®

Check for
updates

Fuzzy Logic Load-Balancing Strategy
Based on Software-Defined Networking

Guoyan Li®, Tianying Gao, Zhigang Zhang, and Yadong Chen

School of Computer and Information Engineering, Tianjin Chengjian University,
Tianjin 300384, China
{ligy,gty,zzg,cyd}@tcu.edu.cn

Abstract. Traditional load balancing hardware is expensive and lacks scalability
and flexibility. We propose a load balancing strategy based on fuzzy logic
(LBSFL), which exploits the control and forwarding separation architecture char-
acteristics of software-defined networking (SDN). First, the fuzzy membership
function that affects the performance parameters of the server load is analyzed.
Based on this, the load state of the virtual server is evaluated through fuzzy logic.
Then the centralized control capability of SDN’s controllers for the whole
network is utilized to monitor virtual server information in real time and to
schedule virtual server tasks. Individual servers can be hibernated or restarted, to
save power or to increase performance as necessary. Finally, the dynamic balance
between the overall load, performance and energy consumption is realized. Simu-
lation experiments showed that the proposed strategy improves overall perform-
ance of the network, especially when dealing with communication-intensive tasks
and using a high-latency network.
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1 Introduction

In recent years, with the development of internet, e-commerce and big data technology,
the scale, flow and user base of the internet has exploded. To meet the needs of network
users, many internet service providers use load-balancing technology to provide high-
quality and reliable service through the rational use of resources. However, traditional
load-balancing devices are expensive and lack adequate scalability and flexibility.
Software-defined networking (SDN) is a clean slate project by a Stanford University
study group [1] that proposes a new network architecture paradigm. Its core technology
is the OpenFlow network protocol, which creates an interface between the device control
plane and the data plane [2—7]. The resulting platform provides flexible network traffic
control, innovation and application of the core network. In an SDN network, each switch
has a flow meter, which is primarily a collection of process data streams for all actions,
such as looking up and forward. The main flow table contains headers, counters and
actions, three fields in which the actions field is represented, forwarding rules, and flow
meters, which are updated intermittently. Because the SDN controller determines the
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traffic forwarding rules, the load balancing algorithm is in the controller, meaning that
load balancing takes place at each link.

Several scholars have studied load balancing technologies based on SDN. In [8], the
authors proposed an SDN-based publish/subscribe system that constructed and fine-
tuned topic-connected overlays to disseminate events efficiently and non- redundantly,
based on a global topology overview. Handigol [9] proposed a web traffic model founded
on SDN. Based on the Openflow environment, Kaur [10] achieved network load
balancing using a polling algorithm. Similarly, Zhang [11] determined the minimum
number of network connections using a load balancing polling algorithm under an SDN
framework. However, although [10, 11] applied traditional load balancing algorithms
to the SDN architecture, they could not effectively reduce the server response time.

Shang [12] overcame this response time drawback by incorporating a middlebox,
based on SDN architecture, to achieve load balancing by collecting server information.
While this scheme effectively reduced server response time, it increased the complexity
of the server architecture. In [6], a load balancing algorithm was proposed, based on
server response times by using the advantage of SDN flexibility. Its lack of reliability
depended on only server response times.

Fuzzy logic, where fuzzy sets are expressed with mathematical formulas, can solve
many complicated problems which are not accurately represented by mathematical
models [13]. In this task-scheduling model of SDN, the load status of each node is
nonlinear and unpredictable. Given the technical limitations associated with collecting
node information, extra time is required to obtain and report information. The informa-
tion stored in this middleware can represent only past node load information, rather than
the current load situation, because the system has an inherent delay. Considering the
accuracy of the virtual server, the load state of the node is evaluated and the estimated
quantity is more effectively expressed in fuzzy terms.

In the present paper, we propose a load balancing strategy based on fuzzy logic
(LBSFL). Initially, we analyze the correlation among several parameters that impact
load balancing and obtain the load of multiple virtual servers through a fuzzy logic
algorithm. We then examine the virtual servers’ load status in real time, select the lightest
virtual server to handle the request, and, if necessary, set the sleep/restart policy of
server. Finally, to verify the correctness and effectiveness of this load balancing algo-
rithm, we constructed an SDN simulation platform. The experimental results show that
the proposed strategy is stable and highly effective, resulting in faster and more consis-
tent system response times.

2 System Architecture

The controller, or network operating system, is the heart of an SDN and is responsible
for controlling and managing all of the OpenFlow switches [14—16]. We deployed the
OpenDayLight SDN controller in our scheme. With the control plane and the data plane
being separated in the OpenFlow environment, software configurations are customized
through the controller to achieve effective load balancing. OpenFlow switches provide
aunified interface and data forwarding function to the controller, so the controller unifies
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control of the flow table of OpenFlow. The controller periodically obtains the running
state of the virtual server and utilizes the load balancing algorithm to calculate the desired
state of the server. To improve overall system performance, the load balancing algorithm
migrates tasks from overloaded virtual servers to lightly-loaded virtual servers. If neces-
sary, this strategy sleeps or restarts the virtual server to achieve load balance. We show
the proposed system architecture in Fig. 1.
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Fig. 1. System architecture

3 Load Balancing Algorithm Based on Fuzzy Logic

The current load condition of the virtual server can be calculated by using parameters
such as CPU utilization and IO utilization. However, the load represented by these
parameters is a fuzzy concept, meaning that there are no accurate mathematical models
or control rules. When monitoring load condition, we considered the advantage of
describing emergent problems and uncertainty problems in fuzzy mathematics, and
introduced fuzzy-logic theory to solve load balance problems. The fuzzy logic system
can be divided into three parts: fuzziness, fuzzy reasoning and solution.
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3.1 Fuzziness

Fuzziness scale-transforms the input values to scope of the domain expressed by the
fuzzy set. In addition, it determines the corresponding fuzzy rank sequence for each type
of input value, e.g. {high, mid, low}, and determines a membership degree between the
input parameters and fuzzy grade. Therefore, we need to select the membership function
to map the membership relation between the variables and the sequence.

Many factors can be used to characterize the load condition of the server in the virtual
server cluster environment, such as the frequency and utilization of the CPU, size and
utilization of memory, response times of each server and the number of the current
implementation of the process. The network request call and the returned result must be
transmitted through the network, taking additional time, CPU and memory resources to
complete. Thus, CPU utilization, memory utilization and I/O utilization are chosen as
the load parameters for performance evaluation of server nodes. OpenFlow switches
regularly submit virtual server load status to the controller. Load index value based on
a given threshold is classified into three categories and allocated a value between 0 and
1. Three fuzzy sets are used to describe the load index value, and the fuzzy membership
functions for each parameter are defined below in the following sections.

3.1.1 CPU Utilization

In the present study, we use the current server’s CPU (C) utilization as the domain. We
define fuzzy memberships p,(C), p,,(C) and y,(C) as parts of the fuzzy subset of the
current server CPU load, indicating membership in “highly-loaded,” “moderately-
loaded” and “lightly-loaded,” respectively. Thus, u,(C), u,,(C) and y,(C) are computed
according to the following:

1 C<25%
() =4 15-2%C 25% < C <75% )
0 C>75%

0 C<25%
45C—1 25% < C<50%
W ©) =Y 3_ 44 ¢ 50% < C<T5% @
0 C>75%

0 C<25%
u(C)=4 2%xC—-05 25% < C<75% ?3)
1 C>75%

3.1.2 Memory Utilization
We use the current server’s memory (M) utilization as the domain. We define fuzzy

memberships p,(M), p,,(M) and p,(M) as parts of the fuzzy subset of the current server
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memory load, indicating membership in “highly-loaded,” “moderately-loaded” and
“lightly-loaded,” respectively. Thus, are computed according to the following: p,(M),
H,,(M) and u,(M) are computed according to the following:

1 M<25%
uM)y=3 15-2xM 25% <M <75% 4)
0 M>175%

0 M<25%

4% M—1 25% <M < 50%

3_4%xM 50% <M <75% ®)
0 M>175%

M, (M) =

0 M <25%
M)y =4 2+ M—-05 25% <M < 75% 6)
1 M>75%

3.1.3 1/0 Utilization

We used the current server’s I/O (IO) utilization as the domain. We define fuzzy
memberships u,(10), u,,(10) and p,(10) as parts of the fuzzy subset of the current server
I/0O load, indicating membership in “highly-loaded,” “moderately-loaded” and “lightly-
loaded,” respectively. Thus, u,(10), u,,(10) and p,(I10) are computed according to the
following:

1 10 <30%
w(10) =14 1.75-25%«M 30% < 10 < 70% %)
0 10> 70%

0 10 < 30%

5%10—15 30% < 10 < 50%

35-5%10 50% < 10 < 70% ®)
0 10> 70%

u,(10) =

0 10 <30%
1, (10) =4 2.5 %10 -0.75 30% < 10 < 70% 9)
1 10> 70%

After fuzzy processing of the four input variables by their respective membership
functions, we comprehensively evaluate the load status of the virtual servers. The only
output of the fuzzy logic inference system is the probability that a request should be
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allocated to a virtual server, indicated by R. The set of factors is taken to be
E = {C,M, 10} and the collection of comments as {high, medium, low} when compre-
hensive fuzzy evaluation is used for internet quality of service.

3.2 Fuzzy Reasoning

Fuzzy reasoning is the core of the fuzzy controller, based on the relation of the fuzzy
logic and the rule of inference. It provides the ability to simulate based on the fuzzy
concept. The fuzzy control rules database is the most important component of fuzzy
logic inference. The classical fuzzy rules are composed of numerical or linguistic vari-
ables. We construct a fuzzy matrix to represent memberships of the input parameters in
each fuzzy subset, and perform comprehensive fuzzy evaluation according to the
following steps:

(1) Inaparallel manner, we establish a comprehensive fuzzy evaluation model to eval-
uate a single factor of each index. The output of the fuzzy logic is the possibility
of assigning the network request to the virtual server in the case of overload. The
evaluation results of each factor have the following fuzzy vectors:

R1 = [u,(C),u,(C), u,(C)],
R2 = [u, (M), u,,, (M), u,(M)],
R3 = [u,(10), u,,(10), u,(10)],

where the three vectors constitute a fuzzy matrix from the factor set to the comment
set, R = [R1,R2, R3].
(2) We determine weight vector P = [pl, p2, p3], where pl, p2 and p3 represent the
importance of CPU, memory and I/O, respectively, in u, and pl + p2 + p3 = 1.
(3) We define a fuzzy transformation Q = P - R, where Q is the evaluation result of
each virtual server in the comment collection of fuzzy vector F = (L, M, H). Three
of these components represent the extent to which the virtualserver is a candidate.

3.3 Defuzzification

Because the output of fuzzy inference is fuzzy vector F, it is necessary to solve the model
to obtain the exact output value. We adopt the classical area center method for defuz-
zification. It takes the centroid of the membership function of each fuzzy rank as the
exact output of the fuzzy grade. The corresponding centroid of the fuzzy grade Lis 0.15,
the corresponding centroid of the fuzzy grade M is 0.5, and the corresponding centroid
of the fuzzy grade H is 0.85. Finally, we use the following formula to calculate the exact
value of the output of the fuzzy logic:

2 wiM,

Fuzzy_out = l—,
' M,

(10)
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where, M, represents the centroid of each output fuzzy level, and wiindicates the weight
of the corresponding output fuzzy level for M;.

3.4 Load Balancing Strategy Based on SDN

Our proposed LBSFL is based on SDN. This strategy attains load balance among
multiple servers while saving energy. When the overall load is low, the server with the
lightest load is set to sleep; when the overall load is high, the server is restarted. The
following is the specific implementation strategy:

ey

@

Initialize the OpenFlow network. The system responds to the web requests through
a classic polling algorithm. The load balancing module obtains server status infor-
mation through SDN switches and calculates the load of the server through a classic
polling algorithm, then calculates the load balancing parameter of the OpenFlow
network.

Set the load balance adjustment threshold. The minimum threshold of the
server’s average load is assumed to be 0.2 and the maximum threshold to be 0.8.
The adjustment threshold for load balancing will be obtained experimentally.
The fuzzy logic algorithm adjusts the load balance. When ¢ is greater than the
threshold value, the current web request is forwarded to the server with the
lowest load. When 6 is lower than the threshold and F,,, is lower than 0.2, the
server load is idle and the server migration strategy [5] is executed to sleep the
server with the smallest load. When ¢ is lower than the threshold and the F,,, is
greater than 0.8, the server load is saturated and the server migration strategy [5]
is executed to restart a virtual server. When 6 is lower than the threshold and the
F,,, is between 0.2 and 0.8, it shows that the current load of the virtual server
is balanced, and the status of the server continues to be monitored. The execu-
tion flow chart of the strategy is shown in Fig. 2:
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Fig. 2. Proposed load balancing strategy based on fuzzy logic

4 Experimental Analysis

To review the performance of the LBSFL based on SDN, we used the following exper-
imental environment: Ubuntu version 11.04, running on an Intel Pentium E2180 dual-
core 4-GHz processor. We used open source software Mininet 2.0 to build the OpenFlow
network, the H3C5510_34C switch that supports the OpenFlow 1.3 protocol, and a Java-
based OpenDayLight controller to implement the load balancing strategy. To test the
performance of the algorithm, we installed iperf, a network performance testing tool,
which generated traffic pressure in the Mininet environment.

The simulation testing system structure is shown in Fig. 3. Four virtual machines
with identical configurations were assigned as web servers. Taking into account that
frequently sleeping and restarting the server impacted the performance of the system,
we set a minimum of four virtual servers.
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Fig. 3. Hardware simulation platform

We first evaluated the efficiency of LBSFL against traditional round-robin (WRR)
and weighted least connections (WLC) schemes. The input data of the fuzzy system
included CPU utilization, memory utilization and I/O utilization. The empirical values
of the three parameters were 0.4, 0.3 and 0.3, respectively. In the test, the load was
increased linearly for the first 10 min, adding 2000 connection requests per minute;
followed by a linear reduction by 2000 connection requests per minute for the next
10 min. The total experimental time was 20 min. Samples were taken every 1 min, and
the test was repeated five times. The average of these values was assumed to be the value
of system response time at that time. The test results are shown in Fig. 4.

3 T T T T T T T T

—=—WRR
—s—wLC
—A—LBSFL

System response time(s)

0 L L L L L L L L L
0 2 4 6 8 10 12 14 16 18 20

Continuous request time(m)

Fig. 4. Response time of system

At the same time, to achieve a more prominent load balancing effect in LBSFL, we
also extracted the CPU, memory utilization, I/O average utilization rates of each server.
Figures 5, 6 and 7 present the CPU, memory and I/O usage graphs of the four servers
(h1, h2, h3, h4) under WRR, WLC and LBSFL schemes, respectively.
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Fig. 7. 1/O utilization

From the experimental results we can see:

(1) From Fig. 4, the average server response times for the three schemes, WRR, WLC
and LBSFL were 1.434 s, 1.532 s and 0.83 s respectively. It is evident that the
average server response times of the server in LBSFL was the lowest among the
three schemes. This is because LBSFL always chooses the server characterized by
a fuzzy logic algorithm to provide services to the users. Moreover, WRR and WLC
do not consider the real-time status of the servers. From Figs. 5, 6 and 7, we also
found that the load balancing effect of LBSFL is better than that of WRR and WLC.

(2) With the parameters shown in Fig. 4, the number of requests was small, the task
management and scheduling was relatively simple, and there was not much
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difference between the three strategies with respect to system response time.
However, as the number of requests increased, task management and scheduling
became more and more complex. The response time of LBSFL was shorter than
those of WRR and WLC. With its simplified task management and scheduling,
LBSFL provided more advantages than WRR and WLC.

The LBSFL system response time curve shows two obvious wave peaks, the first
at about 8 min. With increasing requests, the current load capacity of all virtual
servers peaked. To reach system dynamic balance, the controller triggered the load
scheduling mechanism to start a virtual server, after which the response time of the
system appeared to decline and stabilize. The second peak was at about 18 min.
With decreasing requests, the current server load continually reduced until the
controller triggered the load scheduling mechanism to sleep a virtual server. After
this, the system response time again appeared to decline and stabilize. Because of
the sleep of a server, the system request processing ability was weakened, so there
was a small wave crest, and with the task management and scheduling becoming
simpler, the response time of the system appeared to decline. Server sleep and restart
also resulted in system energy saving.

Summary

Traditional load balancing hardware is expensive and lacks adequate scalability and
flexibility. We propose a load balancing strategy in SDN networks that successfully
enhanced the load balancing effect and improved network resource utilization.
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