As e is sparse, we can adopt the compressed-sensing techniques to recover e.

3.2 Prevailing Compressed-Sensing Methods

Since e in Eq. (2) is sparse, the intuitive solutions to Eq. (2) is to find a sparse
vector under the system constrain. Hence, we can use convex optimization
approaches such as basis pursuit de-nosing method [19]. However, the compu-
tational complexity of such algorithms (or its variations) are, generally, is the
order of O (N3N}). Low-complexity compressed-sensing techniques normally
are generalized as greedy algorithms or iterative methods.

Initialization: £ =0 (Iteration count)

r’ =y (Residual update)
A" = & (Support set)

 —E E51

Select N largest entries in H'r
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‘ A=A (1) h(V)] \

(Augmentation)

X =argminHy—H\As
s

A* > (Estimation)|

r‘=y-H,&, (Residual Update)

Yes
Return i.\*
(End)

Fig. 3. The flow chart of the generalized OMP algorithm

The main process of the greedy algorithm consists of the following steps [13]:
(1) identification; (2) augmentation; and (3) residual update. Specifically, the
identification progress is to find the expected subset of the support sets. This
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is usually to use the correlation between the selected columns from H and the
residual. The augmentation progress is to generate the new sparse vector. The
residual update is to generate the new residual by removing the identified sparse
vector from received signal for next iteration. The well-known orthogonal match-
ing pursuit (OMP) method is to find one optimal candidate using the greedy
strategy [20]. Therefore, the overall computational complexity is in the order of
O (KNgpNy), where K is the sparsity of the signal vector. Some other varia-
tions of OMP have been investigated, such as compressive sampling matching
pursuit (CoSaMP) [21], generalized OMP [22], and the most recent multipath
matching pursuit [23]. Generally, the main difference between those variations
is the identification and the correspondent augmentation progress. For example,
generalized OMP is to select N indices instead of one in identification progress,
and it degrades to OMP when N = 1. However, by selecting N indices, the
iterations required for the recovery can be speeded up. The flow chart of the
gOMP is presented in Fig.3. Note in Fig.3, when N = 1, the gOMP becomes
OMP as for each iteration, only one candidate is selected.

Another low complexity compressed-sensing technique is to use iterative
methods for sparse signal recovery [24]. The iterative update step is given by

s+ — (é(i) 4 gH (y _ Hé(i))) ’ (3)

where T (+) is the thresholding operator to generate the next estimation from the
previous estimation. More references in this algorithm can be found in [25,26].

3.3 Challenges and Possible Solutions

Compressed-sensing based detection schemes have shown enhanced performance
compared to the conventional linear MMSE detection schemes. However, most
of the work requires hard decision on symbol detection. That is to say, in each
iteration, when the estimation is given, it is always quantized to the closed
constellation symbol. However, in real applications, the soft-input channel cod-
ing schemes are always adopted, which requires soft output from the symbol
detector. Therefore, we need to derive the soft output compressed sensing based
detection schemes.

In order to address these issue, we need to investigate the expected sig-
nal component from the estimation, and derive the a posterior: signal-to-
interference-plus-noise ratio (SINR). Different from hard decision strategy, the
afterward processing may put extra computational load. However, soft output
compressed-sensing based schemes, which are designed to maintain low complex-
ity but achieve near optimal performance, will be an interesting topic.

4 Low-Complexity Near Linear MMSE Detection

As demonstrated in [7,8,16], when r is sufficiently large, by employing linear
detection schemes, such as MMSE, zero-forcing, or even matched filter, we can
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achieve near optimal system performance. Therefore, a class of these detec-
tion schemes have been widely studied recently [16-18,27-29]. Generally, these
schemes can be categorized into two groups: to approach the matrix inversion
[16,27] and to solve linear equations with iterative methods [17,18,28,29].

4.1 Methods to Approach Matrix Inversion

To begin with, the linear MMSE estimation in Eq. (1) is given by
% = (H'H + 02Ty, )" Hly = WyMF, (4)

where W = HYH + 021y, and yMF = HYy is the matched-filter output.
With Neumann series expansion, the matrix inversion W~! can be expanded as
oo
l . .
W1 =3 (X7} (X~ W)) X!, where the convergence conditions are given
1=0
. 1 . .
by zhm (X7 (X — W)) = 0. From the satisfied conditions, we can see that the
— 00
higher order expansions can be omitted, leading to truncated approximation to
matrix inversion, given by

L-1
wi=3 (X' (x-w)x (5)
=0

When we select a matrix X that is very close to W, the expansion order in
Eq. (5) can be less than three, which is of low-complexity since the direct matrix
inversion is in the order of O (N} ). Based on this idea, the authors in [16] select
the diagonal matrix extracted from W, and demonstrate that when r > 16, the
expansion order L < 3.

However, using the diagonal matrix in the development may require large
truncated orders when r is less than 16. To speed-up the convergence rate,
Newton iteration has been introduced in [27]. However, Newton iteration involves
matrix multiplications, and the computational complexity may be high even with
only two iterations. Therefore, the authors in [27] propose to used the diagonal
banded matrix in the development, and the iterations are limited to two. They
also demonstrated that the performance with two iterations is better than that
of the Neumann-series expansion based detection scheme when r = 8.

Generally, the methods to approach the matrix inversion suffers from matrix
multiplications. Therefore, the applications of the methods in this category are
limited to the scenario where r is sufficiently high (for example, r > 8).

4.2 Solving Linear Equations with Iterative Methods

By transforming the matrix inversion problem into linear equations, a class of
iterative methods can be applied. To be specific, Eq. (4) is rewritten to

Wik = yMF, (6)
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For Jacobi method [29], the iterative estimation is given by
£+ — p-1 ((D —wW) @ 4 yMF) , (7)

where D = diag (W). It has been shown in [17,30] that when the initial esti-
mation for Jacobi method is given by %00 = D~1yMF the estimation after L
iterations is equivalent to results in Neumann series expansion based method
with L orders. However, instead of approaching the matrix inversion, the Jacobi
method is to approach the estimation vector and only matrix-vector product is
involved in iterative process. Therefore, the computational complexity is much
reduced, allowing large number of iterations.

Similarly, the Gauss-Seidel method proposed in [28] using the triangular
matrix in the development. Since an successive detection manner is introduced
in Gauss-Seidel method, the convergence performance (rate and probability that
convergence conditions are satisfied) is greatly improved [28]. Using this idea, the
development of using the stair matrix in massive MIMO uplink signal detection
is presented in [17]. It has been demonstrated that by using the stair matrix, the
probability that the convergence conditions are satisfied is improved compared
to the use of the diagonal matrix, which indicates that the system requirement
for large r can be released. Meanwhile, the convergence rate is also improved,
which means less iterations are required for convergence.

4.3 Challenges and Possible Solutions

Iterative methods have the advantages of low complexity; however, the process-
ing time introduced in iterative processing is significant. Therefore, to achieve
fast processing time but maintain near optimal system performance is a critical
challenge for implementation.

One possible solution to the challengeable issue mentioned above is to use
parallel processing structure. For example, in [18], the authors propose a block
Gauss-Seidel method based signal detection scheme for massive MIMO in V2I
communications. The main idea behind that proposal is to implement the itera-
tive estimation in several independent blocks. This is realized by using the block
diagonal matrix in the development of the iterative method. Specifically, W is
divided into W = P + Q, with the block diagonal matrix P given by

In addition, the iterative estimation can be given as

Since P is a block diagonal matrix, the iterative estimation in Eq. (8) can be
updated on each individual block independently, each with a much degraded
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matrix size. The independent block update procedure can be implemented with
parallel processing structure, and the processing time in each iteration can be
greatly reduced. The parallel processing structure for the proposed detection
scheme in [18] is shown in Fig. 4.

Tteration i

UL T L NON D, (1) y yE: (1)
v (1

Block 1: ﬁ Preprocessing }A—+ Gauss-Seidel Method

WENRE) DR EE)

(
Block 2 Ql)*{ Preprocessing M Gauss-Seidel Method }‘i(”l)

weyhe s " D, (5)§ yEi(5)

Block  B: ﬁ Preprocessing H Gauss-Seidel Method

Fig. 4. The parallel processing structure of the block Gauss-Seidel method [18].

However, as the block diagonal matrix is adopted, the convergence perfor-
mance (in terms of convergence rate and the probability that the convergence
conditions are satisfied) will be another issue to be addressed.

5 Conclusions

In this paper, we start from the requirements of the I'TS, and introduce a promis-
ing candidate technique, massive MIMO, for future vehicular networks. Espe-
cially, we specify that massive MIMO is quite suitable for multiple vehicles to
access the roadside infrastructure where large scale antennas can be deployed. In
addition, we overview the newly proposed compressed-sensing technique and a
class of low-complexity near linear MMSE detection schemes in massive MIMO
uplink data detection. We present the general procedure in implementation,
and summarize future challenges and possible solutions along with these new
techniques. Those challengeable issues brought in this paper can be valuable
references for future research topics.
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