
A Cache-Aware Congestion Control
for Reliable Transport in Wireless Sensor

Networks

Melchizedek I. Alipio(B) and Nestor Michael C. Tiglao

Ubiquitous Computing Laboratory, EEE Institute,
University of the Philippines Diliman, 1101 Quezon City, Philippines

{melchizedek.alipio,nestor}@eee.upd.edu.ph

Abstract. Data caching and congestion control are two strategies that
can enhance the transport reliability in constrained Wireless Sensor Net-
works. However, these two mechanisms are designed independently for
most transport protocols developed for WSN. This work developed a
new cache-aware congestion control mechanism for reliable transport.
RT-CaCC utilizes cache management policies such as cache insertion,
cache elimination and cache size to mitigate packet losses in the network
while maximizing cache utilization and resource allocation. It uses two
cache management policies for packet loss detection: implicit notifica-
tions and expiration of timeout. In addition, it utilizes congestion avoid-
ance using cache-aware rate control mechanism employing transmission
window limit as a function of cache size. Results showed that the RT-
CaCC obtained significant improvement gain in terms of cache utiliza-
tion, end-to-end delay and throughput performance specifically during
high level of packet loss in the network.

Keywords: Cache-aware · Congestion control · Intermediate caching
Internet of Things · Wireless Sensor Networks

1 Introduction

A typical Wireless Sensor Network (WSN) is consists of tiny nodes that are
equipped with embedded computing devices interfacing with sensors or actu-
ators. These sensor networks are vital component of Internet of Things (IoT)
and characterized as constrained networks due to limited memory, computing
and energy capability. A sizable set of these nodes is dispersed over a wide geo-
graphical area to monitor a physical or environmental event. Therefore, packets
generated at source nodes are usually transmitted to the sink through multi-
hop communication [1]. In effect, these networks experience high probability of
packet drop due to poor link quality, link contentions or buffer overflows. Thus,
an effective transport protocol is a must. One mechanism of improving relia-
bility is intermediate caching thru local retransmissions. Another mechanism is
to utilize congestion control strategies which can alleviate packet losses due to
c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2018

J. Hu et al. (Eds.): MONAMI 2017, LNICST 235, pp. 217–230, 2018.

https://doi.org/10.1007/978-3-319-90775-8_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-90775-8_18&domain=pdf
http://orcid.org/0000-0003-0483-0610
http://orcid.org/0000-0003-3223-5237

218 M. I. Alipio and N. M. C. Tiglao

network congestion. Some transport protocols combined these two mechanism
to further enhance the reliability of data transport in WSN.

To the best of our knowledge, this paper makes the following contributions:
(1) design a cache-aware congestion control mechanism based on different cache
management policies which are utilized to optimize cache utilization of the trans-
port protocol. To achieve this intention, we (2) perform simulations to evaluate
and analyze the performance gain improvement of the congestion control mech-
anism as compared with the baseline protocols.

The rest of the paper is organized as follows: Sect. 2 discusses some of the
related works. In Sect. 3, we discuss transport layer caching and the cache-aware
congestion control. In Sect. 5, we discuss the simulation environment, results and
discussions. Finally, Sect. 6 concludes the paper.

2 Related Work

Existing transport protocols in WSN combined both reliability and congestion
control mechanisms to improve the performance of packet transmissions. Increas-
ing the reliability is achieved by using local retransmission at intermediate nodes.
While congestion control alleviates the network during high level of packet losses
due to poor wireless quality, contending flows or buffer overflow. DTC [2] and
TSS [3] modified TCP protocol in order to provide direct TCP/IP - WSN com-
patibility which is implemented in the intermediate nodes and requires no pro-
tocol changing in the end nodes. It uses intermediate caching and provides hop-
by-hop reliability. Segments are cached at the intermediate nodes based on the
highest sequence number and link layer feedback. However, it uses AIMD rate
control mechanism to mitigate packet losses during congestion states. There-
fore, it does not classify packet losses due to wireless link error which makes the
congestion window oscillates aggressively.

On the other hand, ERCTP [4] implements a modular approach for con-
gestion control and reliability mechanisms. Its source rate adjustment module
defines the new transmission rate adjustment for child nodes in order to mit-
igate congestion. It monitors the instantaneous network statistics which helps
sink to explicitly and periodically send the estimated value of rate adjustment
to source nodes, which is obtained based on congestion index calculation. The
use of explicit notification to infer possible congestion may lead to additional
traffic load to the network. Thus affecting the throughput performance of the
transport protocol. Moreover, RCRT [5] also uses AIMD while it adapts the total
aggregate rate of all the flows as observed by the sink, rather than the rate of a
single flow. Whenever RCRT determines the network is congested, it applies the
rate decrease step by time-dependent multiplicative decrease factor, computes a
new rate allocation for all the flows, and sends the new rate for each flow to the
corresponding source.

Intermediate caching and congestion control mechanisms are different tech-
niques that effectively improve reliability of data transport performance in WSN.
However, these two mechanisms are designed independently for most transport

Cache-Aware Congestion Control for Reliable Transport 219

protocols developed. In previous works, congestion control techniques are not
cache-aware. This can possibly result to non-optimal use of intermediate caching,
inappropriate congestion window movement and increase in energy consumption
of intermediate nodes. To the best of the our knowledge, no study has yet to
develop a cache-based transport protocol that has an appropriate congestion
control mechanism that can improve cache utilization, network efficiency, and
resource allocation.

3 Overview of Transport Data Caching and Management
Policies

Intermediate caching alone can mitigate packet losses either due to contentions
or congestion from local retransmissions up to a certain optimal transmission
window size [6]. In addition, the information from cache elimination policies
and cache size can be used to adapt the source rate control in improving the
performance of a cache-based transport protocol in terms of throughput, end-to-
end delay and cache utilization [7]. These ideas provide the underlying support
for the new cache-aware congestion control integrated in a transport protocol
(RT-CaCC).

The caching mechanism of the RT-CaCC protocol was inspired by the
DTSN+ [8]. RT-CaCC uses both positive acknowledgment (ACK) and selec-
tive negative acknowledgment (NACK) to be sent from the receiver upon the
request of the sender through an Explicit Acknowledgment Request (EAR). The
EAR signal is piggybacked on to a data packet. After sending an EAR, the
source launches an EAR timer. If the EAR timer expires before an ACK/NACK
is received, the source retransmits the EAR packet. Upon the reception of EAR
at the receiver node, a NACK, which contains a bitmap of missing packets,
is generated and transmitted back to the sender. While relaying such NACKs,
intermediate nodes learn about the missing packets and check if those packets
are present in their cache. If so, the intermediate nodes retransmit those packets
towards the receiver and modify the NACK bitmap accordingly before sending
it towards the sender. Likewise, RT-CaCC adapts a NACK repair mechanism
whereby intermediate nodes can issue NACK signals to hasten the repair pro-
cess. In addition to receivers being able to detect lost packet, intermediate nodes
detect packet loss and signal the previous hop node through a repair negative
acknowledgment (RNACK) control packet that contains the sequence number of
lost packet. Upon receiving the RNACK, the previous hop node will retransmit
the lost packet towards the destination if a copy is found in the cache. If not, the
RNACK will be propagated towards the source. The sending of the RNACK is
not timer-driven but triggered as soon as an out-of-sequence packet is detected.
This feature further reduces the probability of packet loss from poor wireless
link errors.

At intermediate nodes, RT-CaCC used cache insertion policy with a certain
probability which can be based on cache partitioning scheme [9]. The probability
value must be chosen to maximize cache utilization of data packets requested by

220 M. I. Alipio and N. M. C. Tiglao

the NACK along the reverse path. At each intermediate node, the total cache
size CS is divided among the different flows that cross the node. Let ωn

i ≥ 0 be
a weight related to the fraction of cache at node n that is assigned to flow i. The
actual fraction is given by the normalized weight ρn

i = ωn
i∑Fn

j=1 ωn
j

. A packet that

belongs to flow i can only be cached in the fraction of cache assigned to flow i,
whose size is equal to ρn

i × CS. Consequently, the caching probability Pcache for
a packet that belongs to flow i at node n is given by min (1, ρn

i × CS). Consider-
ing that each node in the network is simultaneously cross by more than one flow
wherein all flows have equal hop length, an equitable way for partitioning the
cache is to divide it equally between the flows. In this case, a uniform cache par-
titioning can be implemented where each flow is assigned the same ωn

j to achieve
fairness. However, for complex scenarios with higher number of concurrent flows,
heterogeneous link quality and length, a non-uniform cache partitioning can be
used [9] and is out of the scope of this study.

RT-CaCC also used cache elimination policy in the form of implicit notifi-
cations that the sender nodes receive: ACK (holesACK), NACK without holes
(holesNACK = 0) and NACK with holes (holesNACK �= 0). Holes represent
the number of packets that were not successfully retransmitted by intermediate
caching. Therefore, the list of packets in the hole is retransmitted by the sender
together with the new batch of packets. From the three notifications, the recep-
tion of NACK with holes indicates a high degree of packet loss that the local
retransmissions from intermediate caching was not able to handle.

The probability of success in an end-to-end transmission can be evaluated by
the number of hops H and probability of packet loss Ploss as (1−Ploss)H shown
in Fig. 1a [10]. When caching is use at intermediate nodes and assuming that the
given CS can store all the packets needed for local retransmission, the expected

number of transmissions (ENT) as shown in Fig. 1b is given by H ·
∞∑

i=0

P i
loss.

Fig. 1. Data packet transmissions probabilistic model: (a) without intermediate
caching and (b) with intermediate caching

However, since intermediate nodes are constrained and CS has limited capac-
ity, the number of packets to be inserted into the cache can be based on a certain
probability. This caching probability can be based on cache partitioning scheme
Pcache. Therefore, the actual expected number of transmissions is given by

ENTcache = H +

∞∑

i=1

P
i
loss ·

H∑

h=1

[

1 + P
h−1
cache · ENT (h − 1) +

h−1∑

j=2

P
h−j
cache · ENT (h − j)

]

(1)

Cache-Aware Congestion Control for Reliable Transport 221

where ENT is the expected number of transmission without caching which is
given by

ENT = H +

⎡

⎢
⎢
⎢
⎣

H−1∑

h=1
Ploss · (1 − Ploss · h)

1 − (1 − Ploss)H
+ 1

⎤

⎥
⎥
⎥
⎦

·
∞∑

i=1

(1 − (1 − Ploss)
H
)
i (2)

In this case, retransmission can be performed from any of the nodes in the
forward path that are behind the hop link where the packet loss occurred taking
into consideration the best possible value in Pcache.

4 Cache-Aware Congestion Control

The context of cache-aware is based on different cache management policies
which are utilized by the congestion control mechanism to mitigate packet losses
while optimizing cache utilization and bandwidth allocation. This approach
assumes that the network is uncongested as long as end-to-end losses from tran-
sient congestion and poor wireless links are repaired immediately. Furthermore,
it permits the source to transmit at a higher rate even if there are occasional
end-to-end losses, since these losses can be recovered by intermediate caching.

The RT-CaCC protocol utilizes cache-aware strategies to detect, notify and
avoid packet losses due to poor wireless channel or buffer congestion in the
network discussed as follows:

4.1 Packet Loss Detection Using Cache Elimination Policy

RT-CaCC utilizes implicit notifications in the form of cache elimination policy to
infer the approximate degree of packet losses. NACK notifications can provide
the most updated packet loss level in the network as they know the number
of packets already recovered through the updated bitmap as they travel along
the return path and the number of packets (holes) which are not. This strategy
eliminates the need for channel probing while making the most effective use of
cache space. Therefore, it will lessen the sensor node’s memory and computing
requirements, energy consumption and maximize cache utilization. However, in
this strategy, there is no way to differentiate the packet losses. In low power
and lossy types of networks such as WSN, previous results show that when
congestion occurs, the majority of packets are lost due to node level congestion
as compared to link level contention [6]. Therefore, RT-CaCC uses a second
strategy to mitigate packet losses mainly due to buffer congestion.

4.2 Packet Loss Detection Using EAR Timeout (ETO)

The expiration of EAR timer is used to detect node-level congestion which pre-
dominates during high level of network traffic in WSN. EAR timeout ETO is
dynamically set using congestion round-trip time (RTT). In ad hoc wireless net-
works, RTT is compose of processing, queuing, transmission, propagation and

222 M. I. Alipio and N. M. C. Tiglao

contention delays. To estimate the congestion RTT of a segment, RT-CaCC
marks the time when the frame reaches the output queue header at the inter-
mediate node. The estimation only uses the output queue since it is assumed
that the input queue only refers to the routing path availability and discovery
and is out of the scope of this work. RT-CaCC does not include contention delay
in the RTT estimation to ensure that the delay is mainly contributed by buffer
overflow. The total time from propagation to transmission delay is designated
as one-hop delay of a packet at node n indicated as dn

h assuming the clock of
adjacent nodes is synchronous. For N number of hops in the forward path, the
previous dn

h is added to the current dn
h until it reaches the sink node. Once the

sink node received the EAR notification piggybacked in the last packet, the sum
of all dn

h for M number of packets in a segment is computed as Tdelay−DATA.
Afterwhich, an implicit notification either ACK or NACK is propagated in the
return path until it reaches the destination and the total time of propagation
corresponds to Tdelay−ACK . Therefore, the total congestion RTT is given by
RTT = Tdelay−DATA + Tdelay−ACK .

When the source node transmits the EAR notification, an EAR timeout is
set automatically. In order to dynamically set the EAR timeout, total conges-
tion RTT is used taking into consideration the additional delay caused by local
retransmissions from intermediate caching. In WSN, the local retransmissions
performed by intermediate caching at wireless link can cause the end-to-end
RTT to increase significantly in a short time due to the long processing delay. In
effect, huge time gaps in receiving ACK and NACK at the sender nodes is experi-
enced. When there are no packet loss and an holesACK is received at the sender,
the estimated delay variation is minimal and EAR timer is set accordingly. On
the other hand, if there are frequent packet loss occur, a holesNACK �= 0 is
received at the sender and local retransmissions are triggered, the estimated
EAR timer should be adjusted in order to handle delay variation caused by local
retransmissions from intermediate caching. Therefore, an additional delay inter-
val δdelay is computed as a function of estimated congestion RTT, probability of
packet loss and caching probability in (1) leading to δdelay = RTT × ENTcache.
It can be noticed that when Ploss and Pcache approaches to 1, most packets are
being lost and are need to be recovered. Therefore, end-to-end delay should be
increased by at least another RTT in order for these lost packets to be recovered.
To attain this, ETO is computed at the sender as

ETO = RTT + δdelay (3)

The expiration of ETO before an ACK or NACK is received at the sender
node infers a buffer congestion. The sender node will act by retransmitting an
EAR packet towards the sink node and reduces its transmission rate accordingly.
This approach could be seen as an extension of the classical TCP algorithm.
However, instead of constants that are used to take into account history of the
current state, dynamically changing parameter is used.

Cache-Aware Congestion Control for Reliable Transport 223

4.3 Congestion Avoidance at the Source Node

At the sender node, a cache-aware rate control strategy was used by RT-CaCC
based on packet loss detections described in the previous sections. It also used
a bounded congestion window size based on bandwidth-delay product (BDP)
and CS. The idea is to limit the upper transmission window size to the average
BDP of the network which serves as the congestion window limit (CWL). BDP
is an important indicator of network capacity which refers to the maximum
number of bits a connection can accommodate. Therefore, the total number of
outstanding data packets, like in-flight or unacknowledged ones, cannot exceed
this upper bound. For constrained networks like WSNs, it is important that a
transmission window limit must be used and tuned to an appropriate value to
ensure sufficient pipelining and to avoid the risk of overloading the network. In
addition, RT-CaCC used CS value as the minimum transmission window size
to optimize cache utilization since moving the window below CS can lead to
sub-optimal cache performance. Assuming that CS is always less than the total
buffer size B, cache-based transport protocol starts to obtain optimum cache
utilization when the transmission window is equal to CS. On the other hand,
RT-CaCC can achieve the optimum throughput at CWL as a function of B.

RT-CaCC used the average BDP (BDPave) as the upper bound of CWL
as a function of congestion RTT discussed previously. RT-CaCC only considers
BDP determined by the time that data packets flow continuously. In this case,
contention delay is not included since it is the period where packets are tem-
porarily blocked by the node when contending to access the wireless channel to
send the data and is not an indicator of available bandwidth capacity. Therefore,
RT-CaCC only uses the output buffer in the determination of BDPave. However,
to ensure optimum cache utilization, BDPave is only used if BDPave > WCS

wherein WCS is the window size equal to CS. Since packets spend longer time
passing through a bottleneck link, RT-CaCC measures the available bandwidth
based on its share at this link. Since the BDP carried out by each packet is con-
tinuously changing, RT-CaCC computes the BDPave at the sender node using

BDPave =
∑(S

dmax
)×RTT

M where S is the packet size, M is the total number of
observed packets and dmax is max(dn

h), 1 ≤ n ≤ N . In order to achieved this,
RT-CaCC protocol used additional packet header fields.

Let R(t) denote the rate allocated for current congestion window (Wt) which
is calculated at the sender node once implicit notifications are received. The
rate control mechanism used an AIMD on R(t) which is counteractive with
the traditional TCP-AIMD. When the network experience packet losses either
due to poor channel quality or link contentions, intermediate caching will act
primarily to perform local retransmissions. The rate control mechanism of RT-
CaCC protocol is summarized in Algorithm 1.

If the sender node receives an ACK or NACK without holes, R(t) additively
increases as a function of α. If the source node receives NACK with holes, R(t)
multiplicatively decreases by β. The idea is to dynamically adjust the trans-
mission rate according to packet loss level. This will continue until Wt reaches
BDPave. On the other hand, the expiration of ETO will decrease Wt equal WCS .

224 M. I. Alipio and N. M. C. Tiglao

Algorithm 1. Rate Control Algorithm at the Source Node
1: procedure pkt recv(pkt)

2: %compute the value of RTT and δdelay

3: %compute the value of ETO from previous segment
4: %set ETO after transmission of last packet
5: if (ETO expires) then
6: decrease current window to minimum limit WCS

7: %retransmit EAR notification to sink node
8: else
9: if (packet header received is holesNACK �= 0) then
10: if (check current window Wt > WCS) then
11: R(t) = [(Wt − WCS) × β] + WCS

12: else
13: set current window to minimum limit WCS

14: end if
15: else
16: %compute the value of BDPave

17: %use BDPave if BDPave > CS; otherwise CWL = CS
18: if (check current window Wt < BDPave) then
19: R(t) = Wt + (α × S

RTT)

20: else
21: set current window to maximum limit BDPave

22: end if
23: end if
24: end if
25: end procedure

The idea is to move W between BDPave and WCS to prevent network overload
while optimizing cache utilization. The values of α and β use increase-by-one and
decrease-to-half strategy, respectively, to lessen the effect of aggressive window
oscillation that can lead to low network resource utilization.

5 Simulations and Results

Simulations in NS-2 were carried out to evaluate the performance of the RT-
CaCC protocol. For the network scenario, it is assumed that all intermediate
nodes have CS equal to 10 packets while buffer size is set to 50 packets (default
in NS-2). Packet size is set to 500 bytes and each topology used fixed routing
(FIXRT) with Binary Symmetric Channel (BSC). Since 802.11b set to 1 Mbps
MAC protocol was used, RTS/CTS are disabled and the number of retries was
set to 4 in order to make it as similar as possible to 802.15.4 MAC protocol stan-
dard for WSN. To evaluate the performance of the RT-CaCC, end-to-end delay,
throughput, transmission cost and cache hit are used as primary metrics. Cache
hit refers to the number of times the data are requested from the intermediate
nodes cache memory while transmission cost is the total number of data pack-
ets, transport layer ACK and NACK packets and MAC layer ACKs per total
number of packets that need to be delivered end-to-end.

5.1 Varying Pcache

The number of received NACK at the sender node was evaluated while varying
the caching probability in a 10-node linear topology. From Fig. 2, for 100%Pcache,

Cache-Aware Congestion Control for Reliable Transport 225

fewer number of retransmissions is required than with 0%Pcache. It can be
observed that using 50% probability is still efficient in reducing the number of
packet retransmissions. However, lower Pcache can lead to more retransmissions
thus requiring more energy consumption from the congestion control. Appropri-
ate value of Pcache should be taken into account due to its effect in RTT and
ETO variations. Larger Pcache supports more local retransmission from inter-
mediate. Thus, it requires longer RTT and ETO expiration time.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 0.1 0.2 0.3 0.4 0.5 0.6

N
um

be
r o

f r
ec

ei
ve

d
N

AC
Ks

Packet Loss Probability

Pcache=0%
Pcache=25%
Pcache=50%

Pcache=100%

Fig. 2. Number of received NACKs at the sender node

5.2 Varying Packet Error Rates

To evaluate the improvement gain of the congestion control mechanism, the RT-
CaCC was simulated against the original DTSN+ with fixed transmission win-
dow and the modified DTSN+ with dynamic cache-aware rate control mechanism
designated as Ca-RC [7]. 50%Pcache is uniformly allocated to all intermediate
nodes. A linear topology composed of 10 nodes wherein 8 nodes served as inter-
mediate caching nodes with 20% packet error rate was used. RT-CaCC gained
48.09% and 30.88% throughput improvement gain against DTSN+ and Ca-RC,
respectively. It also achieved 35.61% and 26.15% end-to-end delay improvement
gain as compared with DTSN+ and Ca-RC, respectively. Finally, 36.43% and
10.13% cache hits improvement gain were obtained better than DTSN+ and Ca-
RC, respectively. The addition of ETO component of RT-CaCC significantly
maximized cache utilization by adapting to variations in RTT due to local
retransmissions. Although the minimal throughput gain can be attributed to
conservative congestion window, this can be further improved by setting the
appropriate Pcache (Fig. 3).

5.3 Link Contentions with Multiple Flows

Figure 4 shows the results of varying the number of flows in contending flow
topology. In terms of delay, the cache-aware congestion control performed well
with 34.76% and 27.97% average gain difference than DTSN+ and Ca-RC,

226 M. I. Alipio and N. M. C. Tiglao

 180

 200

 220

 240

 260

 280

 300

 320

 340

 360

 380

 0 0.05 0.1 0.15 0.2

C
ac

he
 H

its

PER

DTSN+ Ca-RC RT-CaCC

(a)

 15

 20

 25

 30

 35

 40

 45

 0 0.05 0.1 0.15 0.2

D
el

ay
 (m

s)

PER

DTSN+ Ca-RC RT-CaCC

(b)

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 0 0.05 0.1 0.15 0.2

Th
ro

ug
hp

ut
 (b

ps
)

PER

DTSN+ Ca-RC RT-CaCC

(c)

 10

 15

 20

 25

 30

 35

 0 0.05 0.1 0.15 0.2

Tr
an

sm
is

si
on

 C
os

t

PER

DTSN+ Ca-RC RT-CaCC

(d)

Fig. 3. RT-CaCC performance with varying PER: (a) cache hits, (b) end-to-end delay,
(c) throughput and (d) transmission cost

respectively, at worst case. It shows that the cache-aware retransmission timeout
mechanism of RT-CaCC is effective enough to reduce the end-to-end delay which
is very important in an event-based applications. In addition, RT-CaCC was able
to prevent the network from collapsing and recover immediately specifically at
higher buffer overflows. It is mainly evident from the high throughput perfor-
mance gain obtaining 20.92% and 10.13% as compared with DTSN+ and Ca-RC,
respectively. In terms of cache hits, RT-CaCC achieved 18.71% and 9.97% gain
improvement against DTSN+ and Ca-RC, respectively. It can be deduced that
using cache elimination policy such as implicit NACK notification is effective
in mitigating link-level congestion from contending flows than its predecessor
protocols.

5.4 Bottleneck Link with Multiple Flows

Two RT-CaCC flows were also evaluated in a bottleneck topology entering the
link while varying cache size values. Figure 5 shows the results wherein 20% and
10% cache hit improvement gain were achieved by the RT-CaCC as compared
with DTSN+ and Ca-RC, respectively. The protocol also gained 47% and 25%
end-to-end delay improvement gain against DTSN+ and Ca-RC, respectively.
Further, it also achieved 14% and 5% throughput improvement gain compared

Cache-Aware Congestion Control for Reliable Transport 227

 100

 150

 200

 250

 300

 350

 400

 450

1 3 5

C
ac

he
 H

its

Number of Flows

DTSN+ Ca-RC RT-CaCC

(a)

 10
 15
 20
 25
 30
 35
 40
 45
 50
 55
 60
 65

1 3 5

D
el

ay
 (m

s)

Number of Flows

DTSN+ Ca-RC RT-CaCC

(b)

 60000
 70000
 80000
 90000

 100000
 110000
 120000
 130000
 140000
 150000
 160000
 170000

1 3 5

Th
ro

ug
hp

ut
 (b

ps
)

Number of Flows

DTSN+ Ca-RC RT-CaCC

(c)

 20

 25

 30

 35

 40

 45

 50

1 3 5

Tr
an

sm
is

si
on

 C
os

t

Number of Flows

DTSN+ Ca-RC RT-CaCC

(d)

Fig. 4. RT-CaCC performance with varying number of flows: (a) cache hits, (b) end-
to-end delay, (c) throughput and (d) transmission cost

to DTSN+ and Ca-RC, respectively. This only shows that the ETO mechanism
which uses congestion RTT is effective enough to detect and mitigate congestion
due to buffer overflow. It can also be deduced that the value of CS affects the
behavior of RT-CaCC protocol. Ideally, larger CS should be used since it will also
increase the number of retransmissions for successful recovery of packet losses.
However, in real-life scenario, smaller CS should be used due to the constrained
characteristics of WSN.

5.5 Congestion Window Response

The congestion window behavior of RT-CaCC was also observed in a bottleneck
link topology with increasing number of flows. Figure 6 shows the congestion win-
dow response of RT-CaCC and DTC protocols. DTC [2] was a modified TCP
with caching mechanism which uses the traditional TCP-AIMD algorithm as its
congestion control mechanism. Flows were injected in the bottleneck link incre-
mentally every after 100 s simulation time. It can be observed that from 100 s
to 200 s wherein a single flow of traffic is entering the link, less were the num-
ber of retransmission timeout occurrence for both protocols. In addition, both
protocols frequently reached the upper window limit BDPave which indicates
that the bandwidth allocation was maximized. It can be seen that the BDPave

228 M. I. Alipio and N. M. C. Tiglao

 100

 150

 200

 250

 300

 350

 400

10 20 30

C
ac

he
 H

its

Cache Size

DTSN+ Ca-RC RT-CaCC

(a)

 20

 25

 30

 35

 40

 45

 50

10 20 30

D
el

ay
 (m

s)

Cache Size

DTSN+ Ca-RC RT-CaCC

(b)

 36000

 38000

 40000

 42000

 44000

 46000

 48000

 50000

10 20 30

Th
ro

ug
hp

ut
 (b

ps
)

Cache Size

DTSN+ Ca-RC RT-CaCC

(c)

 28

 30

 32

 34

 36

 38

 40

 42

 44

10 20 30

Tr
an

sm
is

si
on

 C
os

t

Cache Size

DTSN+ Ca-RC RT-CaCC

(d)

Fig. 5. RT-CaCC performance with varying cache sizes: (a) cache hits, (b) end-to-end
delay, (c) throughput and (d) transmission cost

is always almost equal to B which ensures full buffer utilization. From 200 s to
300 s wherein an additional flow was injected in the bottleneck link, RT-CaCC
registered fewer number of retransmission timeout than DTC. From 300 s to
400 s wherein three simultaneous traffic flows were entering the link, RT-CaCC

 10

 20

 30

 40

 50

 60

 70

 100 150 200 250 300 350 400

C
on

ge
st

io
n

W
in

do
w

Runtime (s)

RT-CaCC
DTC

Fig. 6. Congestion window with increasing number of flows in a bottleneck link

Cache-Aware Congestion Control for Reliable Transport 229

obtained better bandwidth usage than DTC at high level of congestion. In addi-
tion, RT-CaCC congestion window is less aggressive than DTC which lead to
better resource allocation and optimum cache utilization.

RT-CaCC was also evaluated with other cache-based transport protocols like
DTC and ERCTP. These protocols also implement congestion control mecha-
nisms but not cache-aware. Due to page limitation, the results of the comparison
will be presented in the extended version of this work in another paper.

6 Conclusion

This work developed a cache-aware congestion control mechanism that uses cache
management policies such as cache insertion and elimination policy as well as
cache size allocation to mitigate packet losses from poor wireless link and con-
gestion in the network. RT-CaCC outperformed the baseline protocols in terms
of cache utilization, end-to-end delay and throughput from 10% to 50% aver-
age improvement gain. This only shows that using a cache-aware approach can
effectively respond to packet losses either due to poor channel link or congestion
in the network. Further, limiting the lower and upper bounderies of the con-
gestion window during high level of packet losses guaranteed optimum usage of
cache memories while preventing the network from overshooting. In the future,
RT-CaCC can be evaluated in a more challenging network scenario as well as
incorporating a cache-aware cross-layer approach with the routing protocol in
WSN such as RPL.

Acknowledgment. The authors would like to acknowledge the support of the Univer-
sity of the Philippines Diliman and the Department of Science and Technology (DOST)
through the Engineering Research and Development for Technology (ERDT) Program.

References

1. Akyildiz, I., Vuran, M.C.: Wireless Sensor Networks. Wiley, New York (2010)
2. Dunkels, A., Alonso, J., Voigt, T., Ritter, H.: Distributed TCP caching for wire-

less sensor networks. In: Proceedings of the 3rd Annual Mediterranean Ad-Hoc
Networks Workshop (2004)

3. Braun, T., Voigt, T., Dunkels, A.: TCP support for sensor networks. In: Fourth
Annual Conference on Wireless on Demand Network Systems and Services, WONS
2007, pp. 162–169, January 2007

4. Sharif, A., Potdar, V.M., Rathnayaka, A.J.D.: ERCTP: end-to-end reliable and
congestion aware transport layer protocol for heterogeneous WSN. Scalable Com-
put.: Pract. Exp. 11(4), 359–372 (2010)

5. Paek, J., Govindan, R.: RCRT: rate-controlled reliable transport protocol for wire-
less sensor networks. ACM Trans. Sens. Netw. 7, 20:1–20:45 (2010)

6. Alipio, M.I., Tiglao, N.M.C.: Analysis of cache-based transport protocol at conges-
tion in wireless sensor networks. In: 2017 International Conference on Information
Networking (ICOIN), pp. 360–365, January 2017

230 M. I. Alipio and N. M. C. Tiglao

7. Alipio, M.I., Tiglao, N.M.C.: Improving reliable data transport in wireless sensor
networks through dynamic cache-aware rate control mechanism. In: 2017 IEEE
13th International Conference on Wireless and Mobile Computing, Networking
and Communications (WiMob), October 2017 (to appear)

8. Tiglao, N.M.C., Grilo, A.M.: Cross-layer caching based optimization for wireless
multimedia sensor networks. In: 2012 IEEE 8th International Conference on Wire-
less and Mobile Computing, Networking and Communications (WiMob), pp. 697–
704, October 2012

9. Tiglao, N.M.C., Grilo, A.M.: An analytical model for transport layer caching in
wireless sensor networks. Perform. Eval. 69(5), 227–245 (2012)

10. Meneses, D., Grilo, A., Pereira, P.R.: A transport protocol for real-time streaming
in wireless multimedia sensor networks. In: 2011 7th EURO-NGI Conference on
Next Generation Internet Networks, pp. 1–8, June 2011

	A Cache-Aware Congestion Control for Reliable Transport in Wireless Sensor Networks
	1 Introduction
	2 Related Work
	3 Overview of Transport Data Caching and Management Policies
	4 Cache-Aware Congestion Control
	4.1 Packet Loss Detection Using Cache Elimination Policy
	4.2 Packet Loss Detection Using EAR Timeout (ETO)
	4.3 Congestion Avoidance at the Source Node

	5 Simulations and Results
	5.1 Varying Pcache
	5.2 Varying Packet Error Rates
	5.3 Link Contentions with Multiple Flows
	5.4 Bottleneck Link with Multiple Flows
	5.5 Congestion Window Response

	6 Conclusion
	References

