
Distributed Cloud Forensic System
with Decentralization and Multi-participation

Xuanyu Liu1, Xiao Fu1(&), Bin Luo1, and Xiaojiang Du2

1 State Key Laboratory for Novel Software Technology, Nanjing University,
Nanjing, China

dz1532002@smail.nju.edu.cn,

{fuxiao,luobin}@nju.edu.cn
2 Department of Computer and Information Sciences, Temple University,

Philadelphia, PA 19122, USA
dxj@ieee.org

Abstract. A considerable number of cloud forensic systems and tools have
been proposed in recent years. Trust issue of digital evidence, a significant
security topic, is indispensable for cloud forensics systems. In this paper, we
propose a different cloud forensic system—Distributed Cloud Forensic System
with Decentralization and Multi-participation (DCFS). The DCFS is set in an
untrusted and multi-tenancy cloud environment, and it is assumed that cloud
users, cloud employees, or forensic investigators can be dishonest. The DCFS,
which is different from existing centralized cloud forensic systems, is a dis-
tributed and decentralized system that does not rely on any single node or any
third party to obtain credible evidence from the cloud. Trust is divided into all
participants in the DCFS, and these participants supervise each other. A dis-
tributed public ledger is maintained in the DCFS, and this ledger records all the
proofs of forensic evidence along with other useful information. This ledger can
enhance the credibility and integrity of forensic evidence to some degree and
complete the chain of custody in forensic investigation. The forensic evidence,
which are provided by the cloud employees, presented to the court of law using
the DCFS will be more trustful.

Keywords: Cloud forensics � Data provenance � Byzantine faults
Distributed systems � Decentralization � Multi-participation

1 Introduction

Cloud forensics is a cross discipline of cloud computing and digital forensics. Digital
forensics is the application of computer science principles to recover electronic evi-
dence for presentation in a court of law. Most of the existing cloud forensic systems
and tools are set in non-adversarial environment, and they precisely consider the

This work is supported by the National Natural Science Foundation of China (61100198/F0207,
61100197/F0207).

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2018
C. Li and S. Mao (Eds.): WiCON 2017, LNICST 230, pp. 181–196, 2018.
https://doi.org/10.1007/978-3-319-90802-1_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-90802-1_16&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-90802-1_16&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-90802-1_16&domain=pdf

external threats. That is, they trust the cloud service providers completely. In return,
this brings the honesty issue of the cloud service providers. Forensic investigators and
court authorities may also doubt about the credibility and validity of evidence. It is
undeniable that a few studies have tried to reveal the trust issues in cloud forensics.
They prefer to trust the cloud service providers partially or reduce their trusted com-
puting base by introducing some trusted components such as monitor, hardware, or
database into their methods. In a multi-tenancy environment, they may attempt to pick
a trusted third party [1] as an intermediary to store or verify forensic evidence. In short,
these solutions are centralized so that their functions rely on a single point. Moreover,
the trust of forensic evidence is established on the basis of this point. Unfortunately,
neither a single component nor a third party is invariantly trustworthy. Components
may exhibit loopholes or bugs and could be compromised by an adversary. A third
party can also collude with malicious individuals to hide their crimes for the purpose of
illegal income. Both of them can become the single failure point and can cause per-
formance and security issues easily. Existing cloud forensic systems are unsatisfactory
to some extent. It is necessary to have alternative forensic systems or tools that do not
require this type of trust.

In this paper, we propose a different cloud forensic system—Distributed Cloud
Forensic System with Decentralization and Multi-participation (DCFS) from another
perspective. The DCFS is set in an untrusted and adversarial environment. It does not
trust any single node or any single person and considers both internal and external
threats. The DCFS is a distributed cloud forensic system. It does not precisely operate
for a single node but for a large-scale network with numerous nodes. These nodes act
together to build a more secure and more robust cloud forensic ecosystem. Decen-
tralization indicates that the DCFS does not rely on a trusted component or a trusted
third party. Trust is divided among the nodes in the DCFS, and these nodes supervise
each other. Multi-participation indicates that the DCFS acts in a multi-tenancy envi-
ronment with various stakeholders, including users, cloud employees, forensic inves-
tigators, and court authorities. It has the assumption that cloud customers, cloud service
providers, or forensic investigators can be malicious or dishonest; they may collude
with each other to provide faked forensic evidence or may frame innocent people.

Data provenance is selected as the primary raw data of forensic evidence in the
DCFS. Data provenance determines and describes the lifecycle history of data sets from
original resources to destruction endpoints. It is helpful for analyzing what happened to
certain dataset and estimating its scope of influence among the systems. The
accountability of the cloud can be enhanced using data provenance. To make data
provenance more available and more credible, a public data provenance ledger is
introduced into the DCFS. This ledger has something in common with the public ledger
maintained in Blockchain [2] systems. A Blockchain system is essentially a distributed
ledger of all transactions or digital events executed and shared among all participants in
accounting systems. Each transaction in the public ledger is verified by consensus of a
majority of the participants. Once recorded, these transactions can never be erased.
With same purposes, the public data provenance ledger in the DCFS is a distributed
ledger of all proofs of data provenance and other valuable information useful for further
forensic investigation. The participants in the DCFS involve in the maintenance of this
ledger and reach a consensus on its entries. Every data provenance recorded in the

182 X. Liu et al.

ledger is verifiable, accountable, and immutable. Any misbehavior, which can be
Byzantine [3], performed to the ledger is not hidden and is rejected. With this, we
develop a democratic open and scalable forensic system from a centralized one. To the
best of our knowledge, the DCFS is the first decentralized cloud forensic system that do
not rely on any single point or third party as well as no single point or third party has
absolute power to affect the forensic process. The DCFS can enhance the credibility
and integrity of forensic evidence, enhance the accountability and robustness of cloud
systems, and complete the chain of custody in forensic investigations. To demonstrate
the practicality and security of the DCFS, we have implemented a prototype on
OpenStack, which is an open source cloud computing platform. Our evaluation
demonstrates the ability of the DCFS to solve the real world forensic problems, and the
results reveal that the costs of the DCFS (CPU load, network latency and storage) are
sufficiently low to be practical.

Motivation. Most of the existing cloud forensic systems trust their cloud service
providers completely or partially and trust forensic investigators acquiescently.
The DCFS, which is different from those forensic systems, does not believe in cloud
employees and forensic investigators. The goals of the DCFS are as follows:

• Make forensic evidence from cloud more available and accessible.
• Enhance the credibility and integrity of forensic evidence.
• Ensure that any evidence entry presented in front of the court is verifiable.
• No one can tamper with any evidence entry and any misbehavior performed to

evidence entries will be discovered and prevented.
• Malicious individuals can never repudiate evidence indicating them.
• No one can recover any valuable information from the DCFS so that the privacy of

the user remains protected.

Contributions. The contributions of this paper are as follows:

• We proposed the DCFS. The DCFS is set in untrusted and adversarial multi-tenancy
environment and does not rely on any single trusted node or third party. The DCFS
overcomes the drawbacks of centralized cloud forensic systems and makes the
cloud more accountable and robust.

• We design a public data provenance ledger for the DCFS. This ledger helps the
forensic investigators and court authorities to obtain valid and credible evidence.
Moreover, it can prevent malicious individuals from tampering or denying the
forensic evidence after the fact.

• The DCFS is implemented and evaluated on OpenStack.

Organization. The structure of the paper is organized as follows: Sect. 2 discusses
some related studies. Section 3 introduces the design of the DCFS in detail. Then,
Sect. 4 provides the security analysis of the DCFS. Section 5 provides the imple-
mentation and evaluation of the DCFS, and Sect. 6 concludes this paper.

DCFS with Decentralization and Multi-participation 183

2 Related Work

There have been several studies on collecting and providing data provenance. PASS
[13] is a typical provenance system in the system level. It modifies the Linux kernel and
intercepts system call in the VFS level. Based on PASS, a provenance system for XEN
[14] is established. SPADE [15] focuses on the related primitive operation on data
input and output, and detects system calls of files and processes. LineageFS [16]
associates the process ID with file descriptors and creates lineage information for files.
Hi-Fi [17] includes various types of nonpersistent data into data provenance. LPM [18]
is deployed in Linux kernel and is designed to collect system-wide data provenance,
including process, IPC, network, and system call. Based on LSM, the LPM set
provenance hooks along with LSM hooks, ensuring that the data provenance represents
the proper actions of the system. DPAPI [19], CPL [20], and IPAPI [21] are set in the
application level. They provide specific provenance API so that the application
developers can invoke these APIs to make their applications provenance aware.
HadoopProv [22] realizes a provenance system in Hadoop. In Android platform, Quire
[23] extracts the provenance data from IPC and RPC to construct invocation chain. By
analyzing this invocation chain, the potential attacks such as excess of authority can be
discovered. Similar to Quire, Scippa [24] expands the Binder module in Android
system to construct an invocation chain.

However, these systems or tools still lack in providing trustworthy data provenance.
They do not consider the internal threats, and they depend only on their host systems.
Some researchers tried to solve these issues. The SNP [25] is a network provenance
system running in an adversarial setting. Every node manages its own tamper-evident
network logs. By querying the relevant information from other nodes, fault nodes can
be discovered. However, the SNP relies on some types of behaviors on the network to
be observed by at least one correct node, and the error nodes can escape easily from the
detection of the SNP by colluding with each other. Moreover, the efficiency of SNP
will drop drastically with a reduction in the correct nodes available in the system.
Another system, SecLaaS [26], assumes that users, clouds, and investigators can be
malicious individually or can collude with each other. It creates the proofs of logs and
publishes these proofs on the web for further verification. The drawback of this system
is that the proofs are considerably coarse grained, and the proofs remain unprotected
after being published. Other researchers attempt to adopt cryptography, trusted com-
puting, or mathematics to enhance the integrity and confidentiality of data provenance,
such as ABE [27] and bilinear pairing [28]. The scope of their application is small and
may cause considerable resource consumption. Several papers (e.g., [29–34]) have
studied related security and networking issues.

Different from them, the DCFS runs in an adversarial multi-tenancy cloud envi-
ronment. It is a distributed and decentralized forensic system, and it does not rely on
any single trusted node or third party. The participants in the DCFS cooperate with
each other to make the evidence entries more trustworthy.

184 X. Liu et al.

3 System Design

3.1 System Structure

In the DCFS, participants are scattered in different cloud systems. A small and smart
process named DCFS Peer Agent (DPA) is allocated to every participant. The DPAs
act as agents for participants and enable them to join in the DCFS membership net-
work, involve in the DCFS cloud forensic system, manage their personal data, and
conduct operation requests. Figure 1 shows the system structure of DCFS, which can
be divided into three layers:

User Operation Layer. This layer consists of all participants along with their terminal
applications installed in their PCs, smart phones, or even in a third-party cloud plat-
form. These terminals are management consoles for participants to communicate with
their DPAs, commit their operation requests, and manage their personal data. They can
also manage their individual accounts, check the DCFS network topology, and examine
the DCFS runtime information. Investigators and court authorities can use customized
terminals to verify the integrity and validity of forensic evidence.

Fig. 1. System structure of the DCFS

DCFS with Decentralization and Multi-participation 185

Agent Management Layer. The DPAs are mainly located in this layer. They are
independent, and they connect with each other to establish a point-to-point network.
Certain consensus algorithm is adopted to ensure that these DPAs are in the same final
state and reach a consensus on the public data provenance ledger. Moreover, the DPAs
are responsible for managing data entries in the public ledger, acting as a gateway that
evaluates all data accesses, and communicating with terminal applications to handle the
received operation requests.

Ledger Storage Layer. In this layer, a public provenance ledger offers a scalable,
highly available, secure, and independent storage service for data provenance against
confidentiality and integrity attacks. This public ledger is not precisely located in a
single node or stored on the database of a third party. Instead, it is a distributed ledger
and all participants own a full copy of this ledger in their database. The DPAs of the
participants reach a consensus on the ledger and ensure the contents of each ledger
stored in different participants’ database are consistent. Any malicious activity per-
formed to the ledger is unacceptable to the other correct DPAs unless majority of DPAs
are under control by an attacker. It is not invariantly easy to control majority of DPAs
in a large-scale cloud system. This design guarantees that any data entry recorded in the
ledger remains unchanged once generated. No one, including users, cloud employees,
or investigators can tamper with the ledger.

3.2 DCFS Peer Agent

As Fig. 2 shows, a DPA mainly consists of three modules: Data Manager, Operation
Handler, and Membership Service.

Data Manager. The primary responsibility of Data Manager is to create raw proofs of
data provenance using data provenance metadata from forensic tools and other useful
system logs. These raw proofs of data provenance will be sent to Operation Handler for

Fig. 2. Modules of the DPA. Data Manager is the medium between Ledger Storage Layer and
Agent Management Layer. Membership Service is the medium between Agent Manager Layer
and User Operation Layer.

186 X. Liu et al.

further encapsulation and then sent to Membership Service for consensus process. Data
Manager is also in charge of communicating with the database for public ledger.

Operation Handler. Operation Manager handles operation requests such as query and
verification. When receiving an operation from a user, Data Manager searches satis-
factory data from the public provenance ledger, verifies its validity, and packages the
data in a proper manner.

Membership Service. The main duty of Membership Service module is network
communication. It communicates with the terminals of the participants to receive
operation requests from users and respond to them. It also connects with the other
Membership Service modules of the DPAs to build the distributed forensic network.
Moreover, it manages and evaluates data access policy for each participant.

3.3 Public Data Provenance Ledger

The public data provenance ledger is the core of the DCFS. Only the proofs of data
provenance are included in the ledger for the following reasons:

• Raw data provide huge storage and network consumption while proofs are more
lightweight.

• The main goal of the DCFS is to offer the ability to verify the correctness of
evidence. The proofs of data provenance are sufficient.

• Malicious individuals may try to learn about some crucial information of other users
from the ledger. If only proofs are included, nearly no valuable information can be
recovered from them. The privacy of the users will remain protected.

The process from raw data to entries in the ledger includes four steps: First, a data
provenance graph is generated using the raw data provided by forensic tools and
system logs. Second, a new proof is created based on the data provenance graph. Third,
with necessary encapsulation, the proof is added into the ledger. Finally, a consensus
process is started between DPAs to ensure that all DPAs agree and accept this proof.

Data Provenance Graph. Forensic tools for cloud computing should be compatible
with the cloud’s characteristics of on-demand self-service, rapid elasticity, and scala-
bility. This indicates that the data provenance model should be easy to generate and
manage, be open, extensible, and scalable, and be compatible with existing forensic
formats and follow existing practices and standards. Based on the above consideration,
Open Provenance Model (OPM) [4] is selected as the standard data provenance format
in the DCFS. The OPM defines data provenance in a precise and technology-agnostic
manner and allows multiple levels of data description to coexist. It allows provenance
information to be exchanged easily between systems based on a shared provenance
model.

The provenance graph is a directed acyclic graph (DAG), and it implies causal
relationships between states and operations. To capture transitive provenance, we can
define, for any execution e, a provenance graph G(e) = (V(e), E(e)), in which each
vertex v 2 V(e) represents a state or operation, and each edge (v1, v2) represents that
v1 causes v2. It also indicates that the data provenance of v1 is a part of that of v2.

DCFS with Decentralization and Multi-participation 187

From the provenance graph, we can easily identify the problem’s origin and estimate
the scope of influence it had created to the entire system. It is helpful for forensic
investigations.

The entire system may face the problem of provenance explosion. To reduce the
amount and complexity of data provenance and relieve the burden of the system,
methods from [5, 6] are adopted. The data provenance entries, having little or no
impact on forensic analysis, will be recycled. Therefore, the size of the data provenance
graph is reduced, and the proofs can be easily generated.

Proof of Data Provenance. Proofs should be easy to use and hard to forge. Many
systems use Merkle trees [7] as their basic data structure for verification, such as
Bitcoin and P2P network. Mostly, it is a binary tree, but it can also be a multi-way tree.
The value of leaf nodes in the tree is the cell data in the dataset or its hash value. The
value of a nonleaf node is calculated by hashing all its child nodes’ values. Recursively,
the hash value of the tree root is generated, and the entire tree is completed. Merkle tree
stores the summary information about a large dataset to make the verification more
efficient. It is unnecessary to reveal or transmit the entire tree, and it natively enables a
user to validate the integrity of any subset of data.

The DCFS selects the Merkle tree as its data format for proofs. The steps from the
data provenance graph to the Merkle tree are shown in Fig. 3. First, a topological sort
of all nodes in the data provenance graph is generated. Because the topological sort of a
directed acyclic graph is not unique, this step uses timestamps as another parameter.
For nodes in the same topological layer, they are sorted again in ascending order by
their timestamps. Second, leaf nodes in the Merkle tree are filled with topologically
sorted nodes’ hash value, and the other part of the tree is calculated based on these leaf
nodes. Subsequently, the value at each branch node is calculated by concatenating the
values of its children and computing the hash of that aggregation. Finally, the value of
the root node is selected as the proof of the data provenance graph.

Fig. 3. Steps from data provenance graph to Merkle tree

188 X. Liu et al.

Proof Chain. The public ledger is a chain of proof entries, and each entry contains the
proof of data provenance graph and other essential information to ensure its
irreversibility.

To preserve the correct order of the entries in the ledger, an Entry Chain (EC) is
introduced. This Entry Chain is a hash chain. Entry Chain will be generated as follows:

EC ¼ \HashðProof;ECprevÞ[ð1Þ

where ECprev is the Entry Chain of the previous entry in the ledger, and Proof is the
proof information in this entry.

A Proof Entry consists of EC, proofs of data provenance, user id, domain id, and
timestamp:

Proof Entry ¼ \EC; Proof; UID; DID; Timestamp[ð2Þ

Consensus Process. The DCFS is set in an adversarial setting and any misbehavior
happened could be Byzantine. To reach a consensus on the public data provenance
ledger between DPAs, the DCFS realizes its consensus process based on the PBFT [8]
algorithm.

For efficiency and better management, the DPAs will be classified into different
domains. For example, the DPAs in the same host machine or having the same cloud
administrator will be categorized under the same domain. In each time interval, a
domain itself will select a leader DPA to lead affairs. This leader DPA will convey the
operation requests, guide the consensus process, and communicate with other domains.
When a user desires to perform an operation request, the processing procedure is as
follows: First, the DPA of this user receives the operation request and transports it to
the leader DPA. Then, the leader DPA will transport the operation request to the other
DPAs in its domain and the leader DPAs of the other domains. Next, all the DPAs will
handle this operation request and return the results to the DPA of the user. Finally, this
DPA handles the received results and return them to the user’s terminal.

The pseudocode description of the consensus algorithm is showed in the Appendix.

4 Security Analysis

The cloud has full control over generating the data provenance. The DCFS functions
based on an assumption that the process of generating the data provenance is trusted. It
focuses on helping the investigators and court authorities to verify the evidence using
the proofs included in the DCFS ledger. The participants reach a consensus on this
ledger, and trustful proofs are invariantly available. The DCFS guarantees that any
violation of ledger’s integrity will be prevented and evidence tampered with will finally
be detected during the verification process.

DCFS with Decentralization and Multi-participation 189

In the DCFS, three entities are involved: users, cloud employees, and investigators.
All of them can be malicious individually or can collude with each other. However, at
the verification stage, any misbehavior can be detected using the public provenance
ledger. Figure 4 illustrates the detailed flow of evidence verification. Based on the
evidence entries provided by a cloud employee, an investigator can calculate its proofs
and fetch the corresponding proofs from the public ledger in the DCFS. If the two
proofs are equal, the investigator may trust these evidence entries and present them to
the court. Otherwise, he can reject them and doubt the honesty of the cloud employee.
When the court receives the evidence, it first checks the ownership information from
the ledger to judge whether an innocent is framed. Then, it fetches the corresponding
proofs from the public ledger again to compare with the proofs of the received evi-
dence. If they are equal, the court will accept the evidence. Otherwise, the evidence will
be rejected, and the court doubts the honesty of the investigator.

Fig. 4. Process flow of evidence verification

190 X. Liu et al.

The DCFS is a distributed and decentralized cloud forensic system, and all par-
ticipants reach consensus on a distributed public ledger. Few malicious participants
have limited impact on the entire system unless they can control the majority of the
DPAs. We assume that any misbehavior happened in the DCFS can be Byzantine, and
we design our consensus process based on the PBFT algorithm. This algorithm
guarantees liveness and safety under the premise that provides a fault tolerance of
(n − 1)/3, where n is the total number of participants. This indicates that malicious
participants should not be more than one third of all participants for safety. With a
greater number of participants, the DCFS will become more secure and stable. In other
words, the DCFS will be more useful in a large-scale system.

A brief proof is as follows: Define n as the number of all nodes and f as the
number of faulty nodes. An assumption for asynchronous Byzantine agreement is that
correct nodes will send precisely one correct message to others in each phase while
the faulty nodes may send more than one message to confuse others. A minimum of
(n + f)/2 received messages are essential to reach an agreement on a message [9]. It is
invariantly possible for a node to accept n − f messages. Consider a correct node n in
phase p, where n has already sent a message to all the other nodes. As there exists a
minimum of n − f correct nodes, the n’s buffer will receive a minimum of n − k reply
messages. The n − k should outnumber (n + f)/2, i.e., n – f > (n + f)/2. Therefore,
f < n/3.

As only hash results and some necessary identification information are included in
the public ledger, the malicious individuals can barely recover any valuable informa-
tion from the ledger.

5 Implementation and Evaluation

We implemented our prototype system on three desktop computers with Intel(R) Core
(TM) i5-3330 3.00 GHz CPU, 8 GB main memory, and 256 KB L2 cache. Ubuntu
14.04 LTS 64-bit was used as Host Operating System, and Openstack was selected for
implementation and evaluation. Virtual environment was created with XEN, and each
desktop computer runs five VM instances so that there were 15 participants in total. We
used SHA-2 (SHA-256) hash function for hashing. A containerization runtime envi-
ronment for DPAs was established using Docker [10]. Using FROST [11], we obtained
API logs from Nova nodes as metadata for generating data provenance.

For easy deployment and management, the DPAs were deployed in Docker con-
tainers and were isolated. The gRPC [12] was used for establishing point-to-point
network connections between DPAs. Certainly, DPAs can be deployed anywhere as
long as there are network capabilities. For example, DPAs can also be embedded into
the VM instances of a user or even be located in a third party cloud platform.

DCFS with Decentralization and Multi-participation 191

The DCFS operates under a normal environment in our experiments. In order to
evaluate the impact on the performance of the DCFS, we compared the CPU load,
network latency, and storage consumption under the condition of running our forensic
system (Table 1).

The system delay was within an acceptable range compared with SNP [25] and
SecLaaS [26]. However, at the peak of system operation, the DCFS may have a
remarkable effect on the host system. To be practical in normal commercial environ-
ment, some optimizations are essential. We have left this for future research.

6 Conclusion and Future Work

Collecting forensic evidence from cloud is a challenging task because forensic
investigators have considerably little control over cloud systems. Currently, forensic
investigators still depend on cloud service providers to obtain forensic evidence. To the
best of our knowledge, there is no procedure to verify whether the cloud service
providers have provided the correct evidence to the investigators. Forensic investiga-
tors may also present invalid evidence to the court. In this paper, we proposed a
different cloud forensic system DCFS from another perspective. The DCFS considers
internal threats and provides the ability to securely obtain trustful data provenance for
forensic purpose. It can also solve some issues existed in traditional centralized forensic
systems. From our experiment, we observed that it is practically feasible to combine the
DCFS with the cloud infrastructure.

One limitation of the DCFS is that it still requires some trust in the cloud. In
particular, we have to trust that the generation of data provenance from the cloud is
correct. This can be relieved by using tamper-evident logging such as Peer Review
[35]. In future, we will investigate to make our system more efficient, practical, and
expansible so that it can be compatible with more cloud architectures and based on
DCFS, we will try to bring cooperative forensics and shared security into more dis-
tributed systems or IoT systems.

Table 1. Performance impact

Performance impact

CPU load Increasing 2.5% on average
Network latency Increasing 10% on average
Storage consumption 10 MB a day for each DPA

192 X. Liu et al.

Appendix

The algorithm of a consensus process on an operation request is as follows:

if leader DPA then

n=deployIdToOperation(received operation request)

sendStepOneMessageToAll leader ID, n, checksum, re-
quest

else if not leader DPA then

WaitForStepOneMessage()

end if

m1=receivedStepOneMessage

if m1.leaderID is right&&m1.checksum is right&&m1.n is
never used&& m1.n is within minimum and maximum then

AcceptStepOneMessage()

sendStepTwoMessageToOthers(leader ID, this DPA’s
own ID, n, checksum, request)

waitForStepTwoMeaasgeFromOthers()

else

doNothing()

end if

Message[] m2=all receivedStepTwoMessage

na2=numOfAcceptedStepTwoMessage

define F as the tolerable maximum of fault DPAs

for all m in m2 do

if m.leaderID is right&&m. DPA’s own ID is tight&&
m.checksum is right&&m.n is never used&&m.n is within
minimum and maximum&&m.StepOneMessage is accepted then

AcceptStepTwoMessage()

na2++

end if

end for

If na2>2F then

sendStepThreeMessageToOthers(leader ID, this DPA’s
own ID, n, checksum, request)

waitForStepThreeMeaasgeFromOthers()

else

DCFS with Decentralization and Multi-participation 193

References

1. Santos, N., Gummadi, K.P., Rodrigues, R.: Towards trusted cloud computing. HotCloud 9
(9), 3 (2009)

2. Pilkington, M.: Blockchain technology: principles and applications (2015)
3. Lamport, L., Shostak, R., Pease, M.: The Byzantine general problem. ACM Trans. Program.

Lang. Syst. (TOPLAS) 4(3), 382–401 (1982)
4. Moreau, L., Clifford, B., Freire, J., et al.: The open provenance model core specification

(v1.1). Future Gener. Comput. Syst. 27(6), 743–756 (2011)
5. Lee, K.H., Zhang, X., Xu, D.: High accuracy attack provenance via binary-based execution

partition. In: NDSS (2013)
6. Lee, K.H., Zhang, X., Xu, D.: LogGC: garbage collecting audit log. In: Proceedings of the

2013 ACM SIGSAC Conference on Computer and Communications Security, pp. 1005–
1016. ACM (2013)

7. Merkle, R.C.: A digital signature based on a conventional encryption function. In:
Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 369–378. Springer, Heidelberg
(1988). https://doi.org/10.1007/3-540-48184-2_32

8. Castro, M., Liskov, B.: Practical Byzantine fault tolerance. In: OSDI, vol. 99, pp. 173–186
(1999)

9. Bracha, G., Toueg, S.: Asynchronous consensus and broadcast protocols. J. ACM (JACM)
32(4), 824–840 (1985)

doNothing()

end if

Message[] m3=all receivedStepThreeMessage

Na3=numOfAcceptedStepThreeMessage

for all m in m3 do

if m.leaderID is right&&m. DPA’s own ID is tight&&
m.checksum is right&&m.n is never used&&m.n is within
minimum and maximum&&m.StepTwoMessage is accepted then

AcceptStepThreeMessage()

na3++

end if

end for

If na3>2F then

recordOperationRequestWithIDLocally(n)

else

doNothing()

end if

194 X. Liu et al.

http://dx.doi.org/10.1007/3-540-48184-2_32

10. Merkel, D.: Docker: lightweight linux containers for consistent development and deploy-
ment. Linux J. 2014(239), 2 (2014)

11. Dykstra, J., Sherman, A.T.: Design and implementation of FROST: digital forensic tools for
the OpenStack cloud computing platform. Digit. Invest. 10, S87–S95 (2013)

12. gRPC Homepage. http://www.grpc.io/
13. Muniswamy-Reddy, K.K., Holland, D.A., Braun, U., et al.: Provenance-aware storage

systems. In: USENIX Annual Technical Conference, General Track, pp. 43–56 (2006)
14. Macko, P., Chiarini, M., Seltzer, M., et al.: Collecting provenance via the Xen Hypervisor.

In: TaPP (2011)
15. Gehani, A., Tariq, D.: SPADE: support for provenance auditing in distributed environments.

In: Narasimhan, P., Triantafillou, P. (eds.) Middleware 2012. LNCS, vol. 7662, pp. 101–120.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35170-9_6

16. Sar, C., Cao, P.: Lineage file system, pp. 411–414 (2005). http://crypto.stanford.edu/cao/
lineage.html

17. Pohly, D.J., McLaughlin, S., McDaniel, P., et al.: Hi-Fi: collecting high-fidelity
whole-system provenance. In: Proceedings of the 28th Annual Computer Security
Applications Conference, pp. 259–268. ACM (2012)

18. Bates, A.M., Tian, D., Butler, K.R.B., et al.: Trustworthy whole-system provenance for the
Linux Kernel. In: Usenix Security, pp. 319–334 (2015)

19. Muniswamy-Reddy, K.K., Braun, U., Holland, D.A., et al.: Layering in provenance systems.
In: USENIX Annual Technical Conference (2009)

20. Macko, P., Seltzer, M.A.: General-purpose provenance library. In: TaPP (2012)
21. Carata, L., Sohan, R., Rice, A., et al.: IPAPI: designing an improved provenance API.

Presented as Part of the 5th USENIX Workshop on the Theory and Practice of Provenance
(2013)

22. Akoush, S., Sohan, R., Hopper, A.: HadoopProv: towards provenance as a first class citizen
in MapReduce. In: TaPP (2013)

23. Dietz, M., Shekhar, S., Pisetsky, Y., et al.: QUIRE: lightweight provenance for smart phone
operating systems. In: USENIX Security Symposium, vol. 31 (2011)

24. Backes, M., Bugiel, S., Gerling, S., Scippa: system-centric IPC provenance on Android. In:
Proceedings of the 30th Annual Computer Security Applications Conference, pp. 36–45.
ACM (2014)

25. Zhou, W., Fei, Q., Narayan, A., et al.: Secure network provenance. In: Proceedings of the
Twenty-Third ACM Symposium on Operating Systems Principles, pp. 295–310. ACM
(2011)

26. Zawoad, S., Dutta, A.K., Hasan, R.: SecLaaS: secure logging-as-a-service for cloud
forensics. In: Proceedings of the 8th ACM SIGSAC Symposium on Information, Computer
and Communications Security, pp. 219–230. ACM (2013)

27. Li, J., Chen, X., Huang, Q., et al.: Digital provenance: enabling secure data forensics in
cloud computing. Future Gener. Comput. Syst. 37, 259–266 (2014)

28. Lu, R., Lin, X., Liang, X., et al.: Secure provenance: the essential of bread and butter of data
forensics in cloud computing. In: Proceedings of the 5th ACM Symposium on Information,
Computer and Communications Security, pp. 282–292. ACM (2010)

29. Cheng, Y., Fu, X., Du, X., Luo, B., Guizani, M.: A lightweight live memory forensic
approach based on hardware virtualization. Inf. Sci. 379, 23–41 (2017)

30. Fu, X., Du, X., Luo, B.: Data correlation-based analysis method for automatic memory
forensics. Secur. Commun. Netw. 8(18), 4213–4226 (2015)

31. Wu, L., Du, X.: MobiFish: a lightweight anti-phishing scheme for mobile phones. In:
Proceedings of the 23rd International Conference on Computer Communications and
Networks (ICCCN), Shanghai, China, August 2014

DCFS with Decentralization and Multi-participation 195

http://www.grpc.io/
http://dx.doi.org/10.1007/978-3-642-35170-9_6
http://crypto.stanford.edu/cao/lineage.html
http://crypto.stanford.edu/cao/lineage.html

32. Wu, L., Du, X., Fu, X.: Security threats to mobile multimedia applications: camera-based
attacks on mobile phones. IEEE Commun. Mag. 52(3), 80–87 (2014)

33. Du, X., Xiao, Y., Guizani, M., Chen, H.H.: An effective key management scheme for
heterogeneous sensor networks. Ad Hoc Netw. 5(1), 24–34 (2007)

34. Du, X., Guizani, M., Xiao, Y., Chen, H.H.: A routing-driven elliptic curve cryptography
based key management scheme for heterogeneous sensor networks. IEEE Trans. Wirel.
Commun. 8(3), 1223–1229 (2009)

35. Haeberlen, A., Kouznetsov, P., Druschel, P.: PeerReview: practical accountability for
distributed systems. ACM SIGOPS Oper. Syst. Rev. 41(6), 175–188 (2007)

196 X. Liu et al.

	Distributed Cloud Forensic System with Decentralization and Multi-participation
	Abstract
	1 Introduction
	2 Related Work
	3 System Design
	3.1 System Structure
	3.2 DCFS Peer Agent
	3.3 Public Data Provenance Ledger

	4 Security Analysis
	5 Implementation and Evaluation
	6 Conclusion and Future Work
	Appendix
	References

