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Abstract. Internet of Things (IoT) is becoming a strong force driv-
ing the evolution of mobile communications. Wireless sensor networks
(WSN) are important parts of IoT. Link reliability and power consump-
tion are two critical design constraints in WSN designs. Error control
coding (ECC) is a classic approach to increase link reliability and thus
to lower the required transmitting power, however typically at the cost of
an increased decoding complexity and power. The idea of this paper is to
assess the potentials of applying polar codes to WSNs. For comparison,
the well developed Turbo and LDPC codes are studied in terms of the
error performance and the power consumption. The results in this paper
show that when the ratio of the transmitting power over the decoding
power is smaller than 2.5, applying polar codes is favorable in terms of
the power consumption compared with Turbo and LDPC codes at the
same BER performance. When this ratio is larger than 2.5, polar codes
are almost the same as Turbo and LDPC codes in terms of the energy
consumption.
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1 Introduction

Four typical technical scenarios of 5G are derived from the main application sce-
narios, service requirements, and key challenges of mobile internet and Internet
of Things (IoT) [1]. Wireless sensor networks (WSNs) are important parts of
IoT. The most significant challenge in sensor networks is to overcome the energy
constraints since sensor nodes typically have limited power.

In WSNs, to increase the link reliability, Automatic Repeat reQuest (ARQ)
can be deployed when errors occur. However, energy is wasted due to the retrans-
mission in the network. A particularly undesirable situation occurs when the
channel condition is bad, causing successive retransmissions. Forward error cor-
rection (FEC) [2] is an effective way to reduce the frame error rate and conse-
quently reduce the number of retransmissions.
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Block codes and convolutional codes with Viterbi decoding are applied to
WSNs in [3–8]. Iterative decoding algorithm justifies the ability of Turbo codes in
solving the hot-spot problem and prolong the network lifetime [6]. Previous work
using error control coding (ECC) in wireless sensor networks focused primarily on
codes such as Reed-Solomon and convolutional codes. A hybrid scheme choosing
the energy-efficient combination of ECC and ARQ is considered in [7]. Convolu-
tional codes with different rates and constraint lengths are studied in [8] for wire-
less microsensor networks. Other system-level techniques such as modulation and
MAC protocols are also considered to reduce the energy consumption in [8].

The aforementioned coding scheme indeed can increase link reliability and
lower the required transmitting power. However, extra power consumption of
decoders can not be neglected especially with sparse capacity-approaching codes
[6,9]. It’s shown in [9] that the transmitted power for short distances is only a few
tens of the decoding power. Therefore, a coding scheme which can increase the link
reliability but also consumes an acceptable level of decoding power is desired.

The discovery of channel polarization and polar codes by Arıkan [10] is
universally recognized as a major breakthrough in coding theory. Polar codes
provably achieve the capacity of binary-input discrete memoryless symmetric
(B-DMS) channels, with a low encoding and decoding complexity. Moreover,
polar codes have an explicit construction (there is no random ensemble to choose
from) and a beautiful recursive structure that makes them inherently suitable for
efficient implementation in hardware [11]. Therefore, in this paper, polar codes
are studied when applied in WSNs. The focus of this paper is to qualify the
ability of polar codes in increasing the link reliability while maintaining a low
decoding power consumption. In this respect, two other codes are studied along
with polar codes for comparison: Turbo codes [12] and LDPC codes [13,14]. As
mentioned in [9], the decoding power is dominating the processing power at the
chip. A fair comparison is carried out in this paper by forcing the three cod-
ing schemes having the same bit-error-rate (BER) performance, which results
in different transmitting power requirements for Tubo, LDPC, and polar codes.
The decoding power of these codes are multiples of the transmitting power [9]
depending on the distance of communications and the specific system parame-
ters: center frequency, bandwidth, and throughput. From simulations of a simple
WSN network with 100 nodes, the life time of the WSN network is found to be
the longest when applying polar codes and the ratio of the transmitting power
over the decoding power is smaller than 2.5.

The rest of the paper is organized as follows. Section 2 introduces the basics
of polar codes. Section 3 discusses the energy model used in this paper. Section 4
provides the BER performance and power consumption of several error correc-
tion codes. Finally the conclusion remarks are provided at the end.

2 Polar Codes Basics

In this section, the relevant theories of non-systematic polar codes and systematic
polar codes are presented based on [10,15].
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2.1 Non-systematic Polar Codes

Polar codes presented in [10] are in the non-systematic form. The generator
matrix is GN = BF⊗n where B is a bit-reversal matrix, F =

(
1 0
1 1

)
, n = log2 N ,

and F⊗n is the nth Kronecker power of the matrix F over the binary field F2.
Throughout the paper, we use uN

1 to refer to a row vector with N elements:
vN
1 = (v1, v2, . . . , vN ). Let A denote a set. Then uA is a subvector of uN

1 with
elements specified by A. With these notations, the encoding of polar codes is:
xN
1 = uN

1 GN . Here the source vector is uN
1 which consists of the information

bits and the frozen bits, denoted by uA and uĀ, respectively. The frozen bits are
known to the receiver. The encoded bits in xN

1 are transmitted in N indepen-
dent underlying channels. Let the underlying channel be W with a transition
probability W (x|y) where x ∈ X = {0, 1} and y ∈ Y. The set X and Y contains
the input and output alphabets, respectively. Note that W is a binary-input
memoryless symmetric channel (B-MSC).

Transmitting the codeword xN
1 from N independent copies of W produces a

vector channel:

WN (yN
1 |uN

1 ) = WN (yN
1 |xN

1 ) = WN (yN
1 |uN

1 GN ) (1)

This vector channel is split into N bit channels given by:

W
(i)
N (yN

1 , ui−1
1 |ui) =

∑

uN
i+1∈XN−i

1
2N−1

WN (yN
1 |uN

1 ) (2)

Polarization happens that when N is large enough, these bit channels either are
noiseless, or completely noisy [10]. And the portion of the perfect bit channels
is equal to the symmetric capacity of the underlying channel W .

To conclude this subsection, a note is necessary on the selection of the good
bit channels in the set A. Algorithms such as [16] can be used to sort the bit
channels and the best of K bit channels can be selected when K = NR (R being
the code rate). Both set A and its complementary set Ā are in {1, 2, . . . , N} for
polar codes with a block length N = 2n.

2.2 Construction of Systematic Polar Codes

For systematic polar codes, we also focus on a generator matrix without the
permutation matrix B, namely G = F⊗n.

The source bits u can be split as u = (uA, uĀ). The first part uA consists of
user data that are free to change in each round of transmission, while the second
part uĀ consists of data that are frozen at the beginning of each session and
made known to the decoder. The codeword can then be expressed as

x = uAGA + uĀGĀ (3)
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where GA is the sub-matrix of G with rows specified by the set A. The sys-
tematic polar code is constructed by specifying a set of indices of the codeword
x as the indices to convey the information bits. Denote this set as B and the
complementary set as B̄. The codeword x is thus split as (xB, xB̄). With some
manipulations, we have

{
xB = uAGAB + uĀGĀB
xB̄ = uAGAB̄ + uĀGĀB̄

(4)

The matrix GAB is a sub-matrix of the generator matrix with elements
{Gi,j}i∈A,j∈B. Given a non-systematic encoder (A, uĀ), there is a systematic
encoder (B, uĀ) which performs the mapping xB �→ x = (xB, xB̄). To realize this
systematic mapping, xB̄ needs to be computed for any given information bits
xB. To this end, we see from (4) that xB̄ can be computed if uA is known. The
vector uA can be obtained as the following

uA = (xB − uĀGĀB)(GAB)−1 (5)

From (5), it’s seen that xB �→ uA is one-to-one if xB has the same elements
as uA and if GAB is invertible. In [15], it’s shown that B = A satisfies all these
conditions in order to establish the one-to-one mapping xB �→ uA. In the rest of
the paper, the systematic encoding of polar codes adopts this selection of B to
be B = A. Therefore we can rewrite (4) as

{
xA = uAGAA + uĀGĀA
xĀ = uAGAĀ + uĀGĀĀ

(6)

3 Energy Model

In this section, the average energy consumption of Turbo codes, LDPC codes,
and polar codes are analyzed. As in [9], the energy is largely divided as the trans-
mitting power and the decoding power. Traditionally, the transmitting power
dominates the link budget as communications normally travel a long distance.
As the distance of communications became short and the capacity-approaching
error correction codes developed, the decoding power started to dominate the
processing power.

Figure 1 is a reproduction of the two cases considered in [9] where the dashed
line is the decoding power of a real implementation of a LDPC decoder [17]:
144 mW. From Fig. 1 it can be seen that the transmitting power is small than the
decoding power for distances within 10 m. This motivates us to investigate a gen-
eral energy consumption model which is not related to any specific implementa-
tion. Instead, the ratio of the transmitting and decoding power is α = Etx/Edec.
We study the effect of the ratio α to the overall energy consumption in a WSN
setting.
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Fig. 1. Required power from Shannon prediction of two cases. Case 1 at 2.5 GHz:
bandwidth is 80 MHz and the throughput is 26 MHz. Case 2 at 60 GHz: bandwidth is
3 GHz and the throughput is 1.5 GHz. The real decoding power is from [17].

3.1 General Energy Model

Suppose there are Ntotal total of nodes in a WSN, labeled from 1 to Ntotal.
Since this work does not deal with routing or any other optimization related
to WSNs, we assume a simple protocol: nodes 1 to Ntotal transmitting and
receiving (decoding) one by one in the natural order. Each complete transmission
from node 1 to node Ntotal is called one round of transmission. With such a
simplification, we can evaluate how many times of runs such a network can
perform and how many nodes are still alive in each run. Here we assume a
complete non-heterogenous network, meaning that the nodes can have different
energy levels.

Denote Ei
total as the total energy of node i. Suppose each time a node trans-

mits, it transmits one second. In other words, the energy consumed by transmit-
ting is Etx. We also assume that the decoder continuously works for one second
when a node performs decoding. Therefore, the total energy Ei

total in a node will
be completely consumed after Ni times of transmitting and decoding with

Ei
total = Ni(Etx + Edec) (7)

With α = Etx/Edec, Ei
total can be written as

Ei
total = Ni(1 + α)Edec (8)

3.2 Transmitting and Decoding Energy of Three Codes

In this section, based on (7) and (8), the energy consumption of three codes are
analyzed and compared: LDPC codes [13,14], Turbo codes [12], and polar codes
[10]. For a fair comparison, both Etx and Edec need to be adjusted in (7) and (8).
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To achieve the same bit error rate Pb, the required signal-to-noise ratio (SNR)
per bit (Eb/N0) for different codes are different. For comparison, let (Eb/N0)ldpc
be the required SNR per bit for LDPC codes. Then, the required SNR per bit
for polar codes and Turbo codes can be expressed as:

(Eb/N0)turbo = αt(Eb/N0)ldpc (9)
(Eb/N0)polar = αp(Eb/N0)ldpc (10)

Since there is no closed form expression for all three codes, the ratio αt and
αp can only be obtained from numerical simulations for any given Pb. Once the
ratio αt and αp are obtained, the transmitting power of polar and Turbo codes
can be obtained relative to the LDPC code.

With the same block length and code rate, the decoding power of the three
codes are analyzed based on the number of iterations in the decoding process.
Other factors such as the decoder structure, the parallelism, and the log likeli-
hood ratio (LLR) calculations are not considered. Suppose the number of itera-
tions of the LDPC code is Il. In the same way, the number of iterations of polar
and Turbo codes is Ip and It, respectively. Let βp = Ip/Il and βt = It/Il. Then
the decoding power of the three codes can be expressed as:

(Edec)turbo = βt(Edec)ldpc (11)
(Edec)polar = βp(Edec)ldpc (12)

With (9)–(12), the total energy in (7) for node i can be expressed as:

(Ei
total)turbo = Ni(ααt + βt)(Edec)ldpc (13)

(Ei
total)polar = Ni(ααp + βp)(Edec)ldpc (14)

where the subscript ‘turbo’ means node i employing Turbo encoding and decod-
ing and ‘polar’ means polar codes are employed for node i. Note that the WSN
considered only employs one code type: either a Turbo code is employed for all
nodes, or a LDPC code, or a polar code. Therefore, the energy consumption in
(13) and (14) is the energy model for all nodes in a WSN.

4 Simulation Results

In this section, simulation results are provided to verify the performance of
different ECC in WSNs. The LDPC code used in this section is constructed by
the Construction 1A in [14]. The LDPC code has a block length 512 and code
rate 1/2. The two generators for the rate 1/2 recursive systematic convolutional
(RSC) code is: G1 = 13 and G2 = 15. The number of iterations in the decoding
of this Turbo code is set to be It = 10. The average number of iterations in the
decoding of the LDPC code is recorded in the simulation as Il = 5. As for the
polar code (block length 512 and code rate 1/2), since successive cancellation
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(SC) [10] decoding is applied, the number of iterations in the decoding is Ip = 1.
Therefore, the decoding power ratio is:

βp = Ip/Il = 1/5 (15)
βt = It/Il = 10/5 = 2 (16)

Note that with the previous settings of the three codes, LDPC, Turbo, and polar
codes have the same code rate. This is the basis for a fair comparison among
these codes in terms of the error performance and the energy consumption.

To obtain the relative transmitting power in achieving a given BER Pb, the
BER performance of these codes is simulated. Figure 2 displays the BER per-
formance in an additive white Gaussian noise (AWGN) channel. Note that in
Fig. 2, the BER performance of the schemes in three short distance communica-
tion protocols are also provided. The (15, 10) shortened Hamming code is used
in the BlueTooth protocol. The coding scheme of 802.11g is the convolutional
code with a code rate 1/2 and a constraint length 7. Uncoded BPSK is used in
the ZigBee protocol.

It can be seen from Fig. 2 that the BER performance of the coding schemes
in BlueTooth and the 802.11g is worse than the coding schemes of (512, 256)
polar and LDPC codes. The rate 1/2 Turbo codes has the best BER performance
among the codes considered. Now let us set a target Pb = 10−3. Then compared
with the LDPC code, Turbo code needs around 0.9 dB less and polar code needs
around 0.5 dB more Eb/N0 to achieve this Pb. Therefore, the transmitting power
adjustments are the following:

αp = (Eb/N0)polar/(Eb/N0)ldpc = 1.122 (17)
αt = (Eb/N0)turbo/(Eb/N0)ldpc = 0.813 (18)

Fig. 2. The comparison of the BER performance of various codes in the AWGN chan-
nel. There is no coding in ZigBee. The code in BlueTooth is the shortened (15, 10)
Hamming code. In 802.11g, the rate 1/2 convolutional code with a constraint length 7
is used. The rate 1/2 RSC Turbo code has two generators: G1 = 13 and G2 = 15.
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With the transmitting power and the decoding power adjustments in (15)–
(18), the only parameter in (13) and (14) is α, which is the ratio of the trans-
mitting power relative to the decoding power. In the following simulations, this
parameter α is set to different values to compare the energy consumption of the
three coding schemes: polar code, LDPC code, and Turbo code described at the
beginning of this section.

First of all, assume there are Ntotal = 100 nodes in the network. As discussed
in Sect. 3.1, the nodes can have different energy levels. The total energy in node
i is modelled as

Ei
total = 1 + ei (Joules) (19)

where ei is a random variable with uniform distribution. The random variables
{ei}Ntotal

i=1 are independent. The transmission strategy described in Sect. 3.1 is
used in the simulation: each node transmitting and receiving (decoding) one by
one and each transmitting and decoding operation takes one second. Assume
the decoding power for the LDPC code is (Edec)ldpc = 10−3 Watts. With the
initial total energy distribution in this network, in the following operations in
each second, all nodes in the network perform transmitting and decoding. As in
Sect. 3.1, a complete transmission from node 1 to node Ntotal = 100 is one round
of transmission. When the total energy Ei

total of node i is completely consumed
from these transmitting and decoding operations, then this node dies. In each
round, the total number of alive nodes are recorded for each decoding scheme.

Fig. 3. Energy consumption comparison of three codes: polar code (512, 256), Turbo
code, and LDPC code (512, 256). The Turbo code is rate 1/2 RSC code with G1 = 13
and G2 = 15. The LDPC code is constructed from Construction 1A from [14].

Figure 3 shows the energy consumption comparison of the three codes. The
x-axis is the indices of the number of runs. The y-axis is the number of alive
nodes in each run. For each code type, there are five curves: the solid lines
are the alive nodes for the LDPC code, the dashed lines for the Turbo code,
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and the dotted lines for the polar code. For each code type, the line with circles
corresponds to α = 0.01, meaning the transmitted power is only one hundredth
of the decoding power. The other markers corresponds to the following: the line
with triangles is for α = 0.1, the line with squares is for α = 0.5, the line with
asterisks is for α = 2.5, and the line with diamonds is for α = 10.

For ease of description, a network is said to have a better energy efficiency if
it has the most number of living nodes when operating with the same conditions
compared with another network. From Fig. 3, it can be seen that the network
employing polar code with α = 0.01 and α = 0.1 is very energy efficient: At runs
3000, all 100 nodes are still alive. However, all nodes are dead before run 2000 in
this network employing LDPC (the solid line with circles) and Turbo codes (the
dashed line with circles). At α = 0.5, the network employing polar code displays
a slightly better energy efficiency as that employing LDPC codes with α = 0.01
α = 0.1, which indicates that the network employing polar code can support a
larger communication distance compared with that employing the LDPC code
when the other parameters of the network are the same. This energy efficiency
of polar code is even more pronounced when compared with the Turbo code:
at α = 0.5, the network life time with polar code is 1500 runs longer than the
network employing Turbo codes.

However, when the transmitting power starts to dominate the energy con-
sumption, all three codes converge in terms of the network lifetime. This can be
seen from the three lines with asterisks (corresponding to the case of α = 2.5) in
Fig. 3. In this case, the transmitting power is 2.5 times larger than the decoding
power. The networks employing polar, LDPC, and Turbo codes have almost the
same energy efficiency at α = 2.5. The same is true when α = 10.

5 Conclusion

The use of forward error correcting codes can allow a system to operate at sig-
nificantly lower SNR than an uncoded system for a given BER. But the choice of
ECC is very important for a wireless sensor network. In this paper, we investigate
the usage of polar codes applied in a WSN in a noisy environment. The main
metric is the energy consumption when comparing polar codes with the existing
capacity-achieving Turbo and LDPC codes. When the ratio of the transmitting
power over the decoding power is below a threshold (in this paper, smaller than
2.5), polar codes are shown to be much energy efficient in prolonging the net-
work lifetime compared with Turbo and LDPC codes. This shows that at low
communication distances, polar codes are a very energy-efficient error correction
code to be applied in WSNs.
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