
Anonymizing k-NN Classification
on MapReduce

Sibghat Ullah Bazai(&) , Julian Jang-Jaccard , and Ruili Wang

Institute of Natural and Mathematical Sciences, Massey University,
Auckland, New Zealand

{s.bazai,j.jang-jaccard,r.wang}@massey.ac.nz

Abstract. Data analytics scenario such as a classification algorithm plays an
important role in data mining to identify a category of a new observation and is
often used to drive new knowledge. However, classification algorithm on a big
data analytics platform such as MapReduce and Spark, often runs on plain text
without an appropriate privacy protection mechanism. This leaves user’s data to
be vulnerable from unauthorized access and puts the data at a great privacy risk.
To address such concern, we propose a new novel k-NN classifier which can run
on an anonymized dataset on MapReduce platform. We describe new Map and
Reduce algorithms to produce different anonymized datasets for k-NN classifier.
We also illustrate the details of experiments we performed on the multiple
anonymized data sets to understand the effects between the level of privacy
protection (data privacy) and the high-value insights (data utility) trade-off
before and after data anonymization.

Keywords: MapReduce � Data anonymization � K-anonymity
k-NN classification

1 Introduction

In recent years, we witness big data containing a huge amount of personal data such as
seen in the data acquired by government administrations, health insurances, social
networking sites and IoT devices, to name a few. This exponential growth of big data
has demanded a requirement for a system which can provide powerful computation and
other related technologies. A big data processing framework using distributed envi-
ronment, such as MapReduce and Spark, has been widely used to handle such com-
putation to find insights such as correlation between large datasets using Machine
Learning algorithms.

In Machine Learning, classification algorithms play an important role in data
mining to identify a category of a new observation of data into a set of predefined
classes or groups. The k-Nearest Neighbour (k-NN) [1] is one of such classification
methods. In recent years, we witness the adoption of k-NN algorithm in distributed
environments to overcome the computational intensity of having to compare distances
of every single training data point.

However, processing k-NN in MapReduce raises a number of security issues. In
MapReduce, Mappers transform the original input key/value pairs into intermediate

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2018
J. Hu et al. (Eds.): MONAMI 2017, LNICST 235, pp. 364–377, 2018.
https://doi.org/10.1007/978-3-319-90775-8_29

http://orcid.org/0000-0003-3042-5977
http://orcid.org/0000-0002-1002-057X
http://orcid.org/0000-0003-2899-9816
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-90775-8_29&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-90775-8_29&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-90775-8_29&domain=pdf

key/value pairs after some calculation while reducers aggregate the intermediate values,
compute and write them to an output file. These operations at different stage of
MapReduce operations are done on plain text which is vulnerable from unauthorized
access that puts users’ data at a privacy risk. The unauthorized privacy attack can either
directly leak sensitive information or indirectly leak information via composite attacks
where the adversary can link users’ data, illegally obtained at various stage of
MapReduce, with public information available via different sources such as Facebook
or Twitter.

Providing privacy guarantee during computations of sensitive data can be achieved
using privacy preserving techniques such as K-anonymity [2]. K-anonymity uses
generalization to hide individual features (also called attribute) or records (also called
as tuples) within a crowd or suppression to remove highly sensitive records. The size of
crowd is typically determined by a privacy parameter K group size. The use of
K-anonymity in MapReduce platform to provide a certain level of privacy are found in
[3–5]. However, these existing studies do not illustrate how to process a privacy
preserving technique such as K-anonymity to be applied in different data analytics
scenarios such as classification.

Extending from our earlier study where we illustrated how to apply a K-anonymity
in aggregation scenario [4], this time we illustrate how one can apply a K-anonymity in
a classification scenario that utilizes k-NN algorithm. We propose a k-NN classifier
which can run on an anonymized data in the MapReduce platform. To the best of our
knowledge, our proposed algorithm in this paper is the first attempt to address the
classification implementation on anonymized data in the MapReduce platform. Our
main contributions are;

• We illustrate the details of the k-NN classifier algorithms that can run on an
anonymized dataset.

• We demonstrate that it is possible to generate different sets of anonymized data
using varying degree of privacy parameters (i.e., K group size) either applied in the
different number of features or the different number of records in the K-anonymity
algorithm.

• We illustrate that different classification results can be obtained based on the dif-
ferent sets of anonymized data sets.

• We provide the impact in the trade-off between the level of privacy protection (data
privacy) and the high-value insights (data utility) on classification before and after
different anonymized data.

The rest of the paper is organized as follows. In Sect. 2, we provide the necessary
background knowledge needed for the paper. In Sect. 3, we describe the related work.
In Sect. 4, we describe the details of data anonymization strategies we use and explain
the algorithms needed for Map and Reducer operations. In Sect. 5, the experiments and
results are discussed. Finally, we conclude our work and discuss the future work
planned ahead of us in Sect. 6.

Anonymizing k-NN Classification on MapReduce 365

2 Background

2.1 k-Nearest Neighbour

The k-nearest neighbour method (k-NN) is one of the most widely used classification
algorithm in machine learning. Cover and Hart in 1967 formally introduced the original
idea of k-NN and its properties [1]. k-NN works directly on the actual instances of the
training data as it does not require building a model to represent the underlying
statistics and distributions of the original training data [1]. k-NN is based on learning by
analogy, that is, by comparing a given test record with training record sets.

Euclidean Distance EDð Þ is often used to measure the distance of two records
where the distance indicates the degree of difference (i.e., if ED is small the two records
are likely to be similar while two records are different if ED is big). The distance
measure based on ED is defined as (1):

D X; Yð Þ ¼ X � Yj jj j ¼
Xp

i¼1
X ið Þ � Y ið Þð Þ2 ð1Þ

where X ið Þ, Y ið Þ are the ith dimension attribute values of vector X; Y respectively. In
k-NN classification, an output can be seen as a class membership as an object is
classified by a majority vote of its neighbours. Thus, a class is typically assigned to the
object based on the most common classes observed among its neighbours.

There are many different ways to implement k-NN algorithms including where the
classification should be performed (e.g., [6] proposed the centralized paradigm where
the k-NN join is performed on a single centralized server) and looking into improving
performance overheads (e.g. Parallelization of k-NN algorithm [7]). Especially, many
existing approaches have been criticized as the computation costs sharply rise when the
number of dimensions and the sizes of training sets become large. The use of
MapReduce as a processing platform has been regarded as a practical solution to
resolve such criticism. The MapReduce framework takes the input data, depending on
the size, it automatically splits the input data into smaller manageable chunks. Each
smaller chunk is processed by a map task (also often called a mapper interchangeably).
The result of a mapper is summarized as key and value pairs. The output (e.g., values)
with the same keys are shuffled and reduced by a reducer function.

2.2 K-Anonymity

K-anonymity is one of the first data anonymization techniques with formal mathe-
matical support as a proof. Sweeney [2] introduced K-anonymity in 2002 by stating
that without ensuring K individuals in aggregation single aggregate statistic should not
be published. This definition helps every user being able to hide in K-1 crowd [9]. In
his definition, Quasi-Identifiers (QID) are attributes in a dataset which may be linked to
a publicly available dataset. The main goal to achieve K-anonymity is to replace QID
values with more general values so that QIDs cannot be linked to an individual.

K-anonymity is typically achieved by using two techniques called generalization
and suppression with the aim to decrease QIDs (i.e., there is less obvious identifier to
link individual data). Using generalization, more granular values are combined

366 S. U. Bazai et al.

together to create a broader category. This can be achieved both for numerical variables
(e.g., generalization the monthly salary of $56,600, $52,300, and $73,320 to a single
value “above $50,000”) and for categorical variables (e.g., generalizing the separate
degrees of “bachelor”, “masters”, and “PhD” into a single “higher degree”). Gener-
alization replaces the original record attributes with less exact but constant values.
QIDs becomes generalized to a certain point where a few conclusions can be drawn
about their relationship with other records. However, the core art of this technique is to
understand as what is the optimal level of generalization for a given data because
repeated generalization could decrease the quality of the entire data set. Suppression
technique involves the removal of records that violates anonymity standards from the
data set entirely rather than chaining the value of the records. Also, it is necessary to
take a considerable caution because suppression can skew the integrity of a dataset
when values are eliminated disproportionately to the original distribution of the data.
Most often, suppression is used in conjunction with the generalization to improve the
anonymization efficiency. For example, the records that were not within the boundary
of K-anonymity after generalization can be automatically suppressed.

3 Related Work

Performing k-NN to provide performance gain has been extensively studied in the
literature [7]. Nevertheless, this work only focuses on the centralized and single-thread
approach that is not applicable in many modern day applications which requires a large
input data for computation. In [8], the authors reported the nearest neighbour classi-
fication with generalization applied in a large dataset. The main purpose of general-
izing exemplars, which merges data into hyper-rectangles, is to improve speed and
accuracy but they do not mention how to handle anonymized data. The study in [9]
reported a privacy preserving classification techniques. However, the techniques they
use focus on neural network as an underlying algorithm then use homomorphic
encryption as a data anonymization technique. The direction they took is quite
orthogonal to our work. In [10], the authors propose a new nearest neighbour approach
using correlation analysis under a MapReduce framework on a Hadoop platform to
address the difficult problem of real-time prediction with very large training data sets.
However, using their approach, the performance of an algorithm can be seriously
affected if the size of the training samples becomes extremely large. For many modern
day uses of k-NN, the computational and the storage issues has become a critical
problem [11]. This is because the new applications of k-NN requires a rather large
storage device to contain the whole training set as well as a large computation support
in the classification stage.

Airavat [12] proposed a framework for MapReduce by defining mandatory access
control (MAC) with differential privacy (DP) on a secure operating system SELinux.
Airavat however describes a data anonymization via DP only with a very strict sen-
sitivity pre-defined value which is only applicable to a specific case of applications
where the distribution of the input data and types of operations performed on that data
is pre-defined.

Anonymizing k-NN Classification on MapReduce 367

4 Data Anonymization

In this section, we discuss the details of K-anonymity on k-NN classifier for
MapReduce operations. Our implementation is done based on the privacy-preserving
platform we proposed previously [4]. The privacy preserving mechanism receives the
user input data and defines a privacy protection mechanism, in our case K-anonymity.
In the algorithm implementation layer, we choose k-NN as a classifier, transforms the
original data into an anonymized equivalent still retaining the content value so that
further analytics can be performed on the anonymized data. We measure the classifi-
cation error on the privacy and utility measurement layer to understand the privacy and
utility trade-off between the original data and the anonymized data.

4.1 Dataset and Pre-processing

We use the Adult dataset [13] to demonstrate our study. The dataset consists of per-
sonal information records extracted from the US census database. We use the dataset
for a classification prediction as whether a given person has a potential to earn an
annual income over or under $50,000. The original Adult data set has six continuous
and eight categorical features as seen in Table 1.

The k-NN algorithm often processes both categorical features and continuous
features [1]. To overcome the difficulty of having to process the string data often found
in categorical features, many implementations of k-NN often require the conversion of
the categorical features to discrete numerical features. We adopt the conversion from
the work of [14], which utilizes unique numerical labels to convert each categorical
value into its numerical counterparts. Using this technique, we transform eight cate-
gorical features (workclass, edu, marital-status, occupation, relationship, race, sex,
native-country) into numerical features. For example, instead of using a country name
such as Cambodia, Canada, China a numeric value is used such as 1 to represent the
country Cambodia, 2 to as Canada so on. Table 2 represents the Adult dataset after the
conversation of the categorical values.

Table 1. Original adult dataset

Age Workclass** Fnlwgt Edu Edu-
num

Marital-
status Occupation Relationship Race Sex Capital-

gain
Capital-
loss

Hours-
per-
week

Native-
country Income

66* Private 142624 Assoc-
acdm 12 Married-

civ-spouse
Machine-
op-inspct Husband White Male 5556 0 40 Yugoslavia >50K

55 Private 160631 HS-grad 9 Married-
civ-spouse

Machine-
op-inspct Husband White Male 4508 0 8 Yugoslavia <=50K

53 Private 153064 5th-6th 3 Married-
civ-spouse

Exec-
managerial Husband White Male 7688 0 10 Yugoslavia >50K

51 Private 179479 HS-grad 9 Widowed Exec-
managerial

Not-in-
family White Female 3325 0 40 Yugoslavia <=50K

51 Federal-
gov 223206 Doctorate 16 Married-

civ-spouse
Prof-

specialty Husband
Asian-
Pac-

Islander
Male 15024 0 40 Vietnam >50K

*a light gray represents an example of a tuple
** a dark gray shade represents an example of a feature

368 S. U. Bazai et al.

4.2 k-NN Implementation on MapReduce

This section defines the k-NN algorithm we implemented in MapReduce operations.
Our implementation strategies were inspired by the work on [15]. We use the following
k-NN algorithm to get classification errors before data was anonymized. The general
processing of data for MapReduce operations follows.

• Reading data: Consider a training dataset TRs and a test dataset TSs, they are formed
by a number of records m-th (in TRs) and t-th (in TSsÞ respectively. Each training
sample STr (line) is read and split as a tuple (Tp1, Tp2, …, TpD, where, TpE
represent E-th feature in p-th tuple, and STr belongs to a class for given and
D diminutions.

• k-NN training: In order to train the k-NN algorithm, the training dataset TRs should
contain the value of while it is unknown for the test dataset TSs. For each test
sample STs contained in the TSs test dataset, the k-NN model looks for records
whose distance proximity is smallest (i.e., indicating the records are similar) in the
TRs set. To do this, it computes the Euclidean Distances EDð Þ between TSs and all
STr of TRs (i.e., for each sample of test data set with all the sample of train data set).
Whereas the k-nearest neighbours samples (NB1, NB2,…,NBk) are obtained by
ranking the training samples according to the computed distance.

• Alignment with Mapper operations: To apply this in the MapReduce model, we first
organize a mapper to compute the classes from the distance to the k nearest
neighbours for each test and training data.

• Alignment with Reducer operations: The reduce function is responsible for pro-
cessing the ED of the k nearest neighbours from each map and creates a list of k
nearest neighbours by taking those with minimum distance. Reducer shuffles the
distances and examines for majority voting, then to assign the class for TSs.
k-NN mapper and k-NN reducer are described in more detail as follows:

k-NN Mapper: In our implementation of k-NN for MapReduce, we represent our
training set as TRs and test dataset TSs; both with a random number of records store in
Hadoop Distributed File System (HDFS) as single file. The first step Mapper accesses
the input file from the HDFS and disjoint TRs into given number subsets. The training
set TRs is split into tuples containing the attributes (also known as features) (test tp1,
test tp2, …,test tpD, where, each test tp represent one feature of adult data set
and represent as an income class (the feature to be classified). Suppose, we have
mappers from 1 to n, for each of the mapper task, it will create TRsj from 1 � j � n,
which represent the training set sample STr. It should be noted that partitions of given

Table 2. Adult Dataset after categorical value conversation to numeric

Age Work-
class**

Fnlwgt Edu Edu-
num

Marital-
status

Occu-
pation

Relationship Race Sex Capital-
gain

Capital-
loss

Hours-
per-week

Native-
country

Income

66 3 142624 8 12 3 7 1 5 1 5556 0 40 35 >50 K

55 3 160631 12 9 3 7 1 5 1 4508 0 8 35 � 50 K

53 3 153064 5 3 3 4 1 5 1 7688 0 10 35 >50 K

51 3 179479 12 9 7 4 2 5 2 3325 0 40 35 � 50 K

51 1 223206 11 16 3 9 1 2 1 15024 0 40 34 >50 K

Anonymizing k-NN Classification on MapReduce 369

processes are sequentially executed, for example, mapperj corresponds to j data chunk.
In other words, each mapper will have its corresponding TRsj and a class label for
every k nearest neighbours. Each training record is divided into a subset of TRs in order
to compare each subset with it’s TSs to find out a distance DC.The other small subsets
are obtained based on k (degree of neighbours) and number of records in TSs. Dis-
tances are stored in the distance matrix DCj pairs as “<class, distance>” which can be
represent as < k-distance> with dimension k:m (i.e., DCj compute all the distances
for each tuple of TRs with all element of TSs). Each Row i will have (classifier value)
and k-nearest distance of class. The row i will repeat till t for each STs. After mapper
completes its process, it stores the <key, value> pairs as <ðMapperID, , DCj>, where
MapperID is used to identify the mapper in single reducer. The complete pseudo-code
for the k-NN mapper is described in the following Algorithm 1.

k-NN Reducer: Reducer is responsible for selecting most relevant neighbours,
examines their classes and finds optimal classes for tuples in TSs. The reducer phase
can be divided into following four steps:

1. The setup step reads and allocates the distance matrix DCreduce of the fix size of
(TSs.k-neighbours). DCreduce value is assigned once a mapper completes DCj and
sends the data to reducer. Keys from the mapper is separated as MapperID and
The size of the distance matrix is initialized with the total number of TSs. Once the
setup is done, it moves to the next reduce step.

2. The reduce merge two sorted lists (i.e., one list containing the distances calculated
with class and the other list contains the distances calculated with its neighbours).
Thus, for every TSs, every distance is compared to its neighbours one at a time
starting from the nearest one and sorted according to distances.

3. The third step is cleanup. The cleanup process receives the list of neighbours for all
TSs as (class, distance) in the form of DCreduce for majority voting in order to
identify the predicted classes for TSs: After the cleanup, the key value pair are
redefined as TSs classes and TRs classes

370 S. U. Bazai et al.

4. The comparison of the classifiers between these two classes are done in the clas-
sification error step to compute the error rate of k-NN for each k values. Following
is the pseudocode that we use in this study for the k-NN reducer.

4.3 K-Anonymity with k-NN in MapReduce

In this section, we illustrate how we anonymize the original input data using
k-anonymity technique. We run k-NN classifier on the anonymized data set and get
classification error. We compare the classifications errors obtained from a
non-anonymized dataset as well as an anonymized dataset to understand whether there
has been any impact on classification error. For this task, we extend the mapper
operation in the previous section and produce multiple sets of anonymized data sets.

1. The first step is to read TSs into tuples containing the attributes (also known as
features) (test tp1, test tp2, …,test tpD, where, each test tp represent one
feature of adult data set and represent as an income class (feature to be clas-
sified). The second step is to anonymize the number of features (a), while test tpa
denote the particular feature to be anonymized.

2. Then the third step is to assign K group size KGð Þ where KG is the degree of
anonymity (i.e., the number of records to hide in a crowd).

Anonymizing k-NN Classification on MapReduce 371

3. The forth step is to calculate an average value on each attribute of a QIDs which to
be anonymized. Now a values are replaced by the average of each feature.

4. In the last step, we replace the average value against each value of KG in continuous
features while the average value is used to find more generalized categorical value
for the categorical converted numerical features. The input test data now changes
from TSs to it anonymized counterpart TSsa.

The pseudo-code for this description is in the following Algorithm 3.

In our study, we observe the effect of an anonymisation in two different aspects:
tuple-based vs feature-based generalization. We first examine the effect of anonymiza-
tion by its usual tuple-based (i.e., making the number of records same), secondly, we
examine the effect of anonymization by its feature-based (i.e., making the number of
features across records same). For the former, we analyze 4 different tuple-based degree
K ¼ 5; 10; 100; 1000f g for example K = {5} indicates that there will be 5 records
made same where K = {10} indicates that there will be 10 records made same and so
on. Simple represent no anonymisation and transformation is applied on data. For the
latter, we analyze 5 different feature-based degree Ax = {2, 4, 8, 12, all} where x
indicates the number of QIDs. From the feature-based generalization, A2 represents
a = 2, i.e., age and workclass are used as QIDs and generalized whereas A4 represents

372 S. U. Bazai et al.

a = 4, i.e., the four features age, work-class, fnlwgt, and education are used as QIDs.
A8 and A12 represents in the similar fashion. We use the special notation AA to mean
all features are used as QIDs and generalized accordingly. Table 3 represents the
snippet of data anonymization on K-5 degree on different numbers of QIDs being
generalized.

5 Experiments and Results

A set of experiments have been conducted on the Adult dataset to observe the k-NN
based classification errors on data anonymized using k-anonymity. The experiment was
performed on the single node cluster with the following specification: (1) the CPU
model: Intel(R) Xeon(R) CPU E5-1650 v3, (2) the processing speed: @ 3.50 GHz,
(3) the number of core processors: 6, (4) the storage capacity: 4 Tara bytes, and (5) the
memory size 32 GB of RAM.

We first run the experiment on both the training and test datasets on k-NN classifier
without any anonymization then check the classification error.

5.1 Applying K-Anonymity on k-NN Classifier

Figure 1 illustrates the result on the classification error studying from the feature-based
anonymization. For example Fig. 1a shows the results of 5 records anonymized on 2
QIDs = {age, workclass} which is denoted as K-5-A2 while the results of 5 records
anonymized on 4 QIDs = {age, workclass, fnlwgt, edu} is denoted as K-5-A4. The
same notation is used for other number of QIDs.

Table 3. The sample of K-5 tuple with different number of column generalisation

Age Work-
class**

Fnlwgt Edu Edu-
num

Marital-
status

Occu-
pation

Relation-
ship

Race Sex Capital-
gain

Capital-
loss

Hours-
per-week

Native-
country

Income

5 – anonymity with on 2 Features age and workclass

55.2 2.6 142624 8 12 3 7 1 5 1 5556 0 40 35 >50 K

55.2 2.6 160631 12 9 3 7 1 5 1 4508 0 8 35 � 50 K

55.2 2.6 153064 5 3 3 4 1 5 1 7688 0 10 35 >50 K

55.2 2.6 179479 12 9 7 4 2 5 2 3325 0 40 35 � 50 K

55.2 2.6 223206 11 16 3 9 1 2 1 15024 0 40 34 >50 K

5 – anonymity with on 4 Features age and workclass, fnlwgt and education

55.2 2.6 171800.8 9.6 12 3 7 1 5 1 5556 0 40 35 >50 K

55.2 2.6 171800.8 9.6 9 3 7 1 5 1 4508 0 8 35 � 50 K

55.2 2.6 171800.8 9.6 3 3 4 1 5 1 7688 0 10 35 >50 K

55.2 2.6 171800.8 9.6 9 7 4 2 5 2 3325 0 40 35 � 50 K

55.2 2.6 171800.8 9.6 16 3 9 1 2 1 15024 0 40 34 >50 K

5 – anonymity with on all Features

55.2 2.6 171800.8 9.6 9.8 3.8 6.2 1.2 4.4 1.2 0 7220.2 27.6 34.8 >50 K

55.2 2.6 171800.8 9.6 9.8 3.8 6.2 1.2 4.4 1.2 0 7220.2 27.6 34.8 � 50 K

55.2 2.6 171800.8 9.6 9.8 3.8 6.2 1.2 4.4 1.2 0 7220.2 27.6 34.8 >50 K

55.2 2.6 171800.8 9.6 9.8 3.8 6.2 1.2 4.4 1.2 0 7220.2 27.6 34.8 � 50 K

55.2 2.6 171800.8 9.6 9.8 3.8 6.2 1.2 4.4 1.2 0 7220.2 27.6 34.8 >50 K

Anonymizing k-NN Classification on MapReduce 373

Here is the summary of our observations;

• The number of features being anonymized attributes to the decreasing accuracy (i.e.,
increasing classification error) as we see this in all graphs.

• As the number of k-nearest neighbours increases, more classification errors are
generated. This is due to the increasing size of the sample being the subject of the
classification, that is, there is increasing probability of producing an error as there
are more data.

• There is a huge amount of classification errors when all features are anonymized in
comparison to when there are at least a few features still not anonymized.

• The distribution of the data within a feature affects on the number of classification
errors. If the distribution of the data is wide and if they are generalized, they tend to
subject to more classification errors.

• With the increasing number of K degrees, the fluctuation of classification errors
becomes unpredictable. For example, with K-5 and K-10, we observe a steady
increasing or decreasing of classification errors in a smaller range scale which was
between 45%–60% with K-5 while 33%–45% with K-10. In the meantime, the

Fig. 1. K-anonymity on varying degrees of anonymized feature sets

374 S. U. Bazai et al.

classification errors were sharply increased from 10% to 40% in K-100 while it was
between 0%–45% with K-1000.

Figure 2 illustrates the result on the classification error studying from the tuple-
based– anonymization. For example, the Fig. 2a shows the results of 2 QIDs ¼ age;f
work � classg anonymized with different degree of K ¼ f5; 10; 100; 1000g.

Here is the summary of our observations;

• There is more classification errors produced as the degree of K increases. It is easy
to understand this pattern because simply more data means the increasing possibility

Fig. 2. QIDs on varying degrees of K-anonymity

Anonymizing k-NN Classification on MapReduce 375

with classification errors. This is observed in all graphs, irrelevant to the number of
QIDs involved in the anonymization process.

• When only two QIDs were anonymized, as shown in Fig. 2a, the effect of
increasing K degree is negligent. As the number of QIDs increased to be anon-
ymized, the scale of classification error range becomes wider. For example, in
Fig. 2a where it is only two QIDs anonymized, there is almost no difference in
classification errors among K-degrees. However, in Fig. 2e where all QIDs were
anonymized, K-5 classification errors stay around 50%, K-10 classification errors
stay around 30% whereas K-100 stays around 10%.

• The utility of anonymized data is higher with a fewer QIDs regardless K degree as
we do not see much difference in the classification errors between non-anonymized
data and anonymized data.

6 Conclusions and Future Work

This research work is an extension from our previous work [4] where we focus running
a classification algorithm on the anonymized dataset running a MapReduce platform. In
this research we used k-NN as a classifier on anonymised data. We used the mea-
surement of classification errors to observe the effects between privacy verses utility
trade-offs when different sets of data were anonymized using multiple privacy
parameters of K-anonymity. We used two different approaches; anonymizing the data
based on (1) tuples and (2) features. As expected, the number of k-nearest neighbour
has the close relationship with classification errors introduced. More data in a dataset
produced higher probability of classification errors. We also observed that the distri-
bution of the data within a feature for given dataset affects quite significantly on
classification error.

In our future work, we plan to run our experiments in multiple node cluster which
may need modification in the algorithms we used in this study. We also plan to
make more close observations on the classification errors on different parameters on
K-anonymity and differential privacy such as finding the most optimal point for privacy
and utility trade off.

References

1. Cover, T.M., Hart, P.E.: Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 13,
21–27 (1967)

2. Sweeney, L.: K-anonymity: a model for protecting privacy 1. Int. J. Uncertain. Fuzziness
Knowl. Based Syst. 10, 557–570 (2002)

3. Zhang, X., Yang, L.T., Liu, C., Chen, J.: A scalable two-phase top-down specialization
approach for data anonymization using mapreduce on cloud. IEEE Trans. Parallel Distrib.
Syst. 25, 363–373 (2014)

4. Bazai, S.U., Jang-Jaccard, J., Zhang, X.: A privacy preserving platform for MapReduce. In:
Batten, L., Kim, D.S., Zhang, X., Li, G. (eds.) ATIS 2017. CCIS, vol. 719, pp. 88–99.
Springer, Singapore (2017). https://doi.org/10.1007/978-981-10-5421-1_8

376 S. U. Bazai et al.

http://dx.doi.org/10.1007/978-981-10-5421-1_8

5. Zhang, X., Dou, W., Pei, J., Nepal, S., Yang, C., Liu, C., Chen, J.: Proximity-aware
local-recoding anonymization with MapReduce for scalable big data privacy preservation in
cloud. IEEE Trans. Comput. 64, 2293–2307 (2015)

6. Stupar, A., Michel, S., Schenkel, R.: RankReduce - processing K-nearest neighbor queries
on top of mapreduce. In: CEUR Workshop Proceedings. vol. 630, pp. 13–18 (2010)

7. Zhang, C., Li, F., Jestes, J.: Efficient parallel k NN joins for large data in MapReduce. In:
Proceedings of the 15th International Conference on Extending Database Technology -
EDBT 2012, p. 38 (2012)

8. Inan, A., Kantarcioglu, M., Bertino, E.: Using anonymized data for classification. In:
Proceedings - International Conference on Data Engineering, pp. 429–440 (2009)

9. Baryalai, M., Jang-Jaccard, J., Liu, D.: Towards privacy-preserving classification in neural
networks. In: 2016 14th Annual Conference on Privacy, Security and Trust, PST 2016,
pp. 392–399 (2016)

10. Xia, D., Li, H., Wang, B., Li, Y., Zhang, Z.: A map reduce-based nearest neighbor approach
for big-data-driven traffic flow prediction. IEEE Access. 4, 2920–2934 (2016)

11. Zhou, L., Wang, H., Wang, W.: Parallel implementation of classification algorithms based
on cloud computing environment. TELKOMNIKA Indones. J. Elect. Eng. 10, 1087–1092
(2012)

12. Roy, I., Setty, S.T.V., Kilzer, A., Shmatikov, V., Witchel, E.: Airavat: security and privacy
for MapReduce. In: Proceedings of the 7th USENIX conference on Networked systems
design and implementation, p. 20 (2010)

13. Frank, A., Asuncion, A.: UCI Machine Learning Repository [http://archive.ics.uci.edu/ml].
Irvine, CA: University of California, School of Information and Computer Science, Irvine,
CA. 2008, (2010)

14. Inan, A., Kantarcioglu, M., Ghinita, G., Bertino, E.: Private record matching using
differential privacy. In: Proceedings of the 13th International Conference on Extending
Database Technology - EDBT 2010, p. 123 (2010)

15. Maillo, J., Triguero, I., Herrera, F.: A MapReduce-based k-Nearest neighbor approach for
big data classification. In: Proceedings - 14th IEEE International Conference on Trust,
Security and Privacy in Computing and Communications, TrustCom. vol. 2, pp. 167–172
(2015)

Anonymizing k-NN Classification on MapReduce 377

http://archive.ics.uci.edu/ml

	Anonymizing k-NN Classification on MapReduce
	Abstract
	1 Introduction
	2 Background
	2.1 {\varvec k} -Nearest Neighbour
	2.2 K-Anonymity

	3 Related Work
	4 Data Anonymization
	4.1 Dataset and Pre-processing
	4.2 k-NN Implementation on MapReduce
	4.3 K-Anonymity with k-NN in MapReduce

	5 Experiments and Results
	5.1 Applying {\varvec K} -Anonymity on {\varvec k} -NN Classifier

	6 Conclusions and Future Work
	References

