
Persistent vs Service IDs in Android:
Session Fingerprinting from Apps

Efthimios Alepis(B) and Constantinos Patsakis

Department of Informatics, University of Piraeus,
80, Karaoli & Dimitriou, 18534 Piraeus, Greece

talepis@unipi.gr

Abstract. Android has conquered the mobile market, reaching a mar-
ket share above 85%. The post Lollipop versions have introduced radical
changes in the platform, significantly improving the provided security
and privacy of the users. Nonetheless, the platform offers several fea-
tures that can be exploited to fingerprint users. Of specific interest are
the fingerprinting capabilities which do not request any dangerous per-
mission from the user, therefore they can be silently shipped with any
application without the user being able to trace them, let alone blocking
them. Having Android AOSP as our baseline we discuss various such
methods and their applicability.

1 Introduction

Mobile devices, especially smartphones have become an indispensable part of our
daily lives, as a big part of our communications and daily activities is processed
and monitored by them. One of the main reasons for their wide adoption is that
they have a plethora of embedded sensors that allow them to understand their
context and adapt accordingly. For instance, through luminosity and proximity
sensors as well as accelerometers, mobile phones may adapt the UI to fit better to
user expectations. Moreover, thanks to GPS, mobile devices are location aware
enabling them to render content according to the spacial restrictions significantly
improving the user recommendations.

Data mining and data profiling can be used in order to collect valuable infor-
mation about a particular user or group of users, in order to generate a profile
[12], which can be further used by companies to gain profit. As stated in [14],
this kind of information, namely user profiling, is valuable also for advertisers
who want to target ads to their users and in return, advertisers may pay more
money to their hosting applications’ developers. Building user profiles requires,
as the authors state, sensitive privileges in terms of permissions, such as Internet
access, location, or even retrieving installed applications in a user’s device [14].
To this end, we may infer that collecting and successfully fusing user data from
more than one service can create even better and more complete user profiles,
which will consequently translate in higher monetization. Looking back in 2009,
it was quite clear that:
c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2018

J. Hu et al. (Eds.): MONAMI 2017, LNICST 235, pp. 14–29, 2018.

https://doi.org/10.1007/978-3-319-90775-8_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-90775-8_2&domain=pdf


Session Fingerprinting from Apps 15

“Once an individual has been assigned a unique index number, it is possible
to accurately retrieve data across numerous databases and build a picture
of that individual’s life that was not authorised in the original valid consent
for data collection” [19].

The above has been realised by tech giants. For instance quoting a statement
from Google’s current privacy policy [10]:

“We may combine personal information from one service with information,
including personal information, from other Google services - for example
to make it easier to share things with people you know. Depending on your
account settings, your activity on other sites and apps may be associated
with your personal information in order to improve Google’s services and
the ads delivered by Google”

In order to “enable” data fusion from different sources and services, one could
argue that unique identifiers should be either implicitly or explicitly present. In
particular, a value describing a quantity of some valuable variable might be
useless if it is not accompanied by a unique identifier that would allow us to
track its source. Contrariwise, identifiers coming from different services that
are matched, may act as a “bridge” between these services to combine their
corresponding datasets and integrate them.

During the last decade relevant surveys have revealed that the majority of
both iOS and Android apps were transmitting the phone’s unique ID and the
user’s location to advertisers. These findings are confirmed by “The Haystack
Project” [11] which revealed that nearly 70% of all Android apps leak personal
data to third-party services such as analytics services and ad networks [20].

All this wealth of information apart from the benign usage for the user benefit
has been a constant target by companies who wish to monetize it, mainly through
targeted advertisement. The recent advances in big data and data mining have
enabled the extraction of information from theoretically diverse data, leading to
the revealing of a lot of sensitive data through data fusion. To this end, many
fingerprinting techniques have been introduced in order to link data flows to
specific individuals. Apparently, since Android in currently the prevailing mobile
platform, most companies are targeting it with their apps, under the freemium
model, harvesting user data to monetize them. There is even a common saying
in the privacy community suggesting that “If you’re not paying for the product,
you are the product”. To this end, If users are not paying for an app, they are
usually selling their profiles (with or without their knowledge/consent) to an ad
network, which will use their unique identifiers to track and target them.

In view of the above and targeting at improving the OSes privacy, the new
coming Android O, makes a number of privacy-related changes to the platform,
many of which are related to how unique identifiers are handled by the system [9],
and in particular aiming to help provide user control over the use of identifiers
[2]. One of the most important improvements concern “limiting the use of device-
scoped identifiers that are not resettable”.



16 E. Alepis and C. Patsakis

Clearly, during app environment of Android hardware identifiers can greatly
facilitate companies’ attempt to deanonymise users. Therefore, Google has been
gradually introducing specific measures to restrict them. In fact, Google decided
to introduce further restrictions in one more identifier; not hardware based,
namely Android ID. While this attempt might seem noble, in this work we show
that these restrictions do not actually serve the purpose, while apps may be
deprived of many persistent identifiers, ephemeral IDs can actually serve their
purposes in the attempt to deanonymize their users and fuse their data.

1.1 Main Contributions

The main contribution of this work is to study user fingerprinting from mobile
apps, which correspondingly and as already discussed can lead to user profiling.
In this regard we assume that apps and software services which profile users, want
to correlate the information that each one of them has collected to fine tune their
profiles. Conceptually, in order to provide proof for our claims, we explore all
the available communication channels that mobile apps could utilize in Android
AOSP in order to identify that specific profiles are installed in the same device.
Furthermore, we suggest that the existing underlying mechanism is able to func-
tion without using unique hardware identifiers, nor dangerous permissions which
could alert the user, or demand further user interaction. While many of the com-
munication mechanisms are apparent, e.g. inter-process communication, there is
a wide misconception that the upcoming changes in Android O will eradicate
many such issues. Therefore, initially we analyse each possible communication
channel and ways it can be used to transfer the needed information. Moreover,
by providing statistical evidence we discuss when these changes are expected to
be noticed by the average user. Finally, despite the touted changes in Android
ID, we detail new methods that can provide permanent cross-app IDs that can
be collected even if an app is uninstalled.

1.2 Organisation of This Work

The rest of this work is organized as follows. In the next section we present
the related work. Section 3 provides the problem setting and our basic assump-
tions. Then, Sect. 4 presents all the available communication channels. In Sect. 5
illustrates possible temporary and ephemeral identifiers that can be used to link
users between applications using Android AOSP as our reference point. Finally,
the article concludes with some discussion about our research findings and pro-
viding statistics regarding the adoption timeline of the expected anonymization
mechanisms of Android O.

2 Related Work

Unique identifiers have been used for a long time and facilitate many tasks in
modern database systems as they allow us to perform record linkage between



Session Fingerprinting from Apps 17

different entities and extract the necessary information and thus knowledge from
the corresponding database tables. The most typical example of a unique iden-
tifier is the Social Security Number, which allows us to distinguish two people
from each other. However, in the digital era, unique identifiers can be considered
hardware identifiers like the MAC address of the network card, or a set of prop-
erties such as browser fingerprints which consist among others of the browser
version, OS, fonts, and browser plugins.

In the Android ecosystem there is a plethora of unique identifiers which have
so far been extensively exploited by advertisement companies to track users and
their interests as ad libraries have become more and more greedy and rogue
[3,18] while apps may deliberately leak information to the ads [4,21] harness-
ing arbitrary amounts of users’ sensitive information directly or indirectly [5].
A key role in this procedure is the use of unique identifiers [17]. Acknowledg-
ing this situation, Google initially introduced some recommendation guidelines
for the proper use of unique identifiers in Android [1]. Then, Google gradually
started requesting more permissions from the apps to allow them access to these
identifiers. For instance, a typical unique identifier for mobile phones are IMEI
and IMSI, however, after Marshmallow, the user has to grant the dangerous
READ PHONE STATE permission to an app to access them. While many users may
ignore app permissions [8], for many others it works as an obstacle, forcing many
companies to comply with the rule.

Despite the ads, apps may collaborate in order to perform malicious acts
which independently would not be allowed to perform. Orthacker et al. [15]
study this problem from the aspect of permissions. In this regard, the malicious
apps which are installed in the victim’s device may result in “possessing” and
correspondingly using dangerous permissions that other normal apps do not. The
concept is that the user would not allow camera and microphone permission to a
single app. However, since the permissions are requested by two apps which are
seemingly independent, the permissions are “spread” so the user grants them,
yet an adversary controls both of them getting access to the desired resource.
Contrary to Orthacker et al. we do not aim to resources, but access to information
that the user would not share to one specific app to prevent his profiling.

In Nougat, the current stable version of Android, Google prohibited unpriv-
ileged access to even more hardware identifiers, such as the MAC address of
the WiFi card, by restricting access to /proc. While the latter measure creates
many issues with applications targeting towards security and privacy services
as Google has not provided any permission so far to access this information,
undoubtedly, it leaves little space to adversaries to exploit.

3 Temporary and Ephemeral Identifiers

3.1 Problem Setting

While the aforementioned issues have led to the introduction of many changes
to Android, improving the security and privacy of the OS, in terms of user
fingerprinting, from the side of apps, we argue that little has been achieved.



18 E. Alepis and C. Patsakis

Certainly, direct access and/or unprivileged access to hardware identifiers has
been removed, therefore, permanent or long term identifiers are not going to be
available in the coming version of Android, nonetheless, this is not what the
advertisement companies are actually trying to do. Undoubtedly, such access
facilitates the correlation process, nonetheless, it is a great misconception to
consider that a unique device identifier from a device is all that two apps need
to correlate user information. More specifically, owning a unique identifier, how-
ever not being able to communicate it to others cannot be considered a threat.
Similarly, having access to a communication channel, yet failing to uniquely iden-
tify the transmitted data results in data loss. Randomly generated identifiers,
locally stored in apps, as it will be shown, offer a solution, however also suffer
from lack of persistency. In this work we present methods which bypass these
obstacles and result in identifying users and also allow communication of this
information to other parties.

3.2 Basic Assumptions and Desiderata

In what follows we assume that the user has installed at least two applications in
his device. In the same sense, this approach can be generalized in software ser-
vices that communicate and/or handle a number of mobile apps. Our reference
is Android AOSP as it provides all the baseline security and privacy methods
therefore all derivative versions may have glitches which are vendor specific, per-
haps apart of CopperheadOS1 which is a hardened version of Android. Moreover,
in order to highlight the magnitude of the presented privacy issue, we further
assume that the two aforementioned applications did not request any permis-
sion from the user during installation, nor during runtime. We also assume that
these apps do not belong to the same developer, nonetheless, the developers have
decided to cooperate in exchanging user data to create a more fine-grained pro-
file of their users. Finally, we assume that even in the cases where the user has
authenticated himself to each app, for each of them he uses completely different
credentials e.g. the username is different in both apps. One can easily deduce
that by “relaxing” these assumptions, our work becomes much easier.

Apparently, one way to achieve their goal, the app developers only need to
determine that the two apps are running in the same device and exchange the
corresponding IDs. Inarguably, the two apps do not “care” whether the user
has bought a new device and installed both of them there, since their goal is
to extend the user profile that each one of them has created by fusing all the
available information. This profile spans throughout a session, therefore, their
goal is to anonymize a session, regardless of its span. If they manage to exchange
the user IDs, then the developers may use them to request the needed information
from each other. Note that due to the nature of Android Package Manager class,
all apps are aware of which apps are installed in the system without requesting
any permission. Therefore, the challenge lies in the exchange of the user IDs
through a communication channel.

1 https://copperhead.co/android/.

https://copperhead.co/android/


Session Fingerprinting from Apps 19

For the scope of clarity, in what follows we omit the use of e.g. encryption
and digital signatures to hide the content of exchanged messages or to verify
their source and authenticity. Moreover, we study each method independently
considering how one could exchange the needed information, even if the previous
ones did not exist.

Finally, it is apparent that even if the user does not authenticate to the app,
hence there is no directly linked user ID, the app may create a random ID and
use it as the session ID. Since this is linked to the session and can be stored by
the app in its storage space, this ID can also serve as the user ID for the lifespan
of the app. However, as it will be discussed in the next sections, a random ID can
also serve in the cases of local communication between apps, while for remote
communication further measures should be taken.

4 Exchanging Unique Identifiers

In the following paragraphs, we discuss methods that allow apps to correlate user
information without using unique hardware identifiers. More importantly, all the
methods which are described do not require any permission; let alone dangerous
ones, as they depend on inherent Android mechanisms and structures, so no user
interaction is required. The basic overview of the proposed methods is illustrated
in Fig. 1, while code snippets that provide these functionalities can be found in
the Appendix and illustrate not only how easy they can be applied, but also
that many of them could be realised through reflection to avoid static code
analysis.

Fig. 1. Proposed fingerprinting methods



20 E. Alepis and C. Patsakis

4.1 Sockets

In Android each application corresponds to a different user and is executed in an
isolated VM. Therefore, apps cannot directly access the data of each other. The
same applies for their temporary files, which actually are stored in the protected
installation directory of each app under /data. Since they cannot directly share
a file using the filesystem, an obvious way to exchange some information between
two apps is by opening a socket. Socket programming is one of the most funda-
mental primitives in every Unix-like system, and despite many changes, Android
is still one of them. While sockets are very common in Android, many security
issues have been raised [6,13]. For our scenario the case is rather straight for-
ward, as one of the apps needs to open a socket in a predefined port and await for
connections which will transmit a message of the form: (package name, ID1).
Clearly, to make these methods more stealth and secure, port knocking could
also be considered along with encryption to counter man-in-the-middle attacks.
The response will contain the ID of the other app, allowing both developers to
request the desired data from each other.

4.2 Android IPC

As already discussed, Android apps belong to different users. Moreover, apps
and system services run in separate processes. This restriction actually improves
the security, stability, and memory management of the system. For instance,
since each app runs as a different process of another user, should the system
regard it as unnecessary or functioning improperly, it can easily “kill” it without
jeopardizing further dependencies, allocating immediately the freed resources to
the system.

To facilitate Inter-process communication (IPC), Android uses the binder
framework (Binder) which exposes simple to use APIs. Due to its critical role,
the security of Binder has been studied, revealing major security issues [16].
Some of the most generic Android mechanisms, such as Intents, Services, Con-
tent Providers, Messenger, and also common system services like Telephony and
Notifications, utilize IPC infrastructure provided by the Binder framework.

One of the most profound ways to use Binder for our work is intents. More
precisely, since we assume that each one of the two apps knows that the other
is installed, the use of explicit intents is apparent. A similar approach can also
be implemented through the use of Broadcast Receivers who are associated with
intents due to the use of the Binder. Broadcast Receivers allow applications
to register for system or application events. Therefore, once a registered event
happens, the corresponding receivers are notified and a result can be transmitted
to them. In this regard, the two cooperating apps may agree upon an app event,
so that they can register to each other and exchange the required information.

Bound services provide another straightforward solution, as they represent
a “server” component in a client-server interface. Bound services allow compo-
nents, such as activities of other apps to bind to a service, send requests, receive
responses, and perform IPC. A typical bound service may be utilized in order to



Session Fingerprinting from Apps 21

serve another application component, running in the background. In the same
sense, the messenger interface provides another well-defined IPC infrastructure
that enables mutual authentication of the endpoints, if required.

Finally, a more Linux-based approach would be to use shared memory. This
operation however is quite similar to the Binder-based approach, that provides a
“wrapper” for the more complicated remote procedure calls (RPC) mechanisms.

4.3 Shared Preferences

Modern applications are not static and in order to adapt according to
the user preferences, they need a registry to keep track of them and
cater for future changes. In Android, to keep the preferences of each app
isolated from the others, this registry is held in the private folder of
each app in the form of an XML file. More precisely, in a file named
/data/data/package name/shared prefs/filename.xml. These files however
can be tagged as MODE WORLD READABLE and/or MODE WORLD WRITEABLE allow-
ing other apps to read and write data, if they are aware of where they are
stored. Apparently, the two cooperating apps can use this mechanism in con-
junction with encryption to exchange the corresponding user IDs. Clearly, the
exact same mechanism could be used to exchange information with a tempo-
rary file stored in the SD card, however, for the latter a dangerous permission is
required.

4.4 Clipboard

Clipboard is one of the most widely used features in GUIs as it enables users to
seamlessly copy information from one app to another. This is rather important in
Android due to the size constraints of the device it usually operates, where typing
is not as easy as in common desktop computers. Clearly, adding some information
in a public readable and writable channel such as the clipboard, implies several
risks which can be easily exploited [7]. In the case of Android, apps do not have
to request any permission to access the clipboard, but additionally they can
subscribe to receive clipboard change events allowing them collect the shared
information, as well as append their data. Clearly, using the proper format and
encryption, two cooperating apps can easily exchange the needed information
using the clipboard.

4.5 Internet

Utilizing the Internet for communication is probably one of the most obvious
solutions. Applications having harvested user data, aim foremost to transmit
them to a remote service for further processing. To this end, the “Internet”
permission is requited, however, as a “normal” permission (from Marshmallow
and above), this requires no specific user action, nor can it be withdrawn. Inter-
estingly, since the last Android versions, this permission is found as the most



22 E. Alepis and C. Patsakis

“used” one in all the available applications. Nevertheless, having a number of
apps accessing the Internet does not necessarily imply that these apps are able to
exchange information about a specific user. The main reason for this is because
the aforementioned “techniques” reside inside a mobile device, they represent
local communication channels. On the contrary, Internet access is not “local”
and involves a chaotic number of possible endpoint combinations. Even in the
case where all apps point to a specific web server, there is always the challenge of
determining which of the available apps reside in the same device. For this rea-
son, in order for two or more apps to establish a communication channel between
them in order to exchange user specific data, unique device or user identifiers
should be present.

4.6 Sensors

While dangerous permissions require user’s consent, normal permissions are
automatically granted and cannot be revoked. Theoretically, these permissions
do not imply any security and privacy threat for the user, nonetheless, they
can be used to deduce other sensitive information. For instance, the acceleration
sensor does not request any permission to be used, however, it can be used as a
covert channel to slowly receive information, if combined with the corresponding
vibration pattern. In our use case, we assume that a trusted third party issues
a request to all apps named pkg1 to wait to receive a vibrating signal which
matches a specific pattern. The pattern is triggered by pkg2 which turns on
vibration (through a normal permission) and encodes in the form of e.g. Morse
code the aforementioned pattern. Should one installation of pkg1 detect this pat-
tern, then the apps can exchange the corresponding user ID. Similarly, instead
of the vibration/accelerometer pair, one could use light/luminosity combination
or try to correlate the sensed information at a given timeframe. While this task
could be achieved, the clustering effort implies a lot of communication from
each device making the method less practical. Alternatively, after exchanging a
unique identifier through sensors, the cooperating apps could utilize the Internet
communication, as already discussed, in order to communicate.

5 Identifiers

This problem of accurately identifying whether two or more mobile applications
reside in the same device may be resolved by accurately matching the available
identifiers of the apps. However, as already discussed, it becomes apparent that
these identifiers cannot be randomly generated by the apps, since there are cases
where they would never match (e.g. two random IDs from two different apps).
The required identifiers should become available by a more “generic” entity, that
is the user in question. To this end, the following subsections describe possible
ways of deanonymizing users, without using hardware identifiers.



Session Fingerprinting from Apps 23

5.1 Procfs Information

Exploiting the concept of a trusted third party which orchestrates the exchange
of the collected information, apps can use other “public” information which is
shared in Android AOSP. A typical example is the uptime which indicates how
many milliseconds the device is running since last boot. This information can be
retrieved by the corresponding API call, or through the /proc/uptime file. While
the apps may not collect this information simultaneously, so the clusters may
contain many possible pairs, this can be overpassed by reading both the uptime
and the current-time timestamps and making the required subtraction. This
operation can also be easily improved by acquiring additional public information
such as battery status. Interestingly, other unique, session specific, identifiers,
can be found in procfs many of which may even be vendor specific. An attempt
to map the variations of Android can be found in Android Census2. Some of
the most profound and wide spread world readable files that can be used for
deanonymization in /proc are listed below. In each case we provide an overview
of the contents and how it can be used to allow to apps that they simultaneously
operate in the same device, creating a session ID.

– boot stat: Contains statistics about the boot process. Due to the randomiza-
tion of the process IDs and the randomness of running times of each process,
it is highly impossible for two devices to have the same statistics, even if the
vendor is the same.

– diskstats: This file, as the name suggests, contains information about the
disc usage. Again, two devices are not expected to have the same statistics.
However, since these statistics are subject to time constraints, if the two
cooperating applications do not take the snapshots simultaneously, minor
changes may appear.

– interupts: The file contains information about the interrupts in use and
how many times the processor has been interrupted. Small variations of the
contents may appear from the timing of the snapshots.

– meminfo: Similar to diskstats, but for memory usage.
– pagetypeinfo: Keeps track of free memory distributions in terms of page

order. As in diskstats, minor variations may appear due to snapshot timing.
– stat: Here several statistics about kernel activity are recorded. Similar to the

case of diskstats.
– usblog: This file keeps track of USB usage and can be used for fingerprinting

due to the stored timestamps.
– vmstat: This file keeps virtual memory statistics from the kernel, hence minor

variations are expected.
– zoneinfo: This file provides details about the memory management of each

zone, so minor variations are expected due to timing of the snapshots.

2 https://census.tsyrklevich.net/.

https://census.tsyrklevich.net/


24 E. Alepis and C. Patsakis

5.2 Application Metadata

As already discussed, the Android’s Package Manager class is capable of report-
ing all the installed apps to anyone requesting this information without request-
ing any permission. Moreover, apps can subscribe to the system event of app
installation to be notified when other apps are installed and update the list
of installed apps accordingly. Theoretically, this information can be used as a
device fingerprint since this information is expected to differentiate two users.
More interestingly though, while the /data/pkg name is by default private and
cannot be accessed by other apps, the exact creation date of each folder, as well
as the folder’s size can be retrieved for any app folder providing the necessary
identifying information. Figure 2 illustrates the creation dates of a number of
directories in Android regarding application installations.

Moreover, even if the set comprising of all the applications’ metadata changes
during time (e.g. new app installations and/or app uninstallations), its subsets
can be still used as unique identifiers. A number of installed applications within a
mobile device, accompanied with their installation date and their folder size can
be considered a unique identifier. Furthermore, considering the fact that users
have a “tendency” to use specific apps in each device they own, and even more,
they most probably install the apps they have already purchased from importing
their profile in Google Play Services in each new mobile device, we may safely
assume that the apps’ package names, especially the paid ones, within a mobile
device may further uniquely identify users.

Fig. 2. Installed packages and the creation date of the folders

6 Discussion

The upcoming version of Android, dubbed “O” at the moment of writing, intro-
duces a significant change for one of the identifiers that Google was promoting,



Session Fingerprinting from Apps 25

namely Android ID, a 64-bit value. Up to Nougat, Android ID was scoped per
user, but since most devices had one user, this ID was actually a unique iden-
tifier for the device. Notably, this identifier was generated on first boot, or user
creation, and was expected to change only once the user wiped his device. How-
ever, in “O” this changes radically, as Android ID is now scoped per-app. More
precisely, the Android ID is computed based on the package name, the signa-
ture, the user, and the device, theoretically deterring apps from correlating user
information.

However, in Android “O” Google decided to add even more restrictions than
Nougat. Therefore, the android.os.Build.SERIAL which returns the hardware
serial also requires the dangerous PHONE permission. Moreover, the ro.runtime.
firstboot property is no longer available as well as other identifiers such as
persist.service.bdroid.bdaddr and Settings.Secure.bluetooth address
related to the Bluetooth MAC address and a camera hardware identifier for some
HTC devices htc.camera.sensor.front SN. Finally apps can get the MAC
address of the WiFi card only if they are granted the LOCAL MAC ADDRESS per-
mission.

The above changes significantly remove many capabilities of apps in collect-
ing device specific unique identifiers. Table 1 illustrates these changes, however,
many forms of transferring the needed data, especially the ones proposed by the
authors, still remain.

Table 1. Applicability of fingerprinting methods.

Marshmallow Nougat O

Sockets X X X

Binder-based methods X X X

Broadcast receivers X X X

Clipboard X X X

Shared preferences X X

Android ID X X

Procfs information X X

Sensors X X X

Application metadata X X X

Since many of the aforementioned changes will be introduced to Android O,
one major question is when the user is expected to experience them. To answer
this question one needs to consider the Android diversity. Apart from the dif-
ferent vendor flavors that Android comes, the system is highly fragmented, see



26 E. Alepis and C. Patsakis

0.7% Gingerbread0.7%
Ice Cream Sandwich

8.1%

Jelly Bean
17.1%

KitKat

30.1%

Lollipop

31.8%

Marshmallow

11.5%

Nougat

Fig. 3. Android vessions market share as of time writing Source: https://developer.
android.com/about/dashboards/index.html.

Fig. 3. To determine how fast developers redesign their apps to provide fea-
tures that new versions of Android offer, we used data from Tacyt3 a platform
from ElevenPaths which downloads and analyses each application’s versions from
Google Play and others. The reported results in Fig. 4 are per version and illus-
trate which API level each version is targeting. In blue and red the reference

Fig. 4. Target API level per release date (Marshmallow, Nougat) and till today.

3 https://tacyt.elevenpaths.com.

https://developer.android.com/about/dashboards/index.html
https://developer.android.com/about/dashboards/index.html
https://tacyt.elevenpaths.com


Session Fingerprinting from Apps 27

dates are the release dates of Marshmallow and Nougat respectively, while yel-
low represents the versions to date. While the retrieved information refers to
versions and not apps, the reader can easily monitor the resulting trends. It can
be observed that even after 16 months since the introduction of Nougat; the
current stable version, not only few users have switched to it, but even fewer
apps have integrated these features. While the most targeted API is 19, new
developers’ targeting is towards Marshmallow (API level 23) which dates back
to October 5, 2015. Following this trend, one may speculate that the transition
of apps to Android O is expected to take about two years, therefore the mecha-
nisms discussed in this work not only currently affect millions of users, but are
expected to stand for the years to come.

Finally, it is worthy to note that from the aforementioned fingerprinting
capabilities, app metadata still constitute a novel unique identifier which remains
even if an app is uninstalled. In this regard, app metadata can serve not only as
an alternative unique ID to Android ID, but also as an alternative to Advertiser
ID, working on all Android versions up to O. In fact, while Advertiser ID is user-
resettable, app metadata are persistent and can only be erased after factory reset.
Therefore, Table 2 summarizes the persistence of each identifier, whether it can
be reset, and whether a dangerous permission is required.

Table 2. Unique identifiers and their persistence.

Unique identifier Post O era Persistent User-resettable Dangerous
Permission

Android ID X X

MAC X X X

Advertising ID X X X ?

Build SERIAL X X X

App metadata X X

IMEI X X X

IMSI X X X

IP addresses X X

GSF android ID X X X

Contact profile X X X X

Acknowledgments. This work was supported by the European Commission under
the Horizon 2020 Programme (H2020), as part of the OPERANDO project (Grant
Agreement no. 653704). The authors would like to thank ElevenPaths for their valuable
feedback and granting them access to Tacyt.



28 E. Alepis and C. Patsakis

Appendix

Sample Code

Category Sender Receiver Required
Permissions

Explicit Intents
intent.putExtra("msg","Some Data");

startActivity(intent);

String s = getIntent().getStringExtra("msg");
None

Intents Returning
Results intent.putExtra("package", "Package1");

intent.putExtra("ID", "123456789");

startActivityForResult(intent,request_code);"

intent.putExtra("msgResult","Some data");

setResult(RESULT_OK,intent);

finish();"

No

Local Sockets
ls.connect(new LocalSocketAddress(

SOCKET_ADDRESS));

String msg = "Some Data";

ls.getOutputStream().write(msg.getBytes());

ls.getOutputStream().close();"

LocalSocket ls = server.accept();

InputStream input = ls.getInputStream();

int readbytes = input.read();"

No

Remote Sockets
Socket socket = serverSocket.accept();

OutputStream outputStream;

outputStream = socket.getOutputStream();

String msg = "Some Data";

PrintStream ps = new PrintStream(outputStream);

ps.print(msg);

ps.close();"

InputStream input = socket.getInputStream();

int readBytes = input.read();

socket.close();"

Internet

Bound Services
bindService(intent, mConnection, Context.

BIND_AUTO_CREATE);"

public IBinder onBind(Intent intent) {return

mBinder;}"

No

Broadcast
Receivers intent.setAction(SOME_ACTION);

intent.putExtra("msg","Some Data");

sendBroadcast(intent);"

String s = arg1.getExtras().getString("

msg");

}"

No

App Local Stor-
age Editor edit = prefs.edit();

edit.putString("msg", "Some Data");

edit.commit();"

SharedPreferences prefs = context.

getSharedPreferences("SP", Context.

MODE_WORLD_READABLE);

String s= prefs.getString("msg", "No Data found

");"

No

Device Storage
String msg = "Some Data";

fos.write(msg.getBytes());

fos.close();"

DataInputStream dis = new DataInputStream(fis);

BufferedReader br = new BufferedReader(new

InputStreamReader(dis));

String s = br.readLine();

in.close();"

Read/Write
Storage

ClipBoard
clipboardManager = (ClipboardManager)

getSystemService(CLIPBOARD_SERVICE);

ClipData clipData;

clipData = ClipData.newPlainText("msg", "Some

Data");

clipboardManager.setPrimaryClip(clipData);"

clipboardManager = (ClipboardManager)

getSystemService(CLIPBOARD_SERVICE);

ClipData clipData = clipboardManager.

getPrimaryClip();

ClipData.Item item = clipData.getItemAt(0);

String s = item.getText().toString();"

No

References

1. Android Developers: Best practices for unique identifiers. https://developer.
android.com/training/articles/user-data-ids.html. Accessed 5 July 2017

2. Android Developers Blog: Changes to device identifiers in Android O. https://
android-developers.googleblog.com/2017/04/changes-to-device-identifiers-in.
html. Accessed 24 July 2017

3. Book, T., Pridgen, A., Wallach, D.S.: Longitudinal analysis of android ad library
permissions. arXiv preprint arXiv:1303.0857 (2013)

4. Book, T., Wallach, D.S.: A case of collusion: a study of the interface between ad
libraries and their apps. In: Proceedings of the Third ACM Workshop on Security
and Privacy in Smartphones & Mobile Devices, pp. 79–86. ACM (2013)

https://developer.android.com/training/articles/user-data-ids.html
https://developer.android.com/training/articles/user-data-ids.html
https://android-developers.googleblog.com/2017/04/changes-to-device-identifiers-in.html
https://android-developers.googleblog.com/2017/04/changes-to-device-identifiers-in.html
https://android-developers.googleblog.com/2017/04/changes-to-device-identifiers-in.html
http://arxiv.org/abs/1303.0857


Session Fingerprinting from Apps 29

5. Demetriou, S., Merrill, W., Yang, W., Zhang, A., Gunter, C.A.: Free for all! assess-
ing user data exposure to advertising libraries on android. In: NDSS (2016)

6. Fahl, S., Harbach, M., Muders, T., Baumgärtner, L., Freisleben, B., Smith, M.:
Why eve and mallory love android: an analysis of android SSL (in)security. In: Pro-
ceedings of the 2012 ACM Conference on Computer and Communications Security,
pp. 50–61. ACM (2012)

7. Fahl, S., Harbach, M., Oltrogge, M., Muders, T., Smith, M.: Hey, you, get off of
my clipboard. In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp. 144–161.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39884-1 12

8. Felt, A.P., Ha, E., Egelman, S., Haney, A., Chin, E., Wagner, D.: Android permis-
sions: user attention, comprehension, and behavior. In: Proceedings of the Eighth
Symposium on Usable Privacy and Security, p. 3. ACM (2012)

9. Google: Android o behavior changes. https://developer.android.com/preview/
behavior-changes.html. Accessed 24 July 2017

10. Google: Google privacy policy. https://www.google.com/intl/en/policies/privacy/.
Accessed 24 July 2017

11. Haystack: The haystack project. https://haystack.mobi/. Accessed 24 July 2017
12. Hildebrandt, M., Gutwirth, S. (eds.): Profiling the European Citizen, Cross-

Disciplinary Perspectives. Springer, Dordrecht (2008). https://doi.org/10.1007/
978-1-4020-6914-7

13. Jia, Y.J., Chen, Q.A., Lin, Y., Kong, C., Mao, Z.M.: Open doors for bob and
mallory: open port usage in android apps and security implications. In: 2017 IEEE
European Symposium on Security and Privacy (EuroS&P), pp. 190–203. IEEE
(2017)

14. Kohno, T. (ed.): Proceedings of the 21th USENIX Security Symposium, Bellevue,
WA, USA, 8–10 August 2012. USENIX Association (2012). https://www.usenix.
org/publications/proceedings/?f[0]=im group audience%3A334

15. Orthacker, C., Teufl, P., Kraxberger, S., Lackner, G., Gissing, M., Marsalek, A.,
Leibetseder, J., Prevenhueber, O.: Android security permissions – can we trust
them? In: Prasad, R., Farkas, K., Schmidt, A.U., Lioy, A., Russello, G., Luccio,
F.L. (eds.) MobiSec 2011. LNICST, vol. 94, pp. 40–51. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-30244-2 4

16. Peles, O., Hay, R.: One class to rule them all 0-day deserialization vulnerabilities in
android. In: Proceedings of the 9th USENIX Conference on Offensive Technologies,
p. 5. USENIX Association (2015)

17. Son, S., Kim, D., Shmatikov, V.: What mobile ads know about mobile users. In:
NDSS (2016)

18. Stevens, R., Gibler, C., Crussell, J., Erickson, J., Chen, H.: Investigating user
privacy in android ad libraries. In: Proceedings of the 2012 Workshop on Mobile
Security Technologies (MoST) (2012)

19. The Guardian: Morality of mining for data in a world where nothing
is sacred (2009). https://www.theguardian.com/uk/2009/feb/25/database-state-
ippr-paper

20. Vallina-Rodriguez, N., Sundaresan, S., Razaghpanah, A., Nithyanand, R., Allman,
M., Kreibich, C., Gill, P.: Tracking the trackers: towards understanding the mobile
advertising and tracking ecosystem. CoRR abs/1609.07190 (2016). http://arxiv.
org/abs/1609.07190

21. Vanrykel, E., Acar, G., Herrmann, M., Diaz, C.: Leaky birds: exploiting mobile
application traffic for surveillance. In: Grossklags, J., Preneel, B. (eds.) FC 2016.
LNCS, vol. 9603, pp. 367–384. Springer, Heidelberg (2017). https://doi.org/10.
1007/978-3-662-54970-4 22

https://doi.org/10.1007/978-3-642-39884-1_12
https://developer.android.com/preview/behavior-changes.html
https://developer.android.com/preview/behavior-changes.html
https://www.google.com/intl/en/policies/privacy/
https://haystack.mobi/
https://doi.org/10.1007/978-1-4020-6914-7
https://doi.org/10.1007/978-1-4020-6914-7
https://www.usenix.org/publications/proceedings/?f[0]=im_group_audience%3A334
https://www.usenix.org/publications/proceedings/?f[0]=im_group_audience%3A334
https://doi.org/10.1007/978-3-642-30244-2_4
https://www.theguardian.com/uk/2009/feb/25/database-state-ippr-paper
https://www.theguardian.com/uk/2009/feb/25/database-state-ippr-paper
http://arxiv.org/abs/1609.07190
http://arxiv.org/abs/1609.07190
https://doi.org/10.1007/978-3-662-54970-4_22
https://doi.org/10.1007/978-3-662-54970-4_22

	Persistent vs Service IDs in Android: Session Fingerprinting from Apps
	1 Introduction
	1.1 Main Contributions
	1.2 Organisation of This Work

	2 Related Work
	3 Temporary and Ephemeral Identifiers
	3.1 Problem Setting
	3.2 Basic Assumptions and Desiderata

	4 Exchanging Unique Identifiers
	4.1 Sockets
	4.2 Android IPC
	4.3 Shared Preferences
	4.4 Clipboard
	4.5 Internet
	4.6 Sensors

	5 Identifiers
	5.1 Procfs Information
	5.2 Application Metadata

	6 Discussion
	References




