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Abstract. Stream cipher is one of the basic cryptographic primitives
that provide the confidentiality of communication through insecure chan-
nel. EU ECRYPT network has organized a project for identifying new
stream suitable for widespread adoption where the ciphers can provide a
more security levels. Finally the result of the project has identified new
stream ciphers referred as eSTREAM. Salsa20 is one of the eSTREAM
cipher built on a pseudorandom function. In this paper our contribution
is two phases. First phase have two parts. In WCC 2015, Maitra et al.
[9] explained characterization of valid states by reversing one round of
Salsa20. In first part, we have revisited the Maitra et al. [9] characteri-
zation of valid states by reversing one round of Salsa20. We found there
is a mistake in one bit change in 8th and 9th word in first round will
result in valid initial state. In second part, Maitra et al. [9] as mentioned
that it would be an interesting combinatorial problem to characterize
all such states. We have characterized nine more values which lead to
valid initial states. The combinations (s4, s7), (s2, s3), (s13, s14), (s1, s6),
(s1, s11), (s1, s12), (s6, s11), (s6, s12) and (s11, s12) which characterized
as valid states.

In second phase, FSE 2008 Aumasson et al. [1] attacked 128-key bit
of Salsa20/7 within 2111 time and ChaCha6 in within 2107 time. After
this with best of our knowledge there does not exist any improvement
on this attack. In this paper we have attacked 128-key bit of Salsa20/7
within 2107 time and ChaCha6 within 2102 time. Maitra [8] improved the
attack on Salsa20/8 and ChaCha7 by choosing proper IVs corresponding
to the 256-key bit. Applying the same concept we have attacked 128-key
bit of Salsa20/7 within time 2104 and ChaCha7 within time 2101.
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1 Introduction

Stream cipher is one of the basic cryptographic primitives that provide the con-
fidentiality of communication through insecure channel. It produces a long pseu-
dorandom sequence called keystream from short random string called secret key
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(seed). Here encryption of message is carried out bit by bit which can be achieved
XORing the keystream to the message. Receiver regenerates the keystream from
shared secret key (seed) then decryption is achieved XORing the key stream to
the ciphertext. Single secret key is used to encrypt two different messages which
is vulnerable to some kind of attack. So, for each and every message there should
be different key which cannot be considered practically.

In the modern time, a pseudo-random generator used in stream cipher which
depends on a secret key (seed) and Initialization Vector (IV). Here IV does
not need to be kept secret and it must change for every encryption session,
which it is used as randomizer. The IV is communicated to the receiver publicly
(TRIVIUM), or could be combination of this publicly communicated value and
a counter value generated at both ends (SALSA 20/12). This gives the flexibility
that same key can be used to different messages. Security model of these stream
cipher captures the idea that for distinct values of IV with same key, the output
of a pseudo-random generator should appear uniform random to an adversary
with polynomial bounded computational power.

EU ECRYPT network has organized a project for identifying new stream
suitable for widespread adoption where the ciphers can provide a more security
levels. Finally the result of the project has identified new stream ciphers referred
as eSTREAM. Salsa20 [3] is the one of eSTREAM which provides much better
speed-security profile. Salsa20 offers a very simple, clean, and scalable design
developed by Daniel J. Bernstein. It supports 128-bit and 256-bit keys in a
very natural way. The simplicity and scalability of the algorithm has given more
importance in cryptanalytic area. ChaCha [2] is family of stream ciphers, a
variant of Salsa published by Daniel J. Bernstein. ChaCha has better diffusion
per round and increasing resistance to cryptanalysis.

Related Work: In SASC 2005, Crowley [5] has reported first attack in Salsa20
and won Bernstein’s US$1000 prize amount for “most interesting Salsa20 crypt-
analysis”. He presented an attack on Salsa20 reduced to five of its twenty rounds
and is based on truncated differentials. Truncated differential cryptanalysis is a
generalization of differential cryptanalysis, an attack against block ciphers. In
INDOCRYPT 2006, Fisher et al. [7] has reported in Salsa20/6 and Salsa20/7
an attack and presented a key recovery attack on six rounds and observe non-
randomness after seven rounds. In SASC 2007, Tsunoo et al. [12] reported that
there is a significant bias in the differential probability for Salsa20’s 4th round
internal state. In FSE 2008, Aumasson et al. [1] have reported an attack which
makes use of the new concept of probabilistic neutral key bits (PNB). PNB
is the process of identifying a large subset of key bits which can be replaced
by fixed bits so that detectable bias after approximate backwards computation
is still significant. This attack was further improved by Shi et al. [11] using
the concept of Column Chaining Distinguisher (CCD). By choosing IVs corre-
sponding to the keys, Maitra [8] improved the attack on Salsa20/8. Further the
attacks on Salsa and ChaCha were improved by Choudhuri and Maitra [4] and
Sabyasachi and Sarkar [6]. All these attacks are on 256 version of Salsa20/8.
In WCC 2015, Maitra et al. [9] provided interpretation based on Fisher’s 2006
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result. Maitra et al. [9] included the key bits in the PNB set by providing less
probability for distinguishing. In this way they have considered and obtained
(36 + 5 = 41) PNBs by key recovery attack with key search complexity of 2247.2.
Maitra et al. [9] characterization of valid initial state by reversing one round of
Salsa20, which helps in obtaining sharper bias value. It is found that change in
some bit position after one round can obtain the initial value state by reversing
one round back. Maitra et al. [9] given that one bit change in 8th and 9th word
in first round will result in valid initial state as follows.

⎡
⎢⎢⎣

0 0 0x80000000 0
0 0 0x80001000 0
0 0 0 0
0 0 0x???80040 0

⎤
⎥⎥⎦ ⇐

⎡
⎢⎢⎣

0 0 0 0
0 0 0 0

0x80000000 0x80000000 0 0
0 0 0 0

⎤
⎥⎥⎦ (1)

Our Contribution: Our contribution is of two phases. First phase have two
parts. In first part, we have revisited the Maitra et al. [9] characterization of
valid states by reversing one round of Salsa20. We found there is a mistake in
Eq. (1) in which one bit change of 8th and 9th word in first round will result in
valid initial state. Instead of 0x???80040, it should be as follows.

⎡
⎢⎢⎣

0 0 0x80000000 0
0 0 0x80001000 0
0 0 0 0
0 0 0x???800?? 0

⎤
⎥⎥⎦ ⇐

⎡
⎢⎢⎣

0 0 0 0
0 0 0 0

0x80000000 0x80000000 0 0
0 0 0 0

⎤
⎥⎥⎦

In second part, Maitra et al. [9], as mentioned that it would be an interesting
combinatorial problem to characterize all such states. We have characterized
nine more values which lead to valid initial states. The combinations (s4, s7),
(s2, s3), (s13, s14), (s1, s6), (s1, s11), (s1, s12), (s6, s11), (s6, s12) and (s11, s12)
which characterized as valid states.

In second phase, FSE 2008 Aumasson et al. [1] attacked 128-key bit of
Salsa20/7 within 2111 time and ChaCha6 in within 2107 time. After this with
best of our knowledge there does not exist any improvement on this attack.
In this paper we have attacked 128-key bit of Salsa20/7 within 2107 time and
ChaCha6 within 2102 time. Maitra [8] improved the attack on Salsa20/8 and
ChaCha7 by choosing proper IVs corresponding to the 256-key bit. Applying
the same concept we have attacked 128-key bit of Salsa20/7 within time 2104

and ChaCha7 within time 2101.

Paper Outline: Our paper is organized as follows. In Sect. 2, with preliminar-
ies we describe Salsa20 specification, ChaCha specification, differential analysis,
PNBs and estimation of the complexity. Section 3, Maitra et al. [9] work char-
acterization of valid state. In Sect. 4, we describe our work. In Sect. 5, we give
conclusion and related open problems.
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2 Preliminaries

2.1 Salsa20 Specification

Salsa20 is built on a pseudorandom function based on Add-Rotate-XOR (ARX)
operations. It carries 32-bit addition, left rotation and bitwise addition as XOR.
Salsa20 stream cipher considers 16 words, each of 32-bit. Basic structure is as
follows.

S =

⎡
⎢⎢⎣

s0 s1 s2 s3
s4 s5 s6 s7
s8 s9 s10 s11
s12 s13 s14 s15

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

c0 k0 k1 k2
k3 c1 v0 v1
t0 t1 c2 k4
k5 k6 k7 c3

⎤
⎥⎥⎦

The first matrix with (s0, s1, s2, . . . , s15) represents the words of initial
states and in second matrix where c0, c1, c2, c3 are the predefined constants,
k0, k1, . . . , k7 represents key of 256-bit, IV = (t0, t1, v0, v1) represents t0, t1 are
the 64-bit counter and v0, v1 are the 64-bit nonce. Constant values may be chang-
ing based on the key value. If we are considering 256-bit key then we can call it
as 256-bit Salsa else if we are considering 128-bit key then it is 128-bit Salsa.

The main operation in Salsa20 is carried out by a nonlinear operation called
quarterround function. One quarterround function is the four ARX rounds. One
ARX round is the one addition (A) plus one cyclic left rotation (R) plus one
XOR (X). Quarterround (w, x, y, z) is defined as follows.
x = x ⊕ ((w + z) <<< 7)
y = y ⊕ ((x + w) <<< 9)
z = z ⊕ ((y + x) <<< 13)
w = w ⊕ ((z + y) <<< 18)
The addition (A) is carried out by two words and result is divided modulo by
232, cyclic left rotation (R) is carried out for each bit in the given word that is
the leftmost bits move to the rightmost positions and exclusive-or (X) is carried
out by sum of the two words with carries suppressed.

The rounds in Salsa20 can be performed based on column and row of the
matrix as the initial states are considered. So performing round in row of matrix
is called as rowround and column of matrix as columnround. If it is a column-
round then one columnround is the four quarterrounds, one on each of the four
columns of the initial state matrix. If it is rowround then one rowround is the
four quarterrounds, one on each of the four rows of the initial state matrix.

Suppose if S is a 16-word input with values (s0, s1, . . . , s15) then the
rowround(S) and coulmnround(S) is as follows
Rowround: Columnround:
quarterround (s0, s1, s2, s3) quarterround (s0, s4, s8, s12)
quarterround (s5, s6, s7, s4) quarterround (s5, s9, s13, s1)
quarterround (s10, s11, s8, s9) quarterround (s10, s14, s2, s6)
quarterround (s15, s12, s13, s14) quarterround (s15, s3, s7, s11)

The one round [9,10] of the Salsa20 can also be considered by one colum-
nround and one transpose of the initial state matrix (so 12 rounds can be con-
sidered as one columnround and one transpose of 12 times). In this paper we
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will be considering Salsa20 as 20 rounds in which one round as one columnround
and one transpose.

Let S(0) be the initial state S and S(r) be r rounds applied on the initial state
S. So that after R rounds it becomes S(R). Then the keystream for 512 bits is
obtained as Z = S + S(R).

Reversing One Round: Maitra et al. [9] given that Salsa20 round can be
reversible as the state-transition operations are reversible. If S(r+1), then S(r) =
reverseround (S(r+1)). Where reverseround is the inverse of the round and con-
sists of first transposing the state and then applying the inverse of quarterround
for each column by reverseround. Reverseround (w,x,y,z) is as follows.
w = w ⊕ ((z + y) <<< 18)
z = z ⊕ ((y + x) <<< 13)
y = y ⊕ ((x + w) <<< 9)
x = x ⊕ ((w + z) <<< 7)
Reverseround works as follows.

1. Consider initial matrix after first round be S1 and perform transpose be ST .

S1 =

⎡
⎢⎢⎣

s′
0 s′

1 s′
2 s′

3

s′
4 s′

5 s′
6 s′

7

s′
8 s′

9 s′
10 s′

11

s′
12 s′

13 s′
14 s′

15

⎤
⎥⎥⎦ ST =

⎡
⎢⎢⎣

s′
0 s′

4 s′
8 s′

12

s′
1 s′

5 s′
9 s′

13

s′
2 s′

6 s′
10 s′

14

s′
3 s′

7 s′
11 s′

15

⎤
⎥⎥⎦

2. Perform reverseround by column wise for each column individually. Where
reverseround (w,x,y,z) is equal to [s′

0, s
′
1, s

′
2, s

′
3] , [s′

5, s
′
6, s

′
7, s

′
4], [s′

10, s
′
11, s

′
8, s

′
9]

and [s′
15, s

′
12, s

′
13, s

′
14].

2.2 ChaCha Specification

ChaCha is a family of stream cipher, a variant of Salsa. It is similar to Salsa is
of 16 words, each 32-bit. Basic structure is as follows

S =

⎡
⎢⎢⎣

s0 s1 s2 s3
s4 s5 s6 s7
s8 s9 s10 s11
s12 s13 s14 s15

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

c0 c1 c2 c3
k0 k1 k2 k3
k4 k5 k6 k7
t0 v0 v1 v2

⎤
⎥⎥⎦

The first matrix with (s0, s1, s2, . . . , s15) represents the words of initial
states and in second matrix where c0, c1, c2, c3 are the predefined constants,
k0, k1, . . . , k7 represents key of 256-bit, IV = (t0, t1, v0, v1) represents t0, t1 are
the 64-bit counter and v0, v1 are the 64-bit nonce. In ChaCha nonlinear opera-
tions are slightly different from Salsa and are as follows
w = w + x; z = z ⊕ w; z = z <<< 16;
y = y + z;x = x ⊕ y;x = x <<< 12;
w = w + x; z = z ⊕ w; z = z <<< 8;
y = y + z;x = x ⊕ y;x = x <<< 7;



Cryptanalysis of Salsa and ChaCha: Revisited 329

As in Salsa columnround and rowround are considered, but here in ChaCha
columnround and diagonalround are considered. It is considered as for odd
rounds first columnround is applied and for even rounds first diagonalround
is applied. Columnround and diagonalrounds are as follows
Columnround: Diagonalround:
quarterround (s0, s4, s8, s12) quarterround (s0, s5, s10, s15)
quarterround (s1, s5, s9, s13) quarterround (s1, s6, s11, s12)
quarterround (s2, s6, s10, s14) quarterround (s2, s7, s8, s13)
quarterround (s3, s7, s11, s15) quarterround (s3, s4, s9, s14)

Like in Salsa, in ChaCha also reverseround is the inverse of round and defined
as follows
x = x >>> 7;x = x ⊕ y; y = y − z;
z = z >>> 8; z = z ⊕ w;w = w − x;
x = x >>> 12;x = x ⊕ y; y = y − z;
z = z >>> 16; z = z ⊕ w;w = w − x;

2.3 Differential Analysis

The differential attack is that some small differences in input states have a
perceptible chance in producing small differences after the first round of compu-
tation, the second round of computation, etc. The behavior of the differential is
heavily key-dependent. There are many unbalanced bits in the states of Salsa20
after four rounds.

Let si is the ith word of the matrix S and si,j is the jth least significant bit
of si. Suppose if we are having two states S(r) and S′(r), after r rounds it can
be denoted as Δ

(r)
i = s

(r)
i ⊕ s

′(r)
i . Thus

Δ(r) = S(r) ⊕ S′(r) =

⎡
⎢⎢⎢⎣

Δ
(r)
0 Δ

(r)
1 Δ

(r)
2 Δ

(r)
3

Δ
(r)
4 Δ

(r)
5 Δ

(r)
6 Δ

(r)
7

Δ
(r)
8 Δ

(r)
9 Δ

(r)
10 Δ

(r)
11

Δ
(r)
12 Δ

(r)
13 Δ

(r)
14 Δ

(r)
15

⎤
⎥⎥⎥⎦

After performing few rounds biases can be obtained. For that take Input
Differential (ID) at the initial state and try to obtain some biases value corre-
sponding to combinations of some output bits as Output Differential (OD).

Let S(1) and S′(1) be the two initial states that differ in a few places. That is
probability is different at the qth bit of the pth word and they are same at all the
other bits of the complete state or differ at the jth bit of the ith word and they
are same at all the other bits of the complete state is the amount of bias and
is computed as Pr(Δ(r)

p,q = 1 | Δ
(0)
i,j = 1) = 1

2 (1 + εd), where εd is a measure of
the bias. Here the probability is estimated for fixed key and by all the possible
choices of nonces and counters, other than the constraints imposed due to the
input differences on the nonces or counters.
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2.4 Probabilistic Neutral Bits (PNBs)

In FSE 2008, Aumasson et al. [1] have reported an attack which makes use of the
new concept of probabilistic neutral key bits (PNB) for probabilistic detection
of a truncated differential. In 2015, Maitra et al. [9] revisited the concept and
explained the concept in simple manner. PNB is the process of identifying a
large subset of key bits which can be replaced by fixed bits so that detectable
bias after approximate backwards computation is still significant.

Setting Up: Consider S and S′ are the two initial states change in j-th bit of
i-th word for the given input differential Δ

(0)
i,j , by executing Salsa algorithm for

r rounds i.e., r < R observed a high bias εd in the output differential Δ
(r)
p,q by

randomly choosing keys, nonces and counters. Bias is estimated by Pr(Δ(r)
p,q =

1 | Δ
(0)
i,j = 1) = 1

2 (1 + εd), where εd is a measure of the bias.

PNB Concept: Now execute Salsa algorithm for R rounds then Z = S + S(R)

and Z ′ = S′ + S′(R) are two keystream blocks. By complementing particular
key bit position k in S and S′ yields to the states S and S′. After executing
reverse R−r rounds by Z −S and Z ′ −S′ results Y and Y ′. Let the difference is
considered as Γp,q = Yp,q ⊕ Y ′

p,q. Now compare this difference with the previous

calculated after r rounds of the Salsa. The bias Pr(Δ(r)
p,q = Γp,q | Δ

(0)
i,j = 1) is high

then the key bit k is probabilistic neutral bit (PNB). The neutrality measure of
the key bit is Pr(Δ(r)

p,q = Γp,q | Δ
(0)
i,j = 1) = 1

2 (1 + γk).

To Obtain PNBs: We have experimented for 224 samples (randomly choosing
nonce and counter) corresponding to each key bit. We have repeated this process
for all 128-key bit to obtain the PNBs. A threshold propability 1

2 (1+γ) is chosen
to filter PNBs i.e., if γk ≥ γ, then key bit k is included in the set of the PNBs.
So, the whole set of key bits are divided into PNBs and non-PNBs set. Let n
be the set of PNBs and m be set of non-PNBs, then the size of whole set is
(m + n = 128).

Attack Idea: Main idea of attack considers search over the key bits which are
non-PNBs without knowing the correct values of PNBs. The correct key values
have been assigned to the m non-PNBs key bits and random binary values are
assigned to the n PNBs key bits in both S and S′ yields to Ŝ and Ŝ′. Then
compute Z − Ŝ and Z ′ − Ŝ′ and apply R-r rounds on both of them to result Ŷ
and Ŷ ′. Forward Salsa by r rounds results Sr and S′r respectively. The difference
is Γ̂p,q = Ŷp,q ⊕ Ŷ ′

p,q. Probability is Pr(Γ̂p,q = 1 | Δ
(r)
p,q = 1) = 1

2 (1+ εa) by which
PNBs can be identified. The bias after R rounds is Pr(Γ̂p,q = 0) = 1

2 (1 + ε).
Where ε ≈ εa · εd. One can make exhaustive search over all possible keys (2128).
Most probable key is that key which has high bias ε∗ value. Where ε∗ median of
the all ε’s.
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2.5 Estimation of Complexity

By revisiting FSE 2008, Aumasson et al. [1] the complexity of the attack is given
by

2m(N + 2nPfa) = 2mN + 2256−α.

Here m and n are the number of non-PNBs and PNBs. N is the probabilities of
required number of samples and by Neyman-Pearson decision theory

N ≈
(√

α log 4 + 3
√

1 − ε∗2

ε∗2

)2

where Pnd = 1.3 × 10−3 and Pfa = 2−α.

3 Maitra et al. [9] Characterization of Valid State

Maitra et al. [9] has found that one bit change in 8th and 9th word in first round
will result in valid initial state as follows.

⎡
⎢⎢⎣

0 0 0x80000000 0
0 0 0x80001000 0
0 0 0 0
0 0 0x???80040 0

⎤
⎥⎥⎦ ⇐

⎡
⎢⎢⎣

0 0 0 0
0 0 0 0

0x80000000 0x80000000 0 0
0 0 0 0

⎤
⎥⎥⎦

Here we have gone through detail calculation of the 8th and 9th word we observed
that there is a mistake in Maitra et al. [9] and is as follows.

⎡
⎢⎢⎣

0 0 0x80000000 0
0 0 0x80001000 0
0 0 0 0
0 0 0x???800?? 0

⎤
⎥⎥⎦ ⇐

⎡
⎢⎢⎣

0 0 0 0
0 0 0 0

0x80000000 0x80000000 0 0
0 0 0 0

⎤
⎥⎥⎦

According to Maitra et al. [10] given the value for Δ
(0)
14 is 0x???80040, but

we found mistake and the value for Δ
(0)
14 is 0x???800??. The calculation of Δ

(0)
14

is as follows.

Δ
(0)
14 = [s(1)14 ⊕ ((s(0)10 +s

(0)
6 ) <<< 7)]⊕ [s(1)14 ⊕ (s(0)10 +(s(0)6 ⊕0x80001000)) <<< 7]

Here s
(0)
6 ⊕ 0x80001000 have differential in MSB and 12th bit position. But

due to carry propagation to the left of the bit position 12, (s(0)10 + s
(0)
6 ) become

0x????1000. After 7 bit left rotation, the differential in 12th bit position moves
to 19th bit position, which is 0x???800??. The value of ’?’ depends on s

(0)
6 . So

Δ
(0)
14 should be 0x???800?? instead of 0x???80040.
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4 Our Work

4.1 Characterization of Valid States

We have revisited the Maitra et al. [9] considering two bits differences in two
words in first round, from this they obtain valid initial state by reversing one
round.

We found mistake in Maitra et al. [9] work while characterizing the valid
initial state as explained above (Sect. 3).

Maitra et al. [9], as mentioned that it would be an interesting combinatorial
problem to characterize all such states. Based upon that we have characterized
nine more values which lead to valid initial states. The combinations (s4, s7),
(s2, s3), (s13, s14), (s1, s6), (s1, s11), (s1, s12), (s6, s11), (s6, s12) and (s11, s12)
which characterized as valid states. Detail calculation procedure for (s4, s7) is as
follows.

1. (s4, s7) = (0x80000000, 0x80000000)
Differential after first round and Transpose:

Δ(1) =

⎡
⎢⎢⎣

0 0 0 0
0x80000000 0 0 0x80000000

0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ (Δ(1))T =

⎡
⎢⎢⎣

0 0x80000000 0 0
0 0 0 0
0 0 0 0
0 0x80000000 0 0

⎤
⎥⎥⎦

Differential in reverseround(s1, s5, s9, s13) works as follows.

Δ
(0)
5 = [s

(1)
5 ⊕ ((s

(1)
1 + s

(1)
13 ) <<< 18)] ⊕ [s

(1)
5 ⊕ ((s

(1)
1 ⊕ 0x80000000) + (s

(1)
13 ⊕ 0x80000000)) <<< 18]

Here s
(1)
1 ⊕0x80000000 and s

(1)
13 ⊕0x80000000 have differential in MSB. Now

adding s
(1)
1 ⊕ 0x80000000 and s

(1)
13 ⊕ 0x80000000 and modulo 232 becomes s

(1)
1 +

s
(1)
13 will result zero. So Δ

(0)
5 is zero. This proves that the state Δ(0) is a valid

initial state.

Δ
(0)
1 = [s

(1)
1 ⊕ ((s

(1)
13 + s

(1)
9 ) <<< 13)] ⊕ [(s

(1)
1 ⊕ 0x80000000) ⊕ ((s

(1)
13 ⊕ 0x80000000) + s

(1)
9 ) <<< 13]

Here s
(1)
13 ⊕ 0x80000000 and s

(1)
9 changes in MSB of s

(1)
13 + s

(1)
9 . Now s

(1)
13 ⊕

0x80000000 perform left rotation of 13 bits changes the 13th least significant bit
of s

(1)
13 + s

(1)
9 to 0x00001000. Now differential moves to 12th bit position. Then

XORed with s
(1)
1 ⊕ 0x80000000, results 0x80001000. So Δ

(0)
1 is 0x80001000.

Δ
(0)
13 = [s(1)13 ⊕ ((s(1)9 +s

(0)
5 ) <<< 9)]⊕ [(s(1)13 ⊕0x80000000)⊕ (s(1)9 +s

(0)
5 ) <<< 9]

By performing addition for s
(1)
9 + s

(0)
5 will result zero. Then XORed with

s
(1)
13 ⊕ 0x80000000 results to 0x80000000. So Δ

(0)
13 is 0x80000000.

Δ
(0)
9 = [s(1)9 ⊕ ((s(0)5 +s

(0)
1 ) <<< 7)]⊕ [s(1)9 ⊕ (s(0)5 +(s(0)1 ⊕0x80001000)) <<< 7]
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Here s
(0)
1 ⊕ 0x80001000 have differential in MSB and 12th bit position. But

due to carry propagation to the left of the bit position 12, (s(0)5 + s
(0)
1 ) become

0x????1000. After 7 bit left rotation, the differential in 12th bit position moves
to 19th bit position, which is 0x???800??. The value of ’?’ depends on s

(0)
1 . So

Δ
(0)
9 is 0x???800??. Resultant matrix:

Δ(0) =

⎡
⎢⎢⎣

0 0x80001000 0 0
0 0 0 0
0 0x???800?? 0 0
0 0x80000000 0 0

⎤
⎥⎥⎦

By following same above procedure we have characterized the other
valid states as (s2, s3), (s13, s14), (s1, s6), (s6, s12), (s11, s12), (s1, s12), (s6, s11)
and (s1, s11) which results valid constants and are as follows.

2. (s2, s3) = (0x80000000, 0x80000000)
⎡
⎢⎢⎣

0 0 0 0
0x???800?? 0 0 0
0x80000000 0 0 0
0x80001000 0 0 0

⎤
⎥⎥⎦ ⇐

⎡
⎢⎢⎣

0 0 0x80000000 0x80000000
0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦

3. (s13, s14) = (0x80000000, 0x80000000)
⎡
⎢⎢⎣

0 0 0 0x???800??
0 0 0 0x80000000
0 0 0 0x80001000
0 0 0 0

⎤
⎥⎥⎦ ⇐

⎡
⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 0 0
0 0x80000000 0x80000000 0

⎤
⎥⎥⎦

4. (s1, s6) = (0x80000000, 0x80000000)
⎡
⎢⎢⎣

0 0x00001000 0 0
0x???80000 0 0 0
0x00000100 0x???80000 0 0
0x00001000 0x00000100 0 0

⎤
⎥⎥⎦ ⇐

⎡
⎢⎢⎣

0 0x80000000 0 0
0 0 0x80000000 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦

5. (s1, s11) = (0x80000000, 0x80000000)
⎡
⎢⎢⎣

0 0 0x00000100 0
0x???80000 0 0x00001000 0
0x00000100 0 0
0x00001000 0 0x???80000 0

⎤
⎥⎥⎦ ⇐

⎡
⎢⎢⎣

0 0x80000000 0 0
0 0 0 0
0 0 0 0x80000000
0 0 0 0

⎤
⎥⎥⎦

6. (s1, s12) = (0x80000000, 0x80000000)
⎡
⎢⎢⎣

0 0 0 0x???80000
0x???80000 0 0 0x00000100
0x00000100 0 0 0x00001000
0x00001000 0 0 0

⎤
⎥⎥⎦ ⇐

⎡
⎢⎢⎣

0 0x80000000 0 0
0 0 0 0
0 0 0 0

0x80000000 0 0 0

⎤
⎥⎥⎦
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7. (s6, s11) = (0x80000000, 0x80000000)
⎡
⎢⎢⎣

0 0x00001000 0x00000100 0
0 0 0x00001000 0
0 0x???80000 0 0
0 0x00000100 0x???80000 0

⎤
⎥⎥⎦ ⇐

⎡
⎢⎢⎣

0 0 0 0
0 0 0x80000000 0
0 0 0 0x80000000
0 0 0 0

⎤
⎥⎥⎦

8. (s6, s12) = (0x80000000, 0x80000000)
⎡
⎢⎢⎣

0 0x00001000 0 0x???80000
0 0 0 0x00000100
0 0x???80000 0 0x00001000
0 0x00000100 0 0

⎤
⎥⎥⎦ ⇐

⎡
⎢⎢⎣

0 0 0 0
0 0 0x80000000 0
0 0 0 0

0x80000000 0 0 0

⎤
⎥⎥⎦

9. (s11, s12) = (0x80000000, 0x80000000)
⎡
⎢⎢⎣

0 0 0x00000100 0x???80000
0 0 0x00001000 0x00000100
0 0 0 0x00001000
0 0 0x???80000 0

⎤
⎥⎥⎦ ⇐

⎡
⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 0 0x80000000

0x80000000 0 0 0

⎤
⎥⎥⎦

4.2 Attack on Salsa and ChaCha

In FSE 2008, Aumasson et al. [1] attack for 128-key bit of Salsa20/7 within 2111

time and ChaCha6 in within 2107 time. After this with best of our knowledge
there does not exist any improvement on this attack. In this paper we have
attacked 128-key bit of Salsa20/7 within 2107 time and ChaCha6 within 2102

time. Details of the calculation is as follows

Attack on 128-bit Salsa20/7. In FSE 2008, Aumasson et al. [1] use the dif-
ferential (Δ(4)

1,14 | Δ(0)
7,31) with |εd

∗| = 0.130 and γ = 0.4. With this obtained
number of PNBs n = 38, |εa

∗| = 0.045 and |ε∗| = 0.00592. For α = 21, results in
time 2111 and data 221. But the list of the PNBs are no mentioned. By consider-
ing same differential and |εd

∗| we find number of PNBs n=35 with |εa
∗| = 0.040

and |ε∗| = 0.0052. For α = 21, results in time 2114 and data 221. The list of 35
PNB’s and the corresponding γk’s are shown in Table 1.

In 128-key bit of Salsa20/7 for γ = 0.3 results in additional 5 PNBs shown
in Table 2. and for γ = 0.2 results in additional 11 PNBs shown in Table 3.

In Table 4. we have compared the results with different γ values for the attack
on 128-key bit of Salsa20/7.

Attack on 128-bit ChaCha6. In FSE 2008, Aumasson et al. [1] use the
differential (Δ(3)

11,0 | Δ(0)
13,13) with |εd

∗| = 0.026 and threshold γ = 0.5,
obtained number of PNBs n = 51, |εa

∗| = 0.013 and |ε∗| = 0.00036. For α = 26,
results in time 2107 and data 230. But the list of PNBs are not mentioned. By
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Table 1. Key-bits and the corresponding γk’s for the 35 PNBs of the Salsa 7-round
attack.

0 1 18 19 20 21 22 23 24 25 26 27 28 29 30

0.59 0.42 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.98 0.98 0.97 0.97

31 33 34 39 43 44 45 57 58 59 65 71 72 73 96

0.96 0.61 0.41 0.45 0.75 0.62 0.45 0.71 0.59 0.45 0.52 0.73 0.60 0.44 0.59

97 110 111 112 116

0.40 0.76 0.61 0.41 0.41

Table 2. Key-bits and the corre-
sponding γk’s for the additional 5
PNBs of the Salsa 7-round attack.

60 66 78

0.30 0.30 0.39

92 124

0.30 0.30

Table 3. Key-bits and the corresponding
γk’s for the additional 11 PNBs of the Salsa
7-round attack.

2 6 12 35 40 46

0.23 0.26 0.20 0.20 0.23 0.26

53 74 79 113 117

0.25 0.26 0.21 0.20 0.24

considering same requirements we find the time 2106 and data 228. The list of
51 PNB’s and the corresponding γk’s are shown in Table 5.

In 128-key bit of ChaCha6 for γ = 0.4 results in additional 6 PNBs shown
in Table 6. and for γ = 0.3 results in additional 2 PNBs shown in Table 7.

In Table 8. we have compared the results with different γ values for the attack
on 128-key bit of ChaCha6.

4.3 Choosing Proper IVs on Salsa and ChaCha

Maitra [8] improved the attack on Salsa20/8 and ChaCha7 by choosing proper
IVs corresponding to the 256-key bit. Further improved key search complexity
on Salsa20/7 and ChaCha6. Applying the same concept we have attacked 128-
key bit of Salsa20/7 within time 2104 and ChaCha7 within time 2101. Details of
the calculation is as follows

Attack on 128-bit Salsa20/7. Considering differential (Δ(4)
1,14 | Δ(0)

7,31)
with s3 = s11 = 0 and s7 = 0xaaaaaaaa, that is k2 = k4 = 0 and

Table 4. Different parameters for our attack on 128-key bit Salsa20/7

γ n |εa
∗| |ε∗| α Time Data

0.3 40 0.023 0.0030 21 2110 222

0.2 51 0.011 0.0014 21 2107 224
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Table 5. Key-bits and the corresponding γk’s for the 51 PNBs of the ChaCha 6-round
attack.

2 3 8 9 10 11 12 13 14 15 16 19 20 21 22

0.69 0.50 0.99 0.99 0.99 0.98 0.96 0.93 0.87 0.76 0.56 0.96 0.93 0.88 0.76

23 26 27 28 29 30 31 47 63 72 73 95 96 97 98

0.56 0.94 0.90 0.85 0.76 0.65 0.56 0.59 0.76 0.73 0.53 0.87 0.96 0.93 0.87

99 100 103 104 105 108 109 110 111 112 113 114 115 120 121

0.75 0.55 0.87 0.76 0.56 0.99 0.98 0.97 0.96 0.93 0.87 0.79 0.66 1.0 1.0

122 123 124 125 126 127

1.0 1.0 1.0 1.0 1.0 1.0

Table 6. Key-bits and the correspond-
ing γk’s for the additional 6 PNBs of
the ChaCha 6-round attack.

35 51 59

0.44 0.43 0.45

64 88 116

0.42 0.41 0.47

Table 7. Key-bits and the correspond-
ing γk’s for the additional 2 PNBs of the
ChaCha 6-round attack.

39 48

0.33 0.33

v1 = 0xaaaaaaaa. Then |εd
∗| = 0.13225. If threshold is γ = 0.2, we find the

number of PNBs n = 41, |εa
∗| = 0.230 and |ε∗| = 0.0145. For α = 26, results

in time 2104 and data 217. The list of 41 PNB’s and the corresponding γk’s are
shown in Table 9.

Attack on 128-bit ChaCha6. Considering differential (Δ(3)
11,0 | Δ(0)

13,13)
with s5 = s9 = 0 and s13 = 0xaaaaaaaa, that is k1 = k5 = 0 and v0 =
0xaaaaaaaa. Then |εd

∗| = 0.041586. If threshold is γ = 0.4, we find the number
of PNBs n = 52, |εa

∗| = 0.0110 and |ε∗| = 0.00045. For α = 26, results in time
2101 and data 228. The list of 52 PNB’s and the corresponding γk’s are shown
in Table 10.

Table 8. Different parameters for our attack on 128-key bit ChaCha6

γ n |εa
∗| |ε∗| α Time Data

0.4 57 0.011 0.00030 26 2102 229

0.3 59 0.009 0.00025 26 2102 230
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Table 9. Key-bits and the corresponding γk’s for the 41 PNBs of the Salsa 7-round
attack.

0 1 2 6 18 19 20 21 22 23 24 25 26 27 28

0.59 0.42 0.23 0.25 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.98 0.98

29 30 31 33 34 35 39 40 43 44 45 46 53 57 58

0.98 0.97 0.96 0.61 0.41 0.20 0.46 0.23 0.75 0.62 0.45 0.26 0.25 0.71 0.59

59 60 96 97 110 111 112 113 116 117 124

0.45 0.30 0.60 0.40 0.76 0.61 0.41 0.20 0.414 0.244 0.30

Table 10. Key-bits and the corresponding γk’s for the 52 PNBs of the ChaCha 6-round
attack.

2 3 8 9 10 11 12 13 14 15 16 19 20 21 22

0.69 0.50 0.99 0.99 0.99 0.98 0.96 0.93 0.87 0.76 0.56 0.96 0.94 0.88 0.76

23 26 27 28 29 30 31 64 72 73 88 95 96 97 98

0.56 0.94 0.90 0.84 0.76 0.66 0.56 0.42 0.73 0.53 0.41 0.87 0.96 0.93 0.87

99 100 103 104 105 108 109 110 111 112 113 114 115 116 120

0.76 0.55 0.87 0.76 0.56 0.99 0.98 0.97 0.96 0.93 0.87 0.79 0.66 0.47 1.0

121 122 123 124 125 126 127

1.0 1.0 1.0 1.0 1.0 1.0 1.0

5 Conclusion

In this paper, we explained reverting some differences from the first round leads
to valid differentials in the initial state. We characterized different valid states
by reversing one round of Salsa20. This can be helpful for producing the sharper
biases value. Here we have characterized valid initial states by considering 256-
key bit Salsa20. For future work, it will be interesting to characterize valid initial
states by considering 128-key bit Salsa20.

We have successfully improved the attack on 128-key bit of Salsa7 and
ChaCha6. However our work and previous cryptanalysis result on 128 version
of Salsa do not make any threat against Salsa20/12 and Salsa20/20. Finally we
hope that these cryptanalysis will result in better understanding of what makes
these stream cipher secure.
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