
Homomorphic Evaluation of Database
Queries

Hamid Usefi1,2(B) and Sudharaka Palamakumbura1

1 Department of Mathematics and Statistics, Memorial University of Newfoundland,
St. John’s, NL A1C 5S7, Canada
{usefi,sudharakap}@mun.ca

2 Department of Mathematics and Computer Science,
AmirKabir University of Technology, 424 Hafez Avenue, 159163-4311 Tehran, Iran

Abstract. Homomorphic encryption is an encryption method that
enables computing over encrypted data. This has a wide range of real
world ramifications such as being able to blindly compute a search result
sent to a remote server without revealing its content. This paper discusses
how database search queries can be made secure using a homomorphic
encryption scheme. We propose a new database search technique that
can be used with the ring-based fully homomorphic encryption scheme
proposed by Braserski.

Keywords: Homomorphic · Privacy · Encryption · Database · Query

1 Introduction

In this work, we address the problem of searching privately on a database. We
consider the case that the database is stored on a third-third party server. To
protect the data, we first encrypt the database and then upload the encrypted
database on an untrusted server and the server does not have access to our
secret key. Now we want to send a search request to the server. Since the data
on the server is encrypted, we would need to search on ciphertexts and output
a ciphertext. We can then decrypt the ciphertext. This scheme would work only
if we are able to do computations on ciphertexts. The adaptation of these kind
of services in health care are becoming increasingly common with cloud-based
health recording and genomic data management tools such as Microsoft Health.

Homomorphic encryption allows computations to be carried out on the
cipher-text such that after decryption, the result would be the same as car-
rying out identical computations on the plain-text. This has novel implications
such as being able to carry out operations on database queries in the form of

H. Usefi—The research is supported by NSERC of Canada under grant # RGPIN
418201 and the Research & Development Corporation of Newfoundland and
Labrador.

c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2018

J. Hu et al. (Eds.): MONAMI 2017, LNICST 235, pp. 203–216, 2018.

https://doi.org/10.1007/978-3-319-90775-8_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-90775-8_17&domain=pdf

204 H. Usefi and S. Palamakumbura

cipher-text and returning the result to the user so that no information about
the query is revealed at the server’s end [7].

In this paper, we employ homomorphic encryption (HE). The idea of homo-
morphic encryptions is not new, and even the oldest of ciphers, ROT13 developed
in ancient Rome, had homomorphic properties with respect to string concate-
nations [5]. Certain modern ciphers such as RSA and El Gamal also support
homomorphic multiplication of cipher texts [5].

The idea of a “fully” homomorphic encryption scheme (or privacy homo-
morphism) which supports two homomorphic operations was first introduced
by Rivest et al. in [4]. After more than three decades, the first fully homomor-
phic encryption scheme was founded by Gentry in 2009 with his breakthrough
construction of a lattice based cryptosystem that supports both homomorphic
additions and multiplications [6]. Although the lattice based system is not used
in practice, it paved the way for many other simpler and more efficient fully
homomorphic models constructed afterwards.

At a high level, Gentry’s idea can be described by the following general model.
This is the blueprint that is used in all homomorphic encryption schemes that
followed.

1. Develop a Somewhat Homomorphic Encryption Scheme that is restricted to
evaluating a finite number of additions or multiplications.

2. Modify the somewhat homomorphic encryption scheme to make it Bootstrap-
pable, that is, modifying it so that it could evaluate its own decryption circuit
plus at least one additional NAND gate.

Every probabilistic encryption function usually introduces a noise and when
the noise exceeds a certain threshold, the decryption function does not return
the desired plain-text. The idea behind constructing a bootstrappable scheme
is that whenever the noise level is about to reach the threshold, we can refresh
the cipher-text and get a new cipher-text so that these cipher-texts decrypt to
the same pain-text but the new cipher-text will have a lower noise. In this way,
if the cipher-text is bootstrapped from time to time, an arbitrary number of
operations can be carried out.

Gahi et al. [1] use homomorphic encryption to search for an encrypted mes-
sage on a database that is not encrypted. Their work specifically uses the DGHV
fully homomorphic encryption scheme [2]. The DGHV scheme operates on plain-
text bits separately, and thus Gahi’s method requires a large amount of compu-
tations to perform even on a simple operation such as integer multiplication. We
view a database as an � × n matrix, where � is the number of records (patients).
Now corresponding to each record, there are n lab results (columns). In Sect. 5.1,
we shall first address the type of queries whose return output is a unique record.
For example, we want to search for a record with a given ID number, that is one
of the columns in our matrix corresponds to ID numbers and in that column
we want to search for a specific ID number. We use a more modern fully homo-
morphic encryption schemes. In particular, we modify recent ring based fully
homomorphic encryption scheme proposed by Braserski and Vaikuntanathan [3]
which work on blocks of data rather than single bits (as in Gahi’s scheme).

Homomorphic Evaluation of Database Queries 205

As such the number of computations can be greatly reduced. Next we extend
our method to a more general setting. To this end, we use a recent result of Kim
et al. [10] where they considered equality testing on the cipher texts. Suppose
we have a function Equal that as input takes two cipher texts c1 and c2, where
c1 = Enc(m1) and c2 = Enc(m2). The output of Equal is Enc(1) if m1 = m2

and Enc(0), otherwise. Our general case, discussed in Sect. 5.3, addresses searches
for a keyword with exact matching. We are able to search over a column of the
database. Let Ri,j be the attribute of record i in column j. Given a keyword m,
we return those records Ri such that Enc(m) = Enc(Ri,j). This can be easily
extended for multiple keyword search with exact matching.

2 DGHV Fully Homomorphic Encryption

The DGHV scheme was introduced by Marten van Dijk, Craig Gentry, Shai
Halevi, and Vinod Vaikuntanathan in 2010, and this scheme operates on inte-
gers as opposed to lattices in Gentry’s original construction. The scheme fol-
lows Gentry’s original blueprint by first constructing a somewhat homomorphic
encryption scheme. The key generation, encryption and decryption algorithms
of the DGHV scheme are given below.

Let λ ∈ N be the security parameter and set N = λ, P = λ2 and Q = λ5.
The scheme is based on the following algorithms;

– KeyGen(λ): The key generation algorithm that randomly chooses a P -bit
integer p as the secret key.

– Enc(m, p): The bit m ∈ {0, 1} is encrypted by

c = m′ + pq,

where m′ ≡ m (mod 2) and q, m′ are random Q-bit and N -bit numbers,
respectively. Note that we can also write the cipher-text as c = m + 2r + pq
since m′ = m + 2r for some r ∈ Z.

– Dec(c, p): Output (c mod p) mod 2 where (c mod p) is the integer c′ in
(−p/2, p/2) such that p divides c − c′.

The value m′ is called the noise of the cipher-text. Note that this scheme, as it
is given above, is symmetric (i.e., it only has a private key). We can define the
public key as a random subset sum of encryptions of zeros, that is, the public
key is a randomly choosen sum from a predefined set of encryptions of zeros:
S = {2r1 + pq1, 2r2 + pq2, . . . , 2rn + pqn}. A typical encryption of the plain-text
m would be,

c = m +
∑

i∈T

(2ri + pqi)

= m + 2
∑

i∈T

ri + p
∑

i∈T

qi,

where T ⊆ S. From here on we shall use m′ to denote m +
∑

i∈T ri and q to
denote

∑
i∈T qi.

206 H. Usefi and S. Palamakumbura

This scheme is homomorphic with respect to addition and multiplication
and decrypts correctly as long as the noise level does not exceed p/2 in absolute
value. That is, |m′| < p/2. Hence, this is a somewhat homomorphic encryption
scheme in the sense that once the noise level exceeds p/2, the scheme loses its
homomorphic ability. It is shown that this scheme is Bootstrappable.

3 Query Processing Using the DGHV Scheme

The DGHV scheme can be used to create a protocol that establishes blind search-
ing in databases. This method was proposed by Gahi et al. [1].

Suppose we need to retrieve a particular record from the database. Typically,
we send a query to the database encrypted using the DGHV scheme. Let vi be the
ith bit of the query v and ci be the ith bit of a record R in database D. Both the
query and the database record is encrypted using the DGHV scheme. Suppose
the plain-text bit corresponding to vi is mi and the plain-text bit corresponding
to ci is m′

i. Then,
vi = mi + 2ri + pqi

and
ci = m′

i + 2r′
i + pq′

i,

where ri, r
′
i, qi and q′

i are random numbers and p is the secret key. The server
shall compute the following sum for each record Rt with index t:

It =
∏

i

(1 + ci + vi). (1)

(v1, v2, v3, v4, v5)“Query” (m1,m2,m3,m4,m5)

Alice Bob

(c1, c2, c3, c4, c5)

(m1,m2,m3,m4,m5)
DGHV (v1, v2, v3, v4, v5) Calculates

5∏

i=1

(1 + vi + ci)

Fig. 1. Calculation of Ir values.

We observe that

1 + ci + vi = 1 + (mi + m′
i) + 2(ri + r′

i) + p(qi + q′
i).

So, if mi = m′
i, then mi + m′

i ≡ 0 mod 2. In this case:

1 + ci + vi = Enc(1).

On the other hand, if mi �= m′
i, then mi + m′

i ≡ 1 mod 2. Therefore,

1 + ci + vi = 2(1 + ri + r′
i) + p(qi + q′

i)
= Enc(0).

Homomorphic Evaluation of Database Queries 207

This results in It = Enc(0). Hence, for each record Rt in the database we will
have an It value that is equal to Enc(1) or Enc(0) depending on whether the
search query m matches Rt or not (Fig. 1).

Next, we calculate the partial sums of the It values:

Sr =
∑

t≤r

It. (2)

As an example, let us consider a database that has five records, each encoded
with 4 bits. If the query sent by the user is (Enc(1),Enc(1),Enc(0),Enc(0)), we
obtain the corresponding Ir and Sr values, as shown in Table 1.

Table 1. Sample database with corresponding Ir and Sr values

Database records Ir Sr

(1, 1, 0, 0) Enc(1) Enc(1)

(1, 0, 1, 0) Enc(0) Enc(1)

(1, 1, 0, 0) Enc(1) Enc(2)

(1, 1, 0, 1) Enc(0) Enc(2)

(1, 0, 0, 0) Enc(0) Enc(2)

Next, we calculate the sequence I ′
r = (I ′

r,j) for every record Rr with index r
and every positive integer j ≤ r:

I ′
r,j = Ir

∏

i

(1 + j̄i + Sr,i), (3)

where Sr,i is the ith bit of Sr and j̄i represents the ith bit of the encryption
of j. Hence, these sequences have the property that whenever Ir = Enc(1) and
Sr = Enc(j), we have I ′

r,j = Enc(1). Otherwise, I ′
r,j = Enc(0). Following the

example given in Table 1, we get

I ′
1 = (Enc(1)),

I ′
2 = (Enc(0),Enc(0)),

I ′
3 = (Enc(0),Enc(1),Enc(0)),

I ′
4 = (Enc(0),Enc(0),Enc(0),Enc(0)),

I ′
5 = (Enc(0),Enc(0),Enc(0),Enc(0),Enc(0)).

Finally, we calculate the sequence

R′ =
∑

k

Enc(Rk)I ′
k, (4)

where Rk is the kth record in D. So, R′ is a sequence containing only the
encrypted records that matches our search query. Note that the definition of

208 H. Usefi and S. Palamakumbura

R′ relies on adding vectors of different lengths. This is done in the natural way,
whereby all the vectors are made the same length by padding with zeros prior
to addition. In the above example, we obtain,

R′ = (Enc(R1),Enc(R3),Enc(0),Enc(0)).

At this point, the sequence R′ will contain all the records that match our query,
but with trailing encryptions of zeros we do not need. Hence, a second sum is
calculated at the server side to determine the number of terms that are useful
in the sequence:

n =
∑

r

Ir

This result can be returned to the user and decrypted to obtain the number of
records that match the search query. Hence, the sequence R′ can be truncated
at the appropriate point and returned to the user for decryption. The whole
process is illustrated in Fig. 2.

(v1, v2, v3, v4, v5)

“Query” (1, 1, 0, 0, 0)

Alice

Bob
(1, 1, 0, 0, 0) DGHV (v1, v2, v3, v4, v5)

∑

r

Ir

Dec
∑

r

Ir, sk = 2

(Enc(R1),Enc(R3))

Fig. 2. Alice, Bob, and Gahi’s protocol.

An update query can be performed by,

Rnew = (1 + Ir)R + IrU, for every R ∈ D,

where U is the new value that we wish to insert whenever the query matches
R (or Ir = Enc(1)). A deletion of a record can be performed by,

Rnew = (1 + Ir)R for every R ∈ D.

To perform all these operations without exceeding the maximum noise permitted
(p/2), it is necessary to choose the parameters N,P, and Q appropriately.

Gahi’s method works on plain-text bits and thus requires significant com-
putational ability on the part of the server. This is due to the fact that it is
restricted to the DGHV scheme which processes plain-text bits separately. Now
we propose an alternative protocol called the Homomorphic Query Processing
Scheme. This protocol enables us to process database queries using more modern
fully homomorphic encryption schemes such as the ring based scheme proposed
by Braserski and Vaikuntanathan [3], which acts on blocks of plain-text rather
than single bits.

Homomorphic Evaluation of Database Queries 209

4 Block-Wise Encryption

The main drawback in Gahi’s method is that it requires an enormous number
of homomorphic operations because it employs the DGHV encryption scheme,
which uses bitwise encryption. We propose an alternative protocol called Homo-
morphic Query Processing that is compatible with the more recent ring-based
fully homomorphic encryption scheme introduced by Braserski and Vaikun-
tanathan [3]. The major advantage is that Braserski’s method works on plain-
text and cipher-text blocks and thus the number of homomorphic operations
required can be greatly reduced.

We first give a brief introduction to the ring based fully homomorphic Encryp-
tion Scheme proposed by Braserski, and then proceed to define our Homomorphic
Query Processing method.

4.1 Ring Based Fully Homomorphic Encryption

This encryption scheme was introduced by Braserski and Vaikuntanathan [3]
and operates on the polynomial ring R = Z[X]/〈f(x)〉; the ring of polynomials
with integer coefficients modulo f(x), where,

f(x) =
∏

1≤k≤n
gcd(k,n)=1

(
x − e2iπ k

n

)
,

is the nth cyclomatic polynomial. The plain-text space is the ring Rt =
Zt[x]/〈f(x)〉, where t is an integer. The key generation and encryption functions
make use of two distributions χkey and χerr on R for generating small elements.
The uniform distribution χkey is used in the key generation, and the discrete
Gaussian distribution χerr is used to sample small noise polynomials. Specific
details can be found in [3,8]. The scheme is based on the following algorithms.

– KeyGen(n, q, t, χkey, χerr): Operating on the input degree n and moduli q
and t, this algorithm generates the public and private keys (pk, sk) = (h, f),
where f = [tf ′ + 1]q and h = [tgf−1]q. Here, the key generation algorithm
samples small polynomials from the key distribution f ′, g → χkey such that f
is invertible modulo q and [.]q denotes coefficients of polynomials in R reduced
by modulo q.

– Encrypt(h,m): Given a message m ∈ R, the Encrypt algorithm samples
small error polynomials s, e → χerr and outputs, c = [
q/t�[m]t + e + hs]q
∈ R, where
.� denotes the floor function.

– Decrypt(f, c): Given a cipher-text c, this algorithm outputs, m =[⌊
t
q [fc]q

⌉]

t
∈ R.

– Add(c1, c2): Given two cipher-texts c1 and c2, this algorithm outputs
cadd(c1, c2) = [c1 + c2]q.

– Mult(c1, c2): Multiplication of cipher-texts is performed in two steps. First,
compute c̃mult =

[⌊
t
q c1c2

⌉]

q
. However, this result cannot be decrypted to the

210 H. Usefi and S. Palamakumbura

original plain-text using the decryption key f . Therefore, a process known as
key switching is done to transform the cipher-text so that it can be decrypted
with the original secret key. For more details, we refer to [8].

This encryption scheme is homomorphic with respect to addition and mul-
tiplication of plain-texts modulo t. The main advantage in using Braserski’s
encryption scheme is that it can be used to encrypt blocks of plain-text instead
of dealing with single bits, as in the DGHV scheme [2]. For example, con-
sider the block of plain-text bits, 10100. The integer representation of this
block is the value 20. We can represent this integer using the polynomial
X2 + X4 =

∑4
i=0 2izi, where zi is the ith bit of 10100. In general, if z is an

integer and its binary representation is, z = (±1)
∑l

i=0 2izi, where zi ∈ {0, 1}
and l = �log2 |z|
, then we can encode the number z as

∑l
i=0 ziX

i ∈ R.

4.2 Converting the Plain-Text Space into a Field

As we shall see, in our Homomorphic Query Processing method, we invert certain
plain-text elements and thus the plain-text space should be a field. Therefore,
we now discuss how to convert the plain-text ring in Braserski’s method to a
field. Note that the plain-text space in Braserski’s method is defined on the
polynomial ring, Rt = Zt[x]/〈f(x)〉. We shall select t = p, where p is a prime
number. Then Rp is a field if and only if f is irreducible over Zp. Recall that f
is the nth cyclomatic polynomial defined as follows:

f(x) =
∏

1≤k≤n
gcd(k,n)=1

(
x − e2iπ k

n

)

Let f(x) = (x − α1)(x − α2) . . . (x − αn) be a polynomial defined on Q[x]. The
discriminant of f , denoted by Δ(f), is defined [9] as,

Δ(f) =
∏

i<j

(αi − αj)2

It has been proved in [9] that the nth cyclotomic polynomial reduces modulo all
primes if and only if the discriminant of the nth cyclotomic polynomial is a square
in Z. Hence, by choosing a cyclotomic polynomial whose discriminant is not a
square we can find a prime p such that f is irreducible over Zp. Furthermore, it is
shown in [9] that whenever the discriminant of a cyclotomic polynomial f is not
a square in Z, there exist infinitely many primes such that f is irreducible over
Zp. Thus, we can choose a cyclotomic polynomial with non-square discriminant
and check for irreducibility using a standard polynomial irreducibility test such
as Rabin’s test, until we obtain a prime for which the cyclotomic polynomial is
irreducible. For example, even if we consider a large cyclotomic polynomial with
non-square discriminant like the 107th cyclotomic (which has degree 106), and
consider the primes less than 100, it can be seen that it is irreducible over many
primes: Z2,Z5,Z7,Z17,Z31,Z43,Z59,Z67,Z71,Z73 and Z97.

Homomorphic Evaluation of Database Queries 211

We now propose our Homomorphic Query Processing scheme, which is com-
patible with the Braserski’s ring based fully homomorphic encryption scheme
mentioned previously.

5 Homomorphic Query Processing

We think of a database M as an � × n matrix, where � denotes the number of
records. We denote the record in the i-th row by Mi. Corresponding to each
record Mi there are some attributes. One can think of the records as patients
in a health database and the attributes are some test results. So, Mi,j denotes
the result of test j for patient i. The database M is encrypted by the public
key of database owner, Alice, who would like to search for a keyword m. The
search will be over a specific attribute (column). Let us denote the values of this
column by R1, R2, · · · . We write R̄i = Enc(Ri) for the Enc(Ri, pk), where pk is
the public key of database owner. Alice sends m̄ to the server and asks for the
records such that m̄ = R̄i.

5.1 Unique Identifier

In this section, we consider a search on a column of the database where the
entries of this column are all distinct. For example, we want the server to return
a record with a specific ID.

Suppose that Alice wants to search for a message m over the database. First
we assume that the query is contained somewhere in the database. The special
scenario that the query is not found in the database is discussed in Sect. 5.2. For
each i, the server computes the following:

Fi = 1̄
∏

k �=i

m̄ − R̄k

R̄i − R̄k
(5)

We remark that since the encryption is probabilistic, the chances that R̄i =
R̄k is very slim and negligible. So the problem of dividing by zero is not an issue
here. Since the Ri’s are all distinct, we have R̄i �= R̄k, for all i, k. Note that
here we are assuming that the query is contained somewhere in the database.
We claim that either Fi = Enc(0) or Fi = Enc(1). That is, whenever m = Ri

(query being equal to the record we are comparing), we have Fi = Enc(1) and
Fi = Enc(0), otherwise. First we emphasis that due to the probabilistic property
of encryption, we may not necessarily have Enc(R−1) = (EncR)−1. Indeed, we
have Enc(RR−1) = Enc(1). Thus,

Enc(R−1) =
1̄
R̄

,

that is Enc(R−1) can be expressed in this form as a fraction of encryption of
1 and encryption of R. To prove this claim, we note using the homomorphic
property of encryption that

212 H. Usefi and S. Palamakumbura

Fi = 1̄
∏

k �=i

m̄ − R̄k

R̄i − R̄k

=
∏

k �=i

(m̄ − R̄k)
∏

k �=i

1̄
R̄i − R̄k

=

⎛

⎝
∏

k �=i

Enc(m − Rk)

⎞

⎠

⎛

⎝
∏

k �=i

Enc (Ri − Rk)−1

⎞

⎠

=
Enc

∏
k �=i(m − Rk)

Enc
∏

k �=i(Ri − Rk)

The idea of defining the Fi’s in this way was inspired by Lagrange Inter-
polating Polynomials. If the query is not contained anywhere in the database,
an encryption of something other than 1 or 0 will be the output. This special
scenario is discussed in Sect. 5.2.

Now we consider the sequence

R′ =
∑

i

R̄iFi,

which give us the only encrypted record that matches our search query.

5.2 Query Not Found in the Database

As promised previously, we now look at the special case where the record that is
searched for is not contained anywhere in the database. In this case the value Fi

will be something other than an encryption of 1 or 0. These garbage encrypted
values will carry themselves into the rest of the protocol, resulting in Eq. (7)
with a nonsensical sequence. Hence, if Alice receives a nonsensical sequence as
the final result, it implies that the record that was searched is not contained in the
database. As an alternative approach, we can compute

∏
i (Enc(m) − Enc(Ri))

prior to computing the Fi in Eq. (5) and send it to Alice to decrypt. If the
result is zero then m is contained in the database, and if it is non-zero, m is not
contained in the database and therefore Alice can send a message to the server
to abort the search.

5.3 General Case

Given a message m, suppose now that Alice wants to search for all R̄i such that
Ri = m. We may attempt to adopt the same method as in Sect. 5.1, however we
encounter a problem computing the Fi in Eq. (5). Indeed, in the case we have
multiple matches or the case where Rk = Ri, we run into a problem.

Recently Kim et al. [10] considered equality testing on the cipher texts. Sup-
pose now we have a function Equal that as input takes two cipher texts c1 and
c2, where c1 = Enc(m1) and c2 = Enc(m2). The output of Equal is Enc(1) if
m1 = m2 and Enc(0), otherwise.

Homomorphic Evaluation of Database Queries 213

Now we want to compare and see whether m is equal to each Rk. So we
compute Fk = Equal(R̄k, m̄), for each record Rk. We can now return to user
the vector that in its k-th position has R̄kFk. This vector after decryption yields
a long vector consisting mostly of zeros except when Rk is equal to m in which
case the k-th position of the decrypted vector is Rk. This is not a plausible way
to return the search outcome. Ideally we want to return only the records that
match m. To accomplish this task, we need to do some further computations.
First, for each positive integer k, we calculate

Gi =
∑

j≤i

Fj .

So, Gi (in the encrypted form) indicates how many times a match to m is
found so far. In other words, if we are comparing Rk and m and so far r records
match m, then Gi = Enc(r).

Next, for each record Rk, we construct a vector Ek such that Ek in the
i-th position has FkEqual(Gk, ī) and Enc(0) elsewhere. Then we form R′ =∑

k R̄kEk.
An alternative way of constructing R′ without using the Equal function is

as follows. We define the partial sums of the Fi values as follows:

Gi =
∑

j≤i

Fj . (6)

Using these partial sums, we can then calculate the sequence F ′
i = (F ′

i,k)
corresponding to each record as follows,

F ′
i,k = Fi

⎛

⎝
∏

j �=k

Gi − Enc(j)

⎞

⎠

⎛

⎝Enc
∏

j �=k

(k − j)−1

⎞

⎠

= Fi

⎛

⎝
∏

j �=k

Gi − j̄

⎞

⎠
∏

j �=k

1̄
k̄ − j̄

= 1̄Fi

∏

j �=k

Gi − j̄

k̄ − j̄
,

where 1 ≤ k ≤ i. It can be seen that F ′
i,k = Enc(1) if Fi = Enc(1) and Gi =

Enc(k) are both satisfied. Hence, the sequence F ′
i has the property that whenever

Fi = Enc(1) (i.e., the ith record matches the query), we have an Enc(1) at the
kth position of the sequence where Gi = Enc(k). All other entries of the sequence
are encryptions of zero. Finally we consider the sequence

R′ =
∑

i

R̄iF
′
i , (7)

where Rk is the k-th record in D will give us a sequence containing only the
encrypted records that match our search query. Note that the definition of R′

214 H. Usefi and S. Palamakumbura

relies on adding vectors of different lengths. This is done in the natural way,
whereby all the vectors are made the same length by padding with zeros prior
to addition.

To further illustrate our scheme, let us consider an example where the
database contains five records, each with 4 bits of data. Also, let our encryption
scheme encrypt 2 bits at a time. Then, if the search query is (Enc(2), Enc(3)),
the corresponding Fi and Gi values are given in Table 2.

Table 2. Sample database and corresponding Fi and Gi values

Database records Fi Gi

(0, 0, 1, 0) Enc(0) Enc(0)

(1, 0, 1, 1) Enc(1) Enc(1)

(1, 0, 0, 1) Enc(0) Enc(1)

(1, 0, 1, 1) Enc(1) Enc(2)

(1, 1, 0, 0) Enc(0) Enc(2)

The resulting sequences (F ′
i) would be similar as in Gahi’s scheme,

F ′
1 = (Enc(0))

F ′
2 = (Enc(1),Enc(0))

F ′
3 = (Enc(0),Enc(0),Enc(0))

F ′
4 = (Enc(0),Enc(1),Enc(0),Enc(0))

F ′
5 = (Enc(0),Enc(0),Enc(0),Enc(0),Enc(0)).

Therefore, the sequence R′ would be,

R′ = (Enc(R2),Enc(R3),Enc(0),Enc(0),Enc(0))

At this point, the sequence R′ will contain all the records that match our query
but with trailing encryptions of zeros which we do not need. Hence, a second
sum is calculated at the server side to determine the number of terms that are
useful in the sequence:

Enc(n) =
∑

r

Fr.

Then Enc(n) will be returned to Alice and decrypted to obtain the number of
records that match the search query. Hence, the sequence R′ can be truncated
at the appropriate point and returned to Alice for decryption.

It should be noted that the server will know the number of records that match
Alice’s query. We believe that this information is not sufficient for the server to
gain any additional information about the search query. Alternatively, we could
return the whole sequence without truncation, keeping the number of matching
records private from the server. However, the communication overhead will be
increased significantly in this case, since the length of the sequence will be equal
to the number of records in the database.

Homomorphic Evaluation of Database Queries 215

6 Complexity

Our scheme has the main advantage of having the potential to be used with
more recent fully homomorphic encryption schemes rather than being restricted
to the DGHV scheme. This gives the flexibility to use our method with block
based encryption schemes such as Braserski’s [3], which reduces the number of
encryption steps. For example, referring back to Eq. (1), we can see that the It

values are calculated by comparing the query with each record bit-wise. If there
are � records in the database and each of them are encrypted using r bits, the
number of operations that are required to calculate all the It values will be O(r�).
In our method, Eq. (5) acts as the analogue of Eq. (1). However, the encryptions
are done block-wise in our scheme, and hence the number of operations it would
take to calculate the Fi value in Eq. (5) will be O(�). For Eq. (2) in Gahi’s
method, the number of operations that should be performed to calculate all
the partial sums will be O(r�2), since there are O(�2) multiplications and each
multiplication should be done bit-wise; whereas the calculation of partial sums
in our scheme (Eq. (6)), the number of operations is reduced to O(�2). Thus, it
can be seen that in each step of our scheme, the number of operations performed
is reduced by a factor of r compared to Gahi’s method.

References

1. Gahi, Y., Guennoun, M., El-Khatib, K.: A secure database system using homo-
morphic encryption schemes. In: The Third International Conference on Advances
in Databases, Knowledge, and Data Applications (2011)

2. van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic
encryption over the integers. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS,
vol. 6110, pp. 24–43. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-13190-5 2

3. Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from ring-LWE
and security for key dependent messages. In: Rogaway, P. (ed.) CRYPTO 2011.
LNCS, vol. 6841, pp. 505–524. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-22792-9 29

4. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures
and public-key cryptosystems. Commun. ACM 21, 120–126 (1978)

5. Hesse, H., Matthies, C.: Introduction to homomorphic encryption. In: Cloud Secu-
rity Mechanisms, December 2013

6. Gentry, C.: A fully homomorphic encryption scheme. Ph.D. thesis, Stanford Uni-
versity (2009)

7. Boneh, D., Gentry, C., Halevi, S., Wang, F., Wu, D.J.: Private database queries
using somewhat homomorphic encryption. In: Jacobson, M., Locasto, M., Mohas-
sel, P., Safavi-Naini, R. (eds.) ACNS 2013. LNCS, vol. 7954, pp. 102–118. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-38980-1 7

https://doi.org/10.1007/978-3-642-13190-5_2
https://doi.org/10.1007/978-3-642-13190-5_2
https://doi.org/10.1007/978-3-642-22792-9_29
https://doi.org/10.1007/978-3-642-22792-9_29
https://doi.org/10.1007/978-3-642-38980-1_7

216 H. Usefi and S. Palamakumbura

8. Bos, J.W., Lauter, K., Loftus, J., Naehrig, M.: Improved security for a ring-based
fully homomorphic encryption scheme. In: Stam, M. (ed.) IMACC 2013. LNCS,
vol. 8308, pp. 45–64. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-45239-0 4

9. Harrison, B.: On the reducibility of cyclotomic polynomials over finite fields. Am.
Math. Mon. 114, 813–818 (2007)

10. Kim, M., Lee, H.T., Ling, S., Wang, H.: On the efficiency of FHE-based private
queries. IEEE Trans. Dependable Secure Comput. 15(2), 357–363 (2018)

https://doi.org/10.1007/978-3-642-45239-0_4
https://doi.org/10.1007/978-3-642-45239-0_4

	Homomorphic Evaluation of Database Queries
	1 Introduction
	2 DGHV Fully Homomorphic Encryption
	3 Query Processing Using the DGHV Scheme
	4 Block-Wise Encryption
	4.1 Ring Based Fully Homomorphic Encryption
	4.2 Converting the Plain-Text Space into a Field

	5 Homomorphic Query Processing
	5.1 Unique Identifier
	5.2 Query Not Found in the Database
	5.3 General Case

	6 Complexity
	References

