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Abstract. Switching laws based on average dwell time method and switched
state feedback controller are designed for a network switched control system
with communication constrains. The networked control system is modeled as a
discrete-time switched system with time delay and parametric uncertainties. If
feedback control access rate is higher than the stability condition, then the
designed scheduling strategy can guarantee every subsystem reaches exponen-
tial stability. Sufficient condition for exponentially stability is also presented,
and the result shows systems can be stabilized under the designed switch laws.
Finally, the effectiveness of the proposed approaches is demonstrated through
MATLAB simulation.
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1 Introduction

The network control system (NCS) is a closed-loop control system composed of
controller, actuator and communication network, which applies network communica-
tion to the decentralized control system and achieve resource sharing and remote
operation. Therefore it can meet requirement of large-scale and complicated systems.
Therefore this control method has a promising future and will be an important tendency
for the control systems [1]. However for practical systems, controllers cannot manage
the whole objects all along due to the constraint of the equipment and resources. So in
the limited communication network partial subsystems remain open-loop condition at
the same time. This question can be described as the medium communication con-
strains (MCC) [2–6].

To achieve stable control, an appropriate switched strategy is designed for the
switched system, so NCS can be analyzed using switched method [7–11]. The average
dwell time is one of the most effective methods, therefore a new dynamic scheduling
strategy and feedback control designing method based on mode-dependent average
dwell time is proposed in the literature [12]. The system is modeled as a discrete
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switched system with uncertain parameters. This method not only considers the
influence caused by random short time delay but also presents the average dwell time
conditions of all the subsystems. The existing research about the network control of
MCC is focused on constrains of media access, digit ratio and information ratio. In the
literature [13], the NCS with fixed time delay is modeled as discrete switched system
with uncertain parameters and under quantizers are modeled as multiple modals the
MEF-TOD (Maximum Error First-Try Once Discard) dispatch strategy. And then
according to Lyapunov theory the digit ratio conditions that enable quantization errors
convergent can be verified. Aiming at the random-delay NCS with MCC, a design
method based on the TOD dynamic dispatch strategy and state feedback controller is
presented in the literature [14]. While the literature [15] presents a technique using
TOD dynamic dispatch strategy and H∞ quantization control, which manages errors
using sector bound approach and models the close-loop NCS as discrete switched
system with uncertain parameters. The uncertain network-induced time delay is
modeled as polytope-type uncertainty in the literature [16]. In this system the robust
control method based on the parameter-correlated Lyapunov stability is used to design
network discrete controller and simultaneously adopt control and dispatch to ensure the
stability of every subsystem in NCS. For the NCS with delay and parameter uncertainty
under the MCC few scholar researches non-linear network switch system using average
swell time switch law.

This paper researches the stability of NCS with communication constrains utilizing
average swell time method. The state feedback controller and the average swell time
condition, which assures the system exponential stable, are presented in the form of
linear matrix inequation using Lyapunov function. Finally, the effectiveness of the
proposed approaches is demonstrated through MATLAB simulation.

2 Problem Statement

If the state equation of NCS is of the form

x tð Þ ¼ Apx tð ÞþBpu tð Þ ð1Þ

where, x tð Þ 2 Rn, u tð Þ 2 Rm are respectively the state variable and the input of the
controlled object. Ap and Bp are the optimal dimensional matrixes.

The structure diagram of NCS is shown in Fig. 1. The controlled object is com-
posed of umpty sensors and actuators. The network-induced time delay between sen-
sors and controllers is ssck while the one between actuators and controllers is scak .
Suppose the system satisfies with the following terms.

Hypothesis 1: Sensors are time-driven and the sampling period is h, controllers and
actuators are both event-driven.
Hypothesis 2: sk ¼ ssck þ scak is time-varying and 0\sk\h.
Hypothesis 3: All signals from sensors or controllers cannot be transferred simul-
taneously because of the restrictions of network bandwidth. The transferred
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numbers of state vector and control signal every time are dsð0\ds � nÞ and
dcð0\ dc �mÞ respectively.
Discrete the state equation of the controlled objects

x kþ 1ð Þ ¼ Ax kð ÞþB0 skð Þû kð ÞþB1 skð Þû k � 1ð Þ ð2Þ

where, A ¼ eAph, B0 skð Þ ¼ R h�sk
0 eAptBdt

Because of network restrain in the hypothesis 3, the scheduling network nodes are
required in every transmission. Introduce the sensor-control scheduling vectors h kð Þ
and the control-actuator ones d kð Þ and then

hi kð Þ ¼ 1; if xi kð Þ is transmitted
0; otherwise

�
i 2 1; 2; . . .; nð Þ ð3Þ

di kð Þ ¼ 1; if ui kð Þ is transmitted
0; otherwise

i 2 1; 2; . . .;mð Þ
�

ð4Þ

During the kth sampling period, the sensors and control nodes allowed to transmit
are respectively determined by the scheduling vector h kð Þ ¼ ½h1 kð Þ; h2 kð Þ; . . .; hn kð Þ�
and d kð Þ ¼ d1 kð Þ; d2 kð Þ; . . .; dm kð Þ½ �.

Define K kð Þ ¼ diag h kð Þð Þ, and then the effective updated data received by the
control nodes are K kð Þx kð Þ, while the data that are not updated hold the last value
through the zero-order holder (ZOH). So the input of the controller is as follows

x̂ kð Þ ¼ K kð Þx kð Þþ I� K kð Þð Þx̂ k � 1ð Þ ð5Þ

Similarly, define P kð Þ ¼ diag d kð Þð Þ and then the output is

û kð Þ ¼ P kð Þu kð Þþ I�P kð Þð Þû k � 1ð Þ ð6Þ

•••
•••

Fig. 1. The structure diagram of NCS
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The total numbers of sensors and actuators are n and m respectively in this NCS,
but only ds sensors and dc actuators are allowed to transmit data. Take each scheme as a
modality, and the system provides N types of modality.

Where, N ¼ n!= n� dsð Þ!½ � � m!= m� dcð Þ!½ �
Each modality corresponds to a group of Ki kð Þ and Pi kð Þ, i ¼ 1; 2; . . .;Nð Þ. So the

generalized discrete modal of NCS is as follows

x kþ 1ð Þ ¼ Ax kð ÞþB0 skð Þû kð ÞþB1 skð Þû k � 1ð Þ
x̂ kð Þ ¼ Ki kð Þx kð Þþ I� Ki kð Þð Þx̂ k � 1ð Þ
û kð Þ ¼ Pi kð Þu kð Þþ I�Pi kð Þð Þû k � 1ð Þ

8<
: ð7Þ

The system includes N types of modality, i.e. N subsystems, which are switched
using TOD strategy.

Define si kð Þ ¼ hi kð Þ; di kð Þ½ � and si kð Þ 2 0; 1f gnþm, i ¼ 1; 2; . . .;N, si kð Þ indicates
ith modality of the system during kth sapling period.

Let Ci ¼ diag si kð Þð Þ, i.e. Ci ¼ diag si kð Þð Þ, then the errors are as follows

e kð Þ ¼ ex kð Þ
eu kð Þ

� �
¼ x kð Þ � x̂ k � 1ð Þ

u kð Þ � û k � 1ð Þ
� �

ð8Þ

According to TOD dynamic scheduling algorithm, the switch function is
r ¼ argmax C1 kð Þe kð Þ;C2 kð Þe kð Þ; . . .;CN kð Þe kð Þf g, r 2 1; 2; . . .;Nf g where arg is
subscript function, Ci kð Þ i ¼ 1; 2; . . .;Nð Þ corresponds the ith modality.

The form of the designed discrete state feedback controller is

u kð Þ ¼ Krx̂ kð Þ ð9Þ

where, x̂ kð Þ 2 Rn, u kð Þ 2 Rm are respectively the input and output of the controller. Kr

is the state feedback gain after introducing TOD scheduling strategy.
From hypothesis 2, sk 2 0; h½ � varies randomly. B0 skð Þ and B1 skð Þ are also time

varying, then

B0 skð Þ ¼ B0 þDF s0k
� �

E

B1 skð Þ ¼ B1 � DF s0k
� �

E
ð10Þ

where, s0k 2 �h=2; h=2½ �:
Suppose �F s0k

� � ¼ R�s0k
0 eAptdt, b ¼ max

R�s0k
0 eAptdt ¼ R h

h=2 e
Aptdt then

B0 ¼
R h=2
0 eAptBpdt, B1 ¼

R h
h=2 e

AptBpdt, D ¼ beAp h=2ð Þ, E ¼ Bp are both constant

matrixes, F s0k
� � ¼ b�1�F s0k

� �
changes with sk , and FT s0k

� �
F s0k
� �� I.

Let z kð Þ ¼ xT kð Þx̂T k � 1ð ÞûT k � 1ð Þ½ �, then the equation of the close-loop control is
as follows

z kþ 1ð Þ ¼ Urz kð Þ r 2 1; 2; . . .;Nf g ð11Þ
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where

Ur ¼
a1 b1 c1
Kr I � Kr 0

PrKrKr PrKr I � Krð Þ I �Pr

2
64

3
75

¼ Gr þHPrKrKr þD0F s0k
� �

EPr KrKr � Ið Þ

a1 ¼ AþB0 skð ÞPrKrKr

b1 ¼ B0 skð ÞPrKr I � Krð Þ

c1 ¼ B0 skð Þ I �Prð ÞþB1 skð Þ

Gr ¼
A 0 B0 I �Prð ÞþB1

Kr I � Kr 0
0 0 I �Pr

2
4

3
5

H ¼
B0

0
I

2
4

3
5; D0 ¼

D
0
0

2
4

3
5; Kr ¼

Kr

I � Kr

0

2
4

3
5
T

; �I ¼
0
0
I

2
4

3
5
T

r 2 1; 2; . . .;Nf g

Definition 1 [17]. In any time t2 [ t1 � 0, Nr t1; t2ð Þ means the switch times during
½t1; t2�. If there is Ta [ 0, N0 � 0, which can satisfy the following inequality

Nr t1; t2ð Þ�N0 þ t2 � t1
Ta

ð12Þ

Ta is average swell time, N0 is buffering boundary.

Lemma 1 [18]. H, E and I are the optimal dimensional matrixes and Q is symmetric
matrix. For all the matrixes satisfy with Fri kð ÞTFri kð Þ� I, when e� 0,
Qþ e2HHT þ e�2ETE� 0, then QþHFri kð ÞEþETFri kð ÞTHT � 0.

3 Main Results

Theorem 1. The positive definite matrix P and constant k 2 0; 1ð Þ satisfies the matrix
inequality

�P�1 þ erD0DT
0 � �

GrP�1 þHPrKrKrP�1 � 1� kð ÞP �
0 EPr KrKr � Ið ÞP�1 �erI

2
4

3
5\0 ð13Þ
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If the visiting rate and frequency are

ac kð Þ
k

� ln ko � ln k�

ln ko � kc
ð14Þ

N kð Þ�N0 þ k=Ta; N0 ¼ ln c
ln l

;

Ta [T�
a ¼

ln l
2 ln q� ln k�

ð15Þ

then there are feedback controllers (13) to make the system expressed by Eq. (1) stable,

and the estimated state of the system is x kð Þk k�
ffiffiffiffi
bc
a

q
qk x 0ð Þk k. Where, * represents the

transposition of the symmetric position, 0\kc\1, ko [ 1 are the feedback coefficients
of close-loop and open-loop respectively, Ta is the average swell time. kc\k�\q2\1,
c[ 0 and Vc kð Þ� lVo kð Þ, Vo kð Þ� lVc kð Þ.
Proof. The piecewise quadratic Lyapunov-like function is as follows

V kð Þ ¼ Vc kð Þ; close� loop
Vo kð Þ; open� loop

�
ð16Þ

If Vc kð Þ ¼ zT kð ÞPz kð Þ, then
DVc kð Þþ kcVc kð Þ
¼ zTðkþ 1ÞPzðkþ 1Þ � zTðkÞPzðkÞþ kcVcðkÞ
¼ zT kð ÞUT

rPUrz kð Þ � zT kð ÞPz kð Þþ kcVc kð Þ
¼ zT kð Þ UT

rPUr � Pþ kcP
� �

z kð Þ

¼ zT kð Þ �P�1 Ur

UT
r � 1� kcð ÞP

" #
z kð Þ

According to Schur complement lemma and the above equations,
DVc kð Þþ kcVc kð Þ\0. Similarly, the above conclusion is tenable for the open-loop
system. So

Vc kþ 1ð Þ� kcVc kð Þ
Vo kþ 1ð Þ� koVo kð Þ ð17Þ

Suppose during the time interval k2j; k2jþ 1
� �

; j ¼ 0; 1; 2; . . ., the system control
channel is close-loop, while during the time interval k2jþ 1; k2jþ 2

� �
; j ¼ 0; 1; 2; . . . it is

open-loop. For any k[ 0, according to the Eq. (17),

V kð Þ� kk�k2j
c Vc k2j

� �
; k2j � k\k2jþ 1

kk�k2jþ 1
o Vo k2jþ 1

� �
; k2jþ 1 � k\k2jþ 2

(
ð18Þ
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So when k 2 k2jþ 1; k2jþ 2
� �

, according to the Eq. (18) and definition

V kð Þ� kk�k2jþ 1
o Vo k2jþ 1

� �
� lkk�k2jþ 1

o Vo k2jþ 1
� �

� lkk�k2jþ 1
o kk2jþ 1�k2j

c Vo k2jþ 1
� �

� . . .

� lN kð Þkac kð Þ
c kk�ac kð Þ

o V 0ð Þ

Similarly when k 2 k2j; k2jþ 1
� �

,

V kð Þ� lN kð Þkac kð Þ
c kk�ac kð Þ

o V 0ð Þ ð19Þ

According to the Eq. (19),

ln k0 � ln kcð Þac kð Þ� ln k0 � ln k�ð Þk

Namely

kacðkÞc kk�acðkÞ
0 � k�ð Þk ð20Þ

According to the Eq. (20),

lN kð Þ � lN0 þ k
Ta � lN0l

k 2 lnq�ln k�ð Þ
ln l ¼ c

q2

k�

	 
k

From Eqs. (16), (19) and (20) V kð Þ� cq2kV 0ð Þ
Because of quadratic form Lyapunov-like function, then the constants

ac [ 0; a0 [ 0; bc[ 0; b0 [ 0 make the following inequation established.

acx kð Þ2 �Vc kð Þ; aox kð Þ2 �Vo kð Þ
Vc 0ð Þ� bcx 0ð Þ2; Vo 0ð Þ� box 0ð Þ2

ð21Þ

Then

ax kð Þ2 �V kð Þ; V 0ð Þ� bx 0ð Þ2 ð22Þ

where a ¼ min ac; aof g, b ¼ min bc; bof g.
Finally, according to Eqs. (21) and (22),

x kð Þ�
ffiffiffiffiffi
bc
a

r
qkx 0ð Þ
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Due to the uncertain item in Ur, transform
�P�1 Ur

UT
r � 1� kð ÞP

� �
into

�P�1 Ur

UT
r � 1� kð ÞP

" #
¼ �P�1 Gr þHPrKrKr

� � 1� kð ÞP

� �
þ

D0

0

� �
F s0k
� � 0

EPr KrKr � Ið Þ

� �T
þ 0

EPr KrKr � Ið Þ

� �
FT s0k

� � D0

0

� �T

According to the lemma, further transform the above equation into

�P�1 Gr þHPrKrKr

� � 1� kð ÞP

� �
þ er

D0

0

� �
D0

0

� �T

þ e�1
r

0

EPr KrKr � Ið Þ

� �
0

EPr KrKr � Ið Þ

� �T

þ
�P�1 þ erD0DT

0 � �
Gr þHPrKrKr � 1� kð ÞP �

0 EPr KrKr � Ið Þ �erI

2
4

3
5

Let X ¼ P�1, multiply it by diag I;X; Ið Þ in both left and right sides, the above
equation can be changed into the equation in the theorem. So the system can be
exponent stability.

4 Simulation Example

Consider the equation of NCSs x tð Þ ¼ Apx tð ÞþBpu tð Þ, where Ap ¼ �0:8 �0:01
1 0:1

� �
,

Bp ¼ 0:4
0:1

� �
And in the Eq. (2),

A ¼ 0:852 �0:0019
0:1867 1:02

� �
, B0 ¼ 0:0384

0:0032

� �
, B1 ¼ 0:0355

0:0055

� �
,

D ¼ 0:0355 0
0:0037 0:0389

� �
, E ¼ 0:4

0:1

� �
The system includes one control input and two states. When ds ¼ dc ¼ 1, the

system have two types of modals, i.e. s1 ¼ 1 0 1½ � and s2 ¼ 0 1 1½ �. Use
Matlab the LMI (Linear Matrix Inequality) in theorem can be solved.

K1 ¼ �1:1065 0:11577½ �
K2 ¼ �0:0169 �1:3888½ �
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Suppose that the time delay is the random number within (0, 0.1) and the original
state is 0:3;�0:3½ �T. The state response curve of the above network switch control
system is shown in Fig. 2.

As shown in the Fig. 2, the system can be stable with the designed controller and
switch laws.

5 Conclusions

In conclusion, the stability control of network switch system with MCC is researched.
The switch laws are designed using the average dwell time method and the conditions
to ensure the system exponential stability. The results show the system can be stable if
the visiting rate of a feedback control system is greater than a value.
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