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Abstract. Multiple-instance learning (MIL) is a variant of the tradi-
tional supervised learning. In MIL training examples are bags of instances
and labels are associated with bags rather than individual instances.
The standard MIL assumption indicates that a bag is labeled positive
if at least one of its instances is labeled positive, and otherwise labeled
negative. However, many MIL problems do not satisfy this assumption
but the more general one that the class of a bag is jointly determined
by multiple instances of the bag. To solve such problems, the authors
of MILD proposed an efficient disambiguation method to identify the
most discriminative instances in training bags and then converted MIL
to the standard supervised learning. Nevertheless, MILD does not con-
sider the generalization ability of its disambiguation method, leading to
inferior performance compared to other baselines. In this paper, we try
to improve the performance of MILD by considering the discrimination
of its disambiguation method on the validation set. We have performed
extensive experiments on the drug activity prediction and region-based
image categorization tasks. The experimental results demonstrate that
MILD outperforms other similar MIL algorithms by taking into account
the generalization capability of its disambiguation method.
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1 Introduction

Multiple-instance learning (MIL) copes with the classification of training bags
each of which is composed of one or more training instances [5,7]. Labels are
associated with bags rather than any individual instance. The standard multiple-
instance assumption indicates that a bag is labeled positive if at least one of its
instances is positive, and otherwise labeled negative.

Several researchers have made a more general multiple-instance assumption
that a bag is labeled as a ceratin class only when several different instances
co-appear in the bag. Under this general assumption, they further proposed
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several embedded-space MIL algorithms [3,4,8,10]. The basic idea can be sum-
marized as: (1) selecting some instance prototypes from the training set to form
an embedded-space, (2) embedding every bag into the embedded-space by com-
puting the distances/similarities between this bag and those instance prototypes,
(3) using the new bag-level features for training bags to learn an support vector
machine (SVM).

MILD is a very efficient and robust embedded-space MIL algorithm, which
has been demonstrated by Li and Yeung [10]. MILD focuses on the ability of a
candidate instance prototype in separating positive and negative training bags.
However, it ignores the discriminative ability of an instance on the validation set,
or in other words does not consider the generalization capability of its disam-
biguation method, leading to inferior performance as compared to other similar
algorithms.

In this paper, we attempt to improve the performance of MILD by taking
into account the generalization ability of its disambiguation method. The main
idea is dividing the training set into a training set and a validation set, and
using the discrimination of a candidate instance prototype on the validation set
as the evaluation standard of its discriminability. We name the new variant of
MILD Multiple-Instance Learning via Generalized Disambiguation (MILGD).
The experimental results show that MILGD outperforms other embedded-space
MIL algorithms with respect to classification accuracy and robustness to labeling
noise.

The remainder of the paper is organized as follows. In Sect. 2, we review
some work related to our research. In Sect. 3, we first analyse the characteristics
of MILD and then propose our new algorithm. We then compare our MILGD
algorithm with other baselines using two kinds of MIL data sets in Sect. 4. We
conclude this paper in the last section.

2 Related Work

Dietterich et al. [6] proposed the first MIL algorithm called Axis-Parallel Rectan-
gle (APR). The main idea is trying to find an APR in the feature space, which
includes at least one instance from every positive training bag but excludes
all instances from the negative training bags. Before long, Maron and Lozano-
Prez [12] presented a similar concept named Diverse Density (DD) to solve
the MIL problem. DD actually describes the likelihood that a possible concept
appears in all positive bags and does not appear in any negative bag at the same
time. Zhang and Goldman [19] extended the DD concept into the Expectation
Maximization (EM) framework and proposed the EM-DD algorithm in order to
locate the target concept in a more efficient way. Since learning a single concept
may be insufficient to capture the multi-modal distribution, GEM-DD applies
the Quasi-Newton approaches to search for a group of concepts in an iterative
way [14].

Ramon and De Raedt [15] adapted the neural networks to the MIL context.
Later on, Zhang and Zhou [18] derived a similar framework to tackle the MIL
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problem. Wang and Zucker [17] used the Hausdorff distance to measure the dis-
tances between different bags and extended the standard k-Nearest Neighbor
(kNN) algorithm into the multiple-instance setting. Gärtner et al. [9] devel-
oped a multiple-instance kernel function such that SVMs can be applied directly
for the training bags. Andrews et al. [1] regarded the unobservable instance
labels as hidden variables and formulated MIL as mixed integer quadratic pro-
grams. Settles et al. [16] constructed a multiple-instance framework with active
learning and showed that instance labels are beneficial for improving the per-
formance of an MIL learner. Motivated by the subgradient-based approaches for
SVMs, Bergeron et al. [2] proposed a non-convex bundle method for optimizing
the multiple-instance objective. Li et al. [11] assume that the distribution of
instances is a mixture of the concept and non-concept. Under this assumption,
they constructed an ensemble of several classifiers for classifying bags. Nguyen
et al. [13] provided a generic framework used to convert the rule-based algorithms
into MIL algorithms.

Several researchers have attempted to use the embedded-space algorithms
to solve the MIL problem. Various embedded-space algorithms are different
with each other in that they choose from training bags the instance prototypes.
Specifically, DD-SVM [4] depends on DD for choosing the instance prototypes.
DD-SVM regards the instances with the local maximal DD value as prototypes.
MILES [3] regards all instances in the training set as valid prototypes and selects
a subset of them via learning a 1-norm linear SVM that is known to produce
sparse solutions for feature weights [20]. MILD [10] depends on a conditional
probability model for the instance selection. The instance possessing the highest
capability in classifying the training bags is considered as a prototype. MILIS [8]
achieves the initial instance selection by modeling the distribution of the nega-
tive population with a Gaussian-kernel-based kernel density estimator. Then it
depends on an iterative optimization framework for the instance selection and
classifier learning.

3 MILGD: A Variant of MILD

In this section, we first analyse the characteristics and bias of the MILD algo-
rithm in order to introduce our MILGD algorithm. Then MILGD algorithm is
proposed to improve the performance of MILD by considering the discrimination
of its disambiguation method on the validation set. Let B+ denote all positive
training bags and B− all negative training bags. m+ and m− are the size of B+

and B−, respectively. B is the union of B+ and B−, and m is the sum of m+

and m−. We denote the ith positive bag in B+ as B+
i and the jth instance in

that bag as B+
ij . The bag B+

i is composed of n+
i instances B+

ij , j = 1, . . . , n+
i .

When the label of a bag does not matter, we simply denote the bag as Bi and its
instances as Bij . l(Bi) ∈ {+1,−1} denotes the label of Bi and l(Bij) ∈ {+1,−1}
that of Bij . Note that the instance labels are not directly observable.
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3.1 Analysis of MILD Characteristics

From the MIL formulation, we know that instances in each negative bag are all
negative, so for negative bags there is no ambiguity on the labels of instances.
However, a positive bag may contain not only positive instances but also neg-
ative instances and the labels of instances are unknown therein. Therefore, the
ambiguity in instance labels in MIL arises in the positive bags and MILD is thus
aimed at identifying the true positive instances in the positive bags.

Assumption 1. Given a true positive instance t, the probability that an
instance Bij is positive is calculated as

Pr(l(Bij) = +1 | t) = exp(−‖ t − Bij ‖2
σ2

t

), (1)

where ‖ x ‖�
√∑

k x2
k denotes the 2-norm of the vector x, and σt is a parameter

larger than 0.

Assumption 1 is used to compute a conditional probability. From (1), we
can easily see that 0 ≤ Pr(l(Bij) = +1 | t) ≤ 1, Pr(l(Bij) = +1 | t) = 0
when ‖ t − Bij ‖= +∞ and Pr(l(Bij) = +1 | t) = 1 when ‖ t − Bij ‖= 0.
This is well consistent with our intuition. If t is a true positive instance and
‖ t − Bij ‖= 0, Bij will definitely be a true positive instance since Bij is just
equal to t, which indicates that Pr(l(Bij) = +1 | t) = 1 is reasonable. Similarly,
if ‖ t−Bij ‖= +∞, Bij will be infinitely far away from the true positive instance
t, which means that Pr(l(Bij) = +1 | t) = 0 is also reasonable. The farther Bij

is away from t, the lower is the probability that Bij is positive given t, which
is reasonable based on our intuition. Based on Assumption 1, MILD defines the
probability that a bag is positive as follows.

Definition 1. The most-likely-cause estimator for estimating the probabil-
ity that a bag Bi is positive given a true positive instance t is defined as

Pr(l(Bi) = +1 | t) = max
Bij∈Bi

Pr(l(Bij) = +1 | t)

= max
Bij∈Bi

exp(−‖ t − Bij ‖2
σ2

t

) (2)

= exp(−d2(t, Bi)
σ2

t

),

where
d(t, Bi) = min

Bij∈Bi

‖ t − Bij ‖ . (3)

In other words, the distance d(t, Bi) between an instance t and a bag Bi is simply
equal to the distance between t and its nearest instance in Bi.

The definition of the most-likely-cause estimator implies that the label of a
bag is most probably determined by a specific instance in it which is nearest to
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the true positive instance t. In general, the larger d(t, Bi) is, the lower is the
probability that Bi is positive given the true positive instance t. Based on the
definition of the most-likely-cause estimator, MILD gives the following theorem.

Theorem 1. Given a true positive instance t, there exists a threshold θt which
makes the decision function defined in (4) label the bags according to the Bayes
decision rule.

ht
θt

(Bi) =

{
+1, d(t, Bi) ≤ θt,

−1, otherwise.
(4)

For simplicity, we ignore the proof of Theorem1 and refer the interested read-
ers to [10] for details. Therefore, if t is a true positive instance, there must exist
a decision function as defined in (4) to label the bags well, implying that the
distances from the true positive instance t to the positive bags are expected to
be less than those to the negative bags. Since the positive bags may also con-
tain negative instances just like the negative bags, the distances from a negative
instance to the positive bags may be as random as those to the negative bags.
Thus, for a negative instance its distances to the positive and negative bags do
not exhibit the same distribution as those from t. MILD thus uses this distribu-
tional difference to identify the true positive instances. The following definition
and theorem form the basis of its disambiguation method.

Definition 2. The empirical precision of the decision function in (4) is
defined as

Pt(θt) =
1
m

m∑

i=1

1 + ht
θt

(Bi)l(Bi)
2

. (5)

The empirical precision essentially measures how well the decision function
ht

θt
(·) with threshold θt mimics l(·) in predicting the bag labels. If t is a true

positive instance, it can label the bags well according to Theorem 1, and thus
the best (maximum) empirical precision P ∗(t) for t will be high. In contrast, if
t is a negative instance, it cannot label the bags well, and thus P ∗(t) for t will
be low. In essence, P ∗(t) reflects the ability of instance t in discriminating the
training bags. The larger P ∗(t) is, the more likely t is a true positive instance.
The remaining issue is how to compute P ∗(t) given an instance t. Theorem 2
provides the solution to this problem. Note that

P ∗(t) = max
θt

Pt(θt), (6)

θ∗
t = arg max

θt

Pt(θt). (7)

Theorem 2. The best empirical precision P ∗(t) for t is achieved when θt is an
element in the set {d(t, B+

i ) | B+
i ∈ B+}.

Therefore, to obtain the best empirical precision P ∗(t) given an instance t, we
only need to compute the distance from t to every positive training bag. Given all
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of the above knowledge, Li and Yeung [10] proposed their MILD algorithm. In
their algorithm, they select from every positive training bag the instance with
the largest P ∗ value as a candidate true positive instance (instance prototype).

When the disambiguation process is completed, MILD maps every training
bag Bi to a point D(Bi) in the embedded-space composed of all the instance
prototypes, and then learns a SVM with a Gaussian kernel on all new features
for bags. The new bag-level features for a bag Bi is defined as

D(Bi) = [d(t1, Bi), . . . , d(tm+ , Bi)]T, (8)

where tk ∈ T and T is the set of instance prototypes.

3.2 MILGD

Following the above description, we know that P ∗(t) describes the ability of an
instance t in classifying the training bags. MILD just uses P ∗(t) as its instance
selection principle. However, MILD computes P ∗(t) for an instance t with all
the training examples and does not consider the discriminative ability of t on
unknown examples. As we know, this kind of practice cannot guarantee the
generalization ability of a method, specifically, the disambiguation method of
MILD herein.

To solve this problem, we can group all the training bags into a training set
and a validation set. Given an instance t, we first compute the best threshold θ∗

t

on the training set, which corresponds to the maximum empirical precision P ∗(t).
Then we compute the value of Pt(θ∗

t ) on the validation set. This process can
be considered as one fold of n-fold cross-validation. When the cross-validation
approach is applied, we use the mean of Pt(θ∗

t ) on all the folds to estimate the
discriminability of the instance t. This is the main idea of our MILGD algorithm.
Algorithm 1 summarizes the disambiguation process presented here. Note that
MILGD assumes that a target concept (instance prototype) can be related to
either positive bags or negative bags, whereas, in MILD the target concept is
defined for positive bags only. As in DD-SVM [4], negative instance prototypes
can be computed in exactly the same fashion after negating the labels of positive
and negative bags.

Following Algorithm 1, we know that the main difference of MILD and
MILGD lies in the instance selection standard. MILD regards the discriminative
ability of an instance t on the training set as its instance selection standard,
and thus MILD does not consider the discrimination of unknown examples. In
contrast, MILGD regards the discriminability of t on the validation set as its
instance selection standard, and hence MILGD takes into account the general-
ization ability of its disambiguation method. As shown in Sect. 4, this transition
of instance selection standard can lead to improved performance and robustness
to labeling noise. As for the bag-level feature mapping and classifier learning,
there is no difference between MILGD and MILD.
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Algorithm 1. Instance-Selection Method of MILGD
Input: Set of training bags B and fold number n
Output: Set of instance prototypes T
1: Tp = LearnIPs(B, n)
2: Negate labels of all bags in B
3: Tn = LearnIPs(B, n)
4: T = Tp ∪ Tn

LearnIPs

1: Partition B into n subsets {B1, . . . , Bn}
2: for B+

i ∈ B+ do
3: for B+

ij ∈ B+
i do

4: for k = 1 to n do
5: Compute θ∗

B+
ij

on {B1, . . . , Bk−1, Bk+1, . . . , Bn} according to (7)

6: Compute P k

B+
ij

(θ∗
B+

ij

) on Bk according to (5)

7: end for
8: P (B+

ij) = 1
n

∑n
k=1 P k

B+
ij

9: end for
10: t = arg max

B+
ij∈B+

i
P (B+

ij)

11: Add t to T
12: end for

4 Experiments

In this section, we compare the performance and efficiency of the proposed
MILGD algorithm with that of other MIL algorithms using two kinds of data
sets.

4.1 Drug Activity Prediction

Experimental Setup. The MUSK data sets, MUSK1 and MUSK2, are stan-
dard benchmarks for MIL, which are publicly available from the UCI Machine
Learning Repository (http://archive.ics.uci.edu/ml/). These data sets consist of
descriptions of molecules and the task is to predict whether a given molecule is
active or inactive. Each molecule is viewed as a bag, the instances of which are
the different low-energy conformations of the molecule. Surface properties of a
conformation are extracted as its feature vector that has 166 dimensions. If one
of the conformations of a molecule binds well to the target protein, the molecule
is said active, and otherwise inactive. MUSK1 contains 47 positive bags and 45
negative bags, with an average of 5.17 instances per bag. MUSK2 contains 39
positive bags and 63 negative bags, with 64.69 instances per bag on average.
MUSK2 shares 72 molecules with MUSK1, but contains more conformations for
those shared molecules.

The parameter n (fold number in Algorithm1) was set to be 2 for MILGD.
We used LIBSVM (http://www.csie.ntu.edu.tw/∼cjlin/libsvm/) to train all
the SVMs in our experiments. We chose the regularization parameter C and

http://archive.ics.uci.edu/ml/
http://www.csie.ntu.edu.tw/~cjlin/libsvm/
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Gaussian kernel parameter γ from {2−10, 2−8, . . . , 210} using a twofold cross-
validation on the training bags. As for other embedded-space MIL algorithms
used for comparison, we asided by the same parameter selecting principle
described here.

For the MUSK data sets, we applied ten different random runs of ten-
fold cross-validation to test various embedded-space MIL algorithms. We thus
reported the mean and 95% confidence interval of the results of ten runs of
tenfold cross-validation.

Classification Results. Table 1 reports the classification accuracies for differ-
ent embedded-space MIL algorithms on the MUSK data sets. We also list some
other results on the same data sets for comparison. From Table 1, we can see that
APR gives the best performance on MUSK1 and MUSK2. However, the APR
algorithm chooses the parameters to maximize the performance on the test set
rather than the training set, and thus the superiority of APR should not be
interpreted as a failure. It can also be observed from Table 1 that our MILGD
algorithm is superior to other algorithms in terms of the average prediction
accuracy over the two data sets, in particular, the embedded-space MIL algo-
rithms. Furthermore, the classification accuracies of MILGD are much higher
than those of MILD, which demonstrates that considering the generalization
ability is indeed very helpful for MILD.

Table 1. Classification accuracies (%) for various MIL algorithms on MUSK.

Algorithm MUSK1 MUSK2 Avg.

MILGD 87.7:[86.2, 89.2] 88.1:[86.6, 89.5] 87.9

MILD [10] 85.0:[82.8, 87.1] 85.0:[83.6, 86.5] 85.0

DD-SVM [4] 85.6:[83.9, 87.2] 87.3:[86.3, 88.2] 86.5

MILES [3] 86.6:[84.9, 88.4] 88.3:[86.8, 89.9] 87.5

MILIS [8] 86.4:[84.6, 88.2] 88.3:[87.2, 89.5] 87.4

APR [6] 92.4 89.2 90.8

DD [12] 88.9 82.5 85.7

EM-DD [19] 84.8 84.9 84.9

MI-SVM [1] 77.9 84.3 81.1

mi-SVM [1] 87.4 83.6 85.5

Computation Time. Then we evaluate the efficiency of our MILGD algorithm.
Following the description of MILGD, we know that MILGD divides the whole
training set into different parts (or folds) for instance selection, and then uses
one part for validating and the remaining parts for training in each iteration.
Therefore, the more the fold number n is, the slower MILGD is. In general,
MILGD is less efficient than MILD. However, the disambiguation process of
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Table 2. Computation time (minutes) for various embedded-space MIL algorithms on
MUSK.

Algorithm MUSK1 MUSK2

MILGD 0.06 2.70

MILD [10] 0.03 0.42

DD-SVM [4] 8.74 122.57

MILES [3] 0.11 4.14

MILIS [8] 6.02 3091.39

MILD itself is very fast, and thus MILGD can still accomplish the instance
selection process very quickly. Table 2 reports the computation time of tenfold
cross-validation for different embedded-space MIL algorithms on the MUSK data
sets. From Table 2, we can see that MILD is the most efficient one while DD-
SVM and MILIS are the least efficient ones among all the embedded-space MIL
algorithms. But other than that, the computation time of other algorithms (i.e.,
MILGD and MILES) is on the same order of magnitude.

4.2 Region-Based Image Categorization

Experimental Setup. The COREL data sets have been widely used for region-
based image categorization. The data sets contain 20 thematically diverse image
categories with 100 images of size 384 × 256 or 256 × 384 in each category.
Each image is segmented into several local regions and features are extracted
from each region. The data sets and extracted features are available at http://
www.cs.olemiss.edu/∼ychen/ddsvm.html. Details of segmentation and feature
extraction are beyond the scope of this paper and interested readers are referred
to [4] for further information.

Two tests have been performed for the COREL data sets, i.e., 10-category and
20-category image categorizations. In the first test, we used the first 10 categories.
In the second test, we used all 20 categories. we randomly chose from each cate-
gory half of images as the training bags, and we used the remaining half as the test
bags. The SVM parameters were tuned in the same way as for the MUSK data sets
and the fold number n was still set to be 2. We repeated the above procedure five
different times. Thus, we reported the classification accuracy over five different
test sets and the corresponding 95% confidence interval. Since this is a classifica-
tion problem for multi-class, the simple one-against-the-rest strategy is applied for
training 10/20 binary SVMs. Therefore, the category having the largest decision
value given by the SVMs is assigned to the unknown bag.

Categorization Results. We provide the classification accuracies for MILGD
and other embedded-space MIL algorithms on the COREL data sets in Table 3.
On both data sets, the performance of MILGD is better or highly comparable
with that of other algorithms. With respect to the average accuracy over the two

http://www.cs.olemiss.edu/~ychen/ddsvm.html
http://www.cs.olemiss.edu/~ychen/ddsvm.html
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Table 3. Classification accuracies (%) for various embedded-space MIL algorithms on
COREL.

Algorithm COREL10 COREL20 Avg.

MILGD 83.2:[81.4, 85.0] 69.9:[68.8, 71.0] 76.6

MILD [10] 80.1:[77.9, 82.3] 66.8:[65.5, 68.1] 73.5

DD-SVM [4] 73.0:[71.8, 74.1] 54.3:[51.0, 57.7] 63.7

MILES [3] 82.0:[81.2, 82.9] 69.9:[68.3, 71.6] 76.0

MILIS [8] 81.2:[79.3, 83.2] 69.7:[67.2, 72.1] 75.5

tests, MILGD outperforms all the other embedded-space MIL algorithms. Par-
ticularly, the performance of MILGD is significantly better than that of MILD,
which indicates again that taking into account the generalization ability is very
important for the MILD algorithm. Based on the better results on the COREL
data sets, we can conclude that our MILGD algorithm is very promising for the
applications satisfying the general multiple-instance assumption mentioned in
Sect. 1.

5 Conclusions

In this paper, we have proposed a variant of MILD called MILGD. The goal of
the study was to improve the performance of MILD via the consideration of the
generalization capability of its disambiguation method. The experimental results
indicate that its prediction ability can be significantly improved when taking into
account the generalization capability. Moreover, due to the transition of instance
selection principle (from focusing on the discriminative ability on the training set
to focusing on that on the validation set), MILGD achieves the best performance
as compared to other state-of-the-art embedded-space MIL algorithms.
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